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Abstract—The ENERGYBUS specification is the basis of an
ongoing joint IEC/ISO standardisation effort focussing on public
charging infrastructures for and interoperability of light electric
vehicle components. This paper highlights how these efforts
are supported by formal methods, starting at the design and
specification level, up to establishing a certification framework for
standards compliance of devices implementing the specification.
The MODEST TOOLSET supports the model-based analysis
methods needed in this context.

I. INTRODUCTION

Embedded control software has become a major driver
of industrial innovation, encompassing many critical, and
sometimes safety-critical, application domains. A particularly
delicate domain is the management of electric power: Em-
bedded power management software has been traced to be
the root of unintended and partly dangerous malfunctionings
of laptops [1], smart phones [2], smart watches [3], pace-
makers [4], and light electric vehicles [5]. The proper handling
of electric power by software is obviously intricate. At the
same time, electric power is the basic commodity needed to
innovate formerly all-mechanical systems such as bicycles.
Indeed, many embedded innovations are being developed
in this domain, with pedelecs and e-bikes being the most
prominent examples.

ENERGYBUS is an open specification for interoperability of
the electrical components of e-bikes and other light electric
vehicles, encompassing batteries, chargers, motors, sensors,
and the human interface. It is driven by EnergyBus e.V., an
association formed by major industrial stakeholders in the e-
bike domain. The ENERGYBUS specification is the nucleus for
the joint IEC/ISO standardisation IEC/IS/TC69/JPT61851-3,
aiming at eventually enabling a single charger to be used
across all light electric vehicles. By mid 2018, this safety
standard will become binding, so as to enable effective public
charging infrastructures for light electric mobility.

This paper reviews how state-of-the-art formal methods
and tools have been and are being applied in this context
to assure the general correctness and safety of ENERGYBUS
protocol specifications, as well as to support implementers of
ENERGYBUS in designing correct and safe implementations.
For the latter, we have developed a tool platform for auto-
mated conformance testing of ENERGYBUS implementations
against their formal specification. We have made this platform
available to the industrial members of EnergyBus e.V. The
tool platform is based on the MODEST modelling language [6]
and its accompanying MODEST TOOLSET [7], which has been

extended with a component supporting effective model-based
testing against a formal ENERGYBUS protocol specification.

This paper first reviews the MODEST approach to formal
modelling and its features, followed by an explanation of
the core principles of ENERGYBUS. Particular emphasis is
put on the certification process for ENERGYBUS products,
which hinges on the conformance test plan designed by the
consortium. We then explain the role of model-based testing
in this process and review results achieved in its application.

II. FORMAL MODELLING

Modelling is a first important step to specify the beha-
viour of implementations operating in complex contexts like
ENERGYBUS. More generally, models may be based on an
abstract system design, a specification of (un)desired events, or
an actual implementation. Suitable modelling formalisms are:
Formal: To obtain trustworthy results that are consistent for

different tool implementations of the same formalism, it
must be equipped with a complete mathematical semantics.

Behavioural: Embedded software is reactive, i.e. it is continu-
ously operative, acting upon stimuli and generating control
signals. We are thus interested in the overall system’s
behaviour over time, instead of the classic perspective of
looking at the input-output function of an algorithm.

Compositional: Building complex systems monolithically
does not scale, and the same holds for modelling. We
need the ability to reflect the system’s component structure
in the model in a natural way. Providing reusable model
components also makes for efficient and agile modelling.

Quantitative: Functional correctness is necessary, but far
from sufficient to consider a design or implementation
“correct”. For example, performance requirements may pre-
scribe a minimum throughput, availability may be evaluated
based on the mean time between failures, and energy
consumption must be balanced against a power budget. We
thus need to be able to reason about probabilities, time, and
continuous physical quantities where necessary.

In practice, it is crucial to pick the right level of detail
and abstraction. The variety of quantitative aspects and the
inevitable tradeoff between expressivity of formalisms and
feasibility of analysis has lead to the development of an entire
zoo of formal quantitative modelling formalisms [8].

A. The Modest Approach

The MODEST language is a modelling formalism with high-
level features like parallel composition, recursive process spe-
cifications, abstract datatypes, and exception handling. It has

``Catastrophic Surface Pro 3 battery life finally has its firmware fix'', http://arstechnica.com/?p=945575, last accessed 04/2017.
``Samsung recalls Galaxy Note 7 worldwide due to exploding battery fears'', http://theverge.com/2016/9/2/12767670, last accessed 04/2017.
``Basis Peak watches recalled'', http://techcrunch.com/2016/08/03/basis-peak-watches-recalled-due-to-overheating/, last accessed 04/2017.
``Important: Medical Device Correction, EnRhythm Pacemakers'', http://www.medtronic.com/enrhythm-advisory/downloads/enrhythm-battery-issues_physician-letter.pdf, last accessed 04/2017.
``Important: Medical Device Correction, EnRhythm Pacemakers'', http://www.medtronic.com/enrhythm-advisory/downloads/enrhythm-battery-issues_physician-letter.pdf, last accessed 04/2017.
``Qualit\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{ä}intopreamble]tsprobleme bei E-Bikes: Schlappe Akkus, anf\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{ä}intopreamble]llige Elektronik'', http://www.spiegel.de/auto/aktuell/a-790142.html, last accessed 04/2017.
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1 process Battery() { // linear battery model
2 real load = 10; // battery load, initially charging
3 var soc = 50; der(soc) = load; // state of charge
4 do {
5 :: assist_low? {= load = -1 =} // switch to low mode
6 :: assist_high? {= load = -2 =} // switch to high mode
7 :: charge? {= load = 10 =} // plugged in, charging
8 :: when urgent(soc == 100) full! {= load = 0 =}
9 :: when urgent(soc == 0) empty! }
10 }
11 process Cyclist() { // abstract model of a cyclist
12 process Home() { full?; // wait for full charge
13 Trip(DiscreteUniform(5, 20)) }
14 process Trip(int km) {
15 clock c = 0; real x = Uniform(2, 10);
16 if(km == 0) { charge!; Home() }
17 else { alt { :: assist_low! :: assist_high! };
18 when urgent(c == x) Trip(km - 1) } }
19 Home()
20 }
21 par { :: Battery() :: Cyclist() } // parallel composition

Figure 1. An example of a stochastic hybrid MODEST model

a formal semantics in terms of networks of stochastic hybrid
automata (SHA, [6]). ?? presents an exemplary MODEST
model, representing the interaction between a cyclist and the
state of charge of their e-bike’s battery. The example is made
to concisely present the various features of MODEST in a small
and abstract manner. It consists of two processes running in
parallel (line 21), which communicate via a number of shared
actions (assist_low, full etc.). The cyclist waits at home
until the battery is fully charged (line 12), then goes on a trip
of between 5 and 20 km (line 13). At the end of each trip,
the battery is plugged back in for charging (line 16). The
Battery process is a simple linear battery model (line 3)
that reacts on signals from the cyclist to update its current
load (lines 5 to 7) and generates signals itself when the battery
is full or empty (lines 8 and 9). This example illustrates the
main features of MODEST and SHA:
Nondeterminism: Every kilometre, the cyclist nondetermin-

istically chooses whether to continue in low or high as-
sistance mode (line 17). The model thus remains abstract
w.r.t. the actual choices of the cyclist, and an analysis
should deliver safe worst- and best-case bounds. In general,
nondeterminism is unquantified uncertainty. It is crucial for
compositionality and enables abstraction, concurrency, and
underspecification. SHA are thus an extension of Kripke
structures or labelled transition systems.

Stochastic choices: Each trip’s length is specified stochastic-
ally: any number of kilometres between 5 and 20 is equally
likely (line 13), and the value of variable x is sampled
anew from the continuous uniform distribution over [2, 10]
for every kilometre. This ability to represent stochastic
decisions, i.e. quantified uncertainty, allows us to model any
behaviour where the probability of each option is known.
Application examples include randomised algorithms (by
specification) or the time between faults (by measurements
and statistics). SHA are thus an extension of Markov chains,
Markov decision processes, and stochastic automata [9].

Time: Cycling one kilometre takes x time units (line 18). In
MODEST, real-time aspects are modelled using clocks in the
same way as in timed automata [10]. We can thus create

hard real-time and, by combining clocks and stochastic
features as in the example, soft real-time models.

Continuous dynamics: As an extension of hybrid auto-
mata [11], MODEST/SHA allow the description of continu-
ous system dynamics by differential equations. Our example
uses this for the linear battery model in line 3: the derivative
of the state of charge is the load on the battery.

B. Measures of Interest

Formal modelling often uncovers inconsistencies or omis-
sions early in the design process [12]. Thus the act of
modelling in itself already leads to an improved design that is
much better understood. Yet in the end, the goal is to make
the model amenable to analysis so as to enable verification of
certain statements and computation of quantities of interest.
These may include functional safety requirements, e.g. “the
battery will never become empty” in our example (which we
would find to be violated because it may happen with some
positive probability after sufficiently many trips). On quantit-
ative models, typical requirements are of the following forms:
Probabilistic reachability: Basic probabilistic questions are

of the type “what is the probability of the battery becoming
empty?” However, since our example is nondeterministic,
we actually need to ask for minimum (i.e. the “best case”
where the cyclist chooses assistance levels such that battery
lifetime is long) or maximum probabilities (“worst-case”
decisions). Both probabilities are 1, but if we instead ask
time-bounded questions—“what is the probability of an
empty battery in ≤ t time units”—we get nontrivial results.

Reward-based properties: We may add rewards (or costs)
to certain behaviours, e.g. assign an instantaneous reward
of 1 to completing a trip, or a rate reward of the energy
consumption over time. We can then ask reward-bounded
probabilistic reachability queries: “What is the probability
of an empty battery in the first n trips?” Alternatively,
we may compute accumulated reward expectations, e.g. the
maximum expected energy consumption or the minimum
expected number of trips before the battery is emptied.

Temporal logics: To specify more complex requirements re-
lated to the relative ordering and timing of certain signals,
quantitative extensions of LTL, CTL or other temporal
logics can be used.

C. Domain-Specific Frontends and Interoperability

MODEST models can be converted to JANI [13], an inter-
change format for quantitative models designed to improve
tool interoperability and comparison. It is supported by sev-
eral analysis tools that implement conversions from various
higher-level or domain-specific languages to JANI. Notably,
a stochastic-nondeterministic extension of the scenario-aware
dataflow formalism that is popular in embedded signal pro-
cessing applications, called xSADF [14], is supported by the
MODEST TOOLSET. For use at Philips, the domain-specific
language iDSL [15] was developed for performance evaluation
of medical imaging devices, which is transformed to MODEST
in order to access the MODEST TOOLSET’s analysis backends.
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Figure 2. Simulation and model checking results for the example model

III. MODEL-BASED ANALYSIS

Using a quantitative formal model as specified above, there
are three complementary avenues for analysis: We can use
simulation to better understand the model and refute certain
properties, or model checking to verify requirements resp.
compute optimal values for quantities of interest. Once we are
certain that the design is “good” and properly represented by
the model, we can use it as a specification in itself and validate
that implementations conform to the behaviour prescribed by
the model via model-based testing.

A. Simulation

Simulating the model means generating one particular trace
of its behaviour. If the model is stochastic, such a trace is
picked randomly and we can use Monte Carlo simulation: gen-
erate a large number of traces to compute estimates of prob-
abilities and expected values with some statistical confidence.
When using a formal model, this is also called statistical model
checking (SMC, [16], [17]). In the MODEST TOOLSET, it is
supported by the MODES simulator and has, for example, been
successfully applied to study the behaviour of novel distributed
control algorithms for photovoltaic microgenerators [18].

Nondeterminism, however, cannot be simulated: In a non-
deterministic choice, there is no information about the fre-
quency with which the available options shall be selected, so
it cannot be resolved by randomisation without introducing
a (hidden) assumption. If we do so anyway, we will get
a single estimate for e.g. a reachability probability that is
only guaranteed to lie somewhere between the maximum and
minimum probabilities that we are actually interested in.

For (a discretised version of) our example, we show sim-
ulation results as part of ??. We plot the probability of the
battery becoming empty within 0 to 500 time units, with the
simulation result Psim as the dashed grey curve, based on a
(hidden) random resolution of the cyclist’s nondeterministic
choices. The vertical dotted grey line is Esim, the simulation
estimate for the expected time until the battery is empty.

B. Model Checking

In order to compute precise values for maximum and min-
imum probabilities or expected values, we need probabilistic
model checking. It explores the state space of all reachable
configurations of the model, then numerically computes the
value of interest over the state space using methods like

linear programming or value iteration. While model checking
naturally handles nondeterminism, it faces the state space
explosion problem: the number of configurations is exponential
in the number of model variables and their domains, so model
checking quickly runs out of memory on complex examples.

In the MODEST TOOLSET, model checking is provided by
the MCSTA tool. It has notably been used to formally verify the
safety of a wireless bike braking system [19]—a setting where
trustworthy worst-case results were required. We have also
used MCSTA on our example to compute Pmin and Pmax, the
actual minimum and maximum probabilities for the battery to
become empty over time, plus the corresponding expectations
Emin and Emax as shown in ??.

C. Model-Based Testing

Using a formal model as the specification of desired be-
haviour, model-based testing [20] generates and rolls out
a suitable set of experiments in an automated manner on
the implementation under test (IUT). The goal is to assert
some notion of conformance of the IUT with respect to the
model. Model-based testing is usually specified for modelling
formalisms that are variants of input-output transitions systems
(IOTS) where the transitions between states have structured
action labels: the name of a performed action and an identifier
for the type of action, i.e. input (stimuli) to the implementation
or output (response) of the implementation. The behaviour of
every IUT is assumed to be expressible by an IOTS as well.

A model-based testing tool performs automated inspection
of the possible inputs and outputs while stepping through the
states of a model. In each state it either provides an input to
or records an output from the IUT and accordingly updates its
knowledge of what the current state of the model is. Whenever
an unexpected output of the IUT occurs, i.e. an output which
is not foreseen by the current knowledge of the model state,
the IUT is refuted with the verdict “fail”. Formally, the basic
model-based testing process consists of several components:
Model: A formal specification of the IUT which precisely

and unambiguously describes what an implementation may
do and not do. The model is usually provided in a formal
modelling language which has an IOTS semantics.

Implementation relation: Also called conformance relation,
this is the precise mathematical definition of conformance
between model and IUT that we are testing for. It defines the
concrete decision about applicable inputs for a given state
of the model and how that model state has to be updated.

Test generation algorithm: The test generation algorithm
depends on the chosen implementation relation and derives
test cases from the model by iteratively deciding if an input
shall be provided to the IUT and if so, which one, and
processing the received outputs from the IUT.

Test case: A test case is a formal description of an experi-
ment to perform on the IUT, whose semantics are again a
variation of IOTS with the special states PASS or FAIL.

Test case execution: The test cases are executed on the actual
software, system or device to be tested by translating the
abstract transitions to concrete interactions with the IUT.



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
4

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IN

D
IN

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Test verdict: The test verdict is the concluding result of a
concrete execution of a test case (or several test cases), a
so-called test run. Corresponding to the final state of the
test case this is either “pass” or “fail”.

Once all components are in place, the model-based testing pro-
cess provides means for automated generation and execution
of a sound (and, in theory, also complete) set of test cases:
no further manual interaction is needed, i.e. no more human
errors can be introduced. This means that an implementation
which fails a test case is indeed guaranteed to not conform to
the given specification and, in theory, for each non-conforming
implementation there is a test case detecting that. Test cases
are either generated offline, i.e. before execution, and then run
on the implementation, which enables easy re-execution of test
cases, or stepwise online during test execution.

IV. ENERGYBUS

The ENERGYBUS specification [21] aims at establishing
a common basis for the interchange and interoperation of
electric devices in the context of energy management systems
(EMS). This includes the definition of a family of connectors
as well as of appropriate network communication protocols.
The central and innovative role of ENERGYBUS is the trans-
mission and management of electrical power: the purpose of
its protocol suite is not just to transmit data, but in particular to
manage the safe access to electricity and its distribution inside
an ENERGYBUS network. The ENERGYBUS protocols are
developed by the EnergyBus e.V. association and its members.

A. The Protocols

Conceptually, ENERGYBUS extends the CANopen archi-
tecture with several components, and the ENERGYBUS pro-
tocols are developed in terms of CANopen application pro-
files endorsed by the CiA association [21]. Among these,
the “Pedelec Profile 1” (PP1) is very elaborate, targeting a
predominant business context, which is also at the centre
of ongoing international standardisation efforts as part of
IEC/IS/TC69/JPT61851-3. An ENERGYBUS network consists
of several ENERGYBUS devices, connected by a single CAN
bus and sharing a low-voltage auxiliary power line (between 9
and 12 V DC) among so-called passive devices. Active devices
are additionally connected to the main power line ranging from
12 to 250 V DC or from 85 to 265 V AC.

The specification introduces the notion of virtual devices,
which encapsulate the functionality of a specific, dedicated
role in an EMS, e.g. of a battery pack, a motor, or a sensor
unit. Among these, the ENERGYBUS controller (EBC) has a
special position. It is responsible for managing the distribution
of electric power and for ensuring the electrical safety of the
network, especially protection against over- and under-voltage
as well as over- and under-current. This is achieved by limiting
the power flows according to network parameters and dynamic
values communicated by the devices attached. To do so, the
EBC sets appropriate limits to other devices and dynamically
adjusts them according to the actual settings of the system.
Still, every device is ultimately responsible for its own safety
and must protect itself from damage by disconnecting from the

power lines if necessary. A real (physical) device can combine
several, not necessarily different, virtual devices. For example,
a public charger can be considered as being composed of a
voltage converter, a secondary EBC, and a load monitoring
unit, each appearing as one virtual device to the protocol.

B. Certification

An important intention of the ENERGYBUS approach is
to establish a certification process ensuring that customers
can freely choose among the set of ENERGYBUS-compliant
devices with guaranteed interoperability, functionality, and
safety of their individual set-up. In order to assign such a cer-
tificate, a conformance test plan [22] is developed, describing
how an ENERGYBUS device is to be tested.

The current version of the conformance test plan is sub-
divided into three different levels of conformity:
Certificate 1: Device communication test consists of the

common CANopen conformance test plan plus an extension
for ENERGYBUS devices, which has been developed by the
CiA 454 joint working group. It defines traditional test cases
for static checks of a device’s communication parameter
settings. These test cases are provided as a description of the
test purpose, involved parameters, pre- and postconditions,
plus pseudocode descriptions of the actual test steps.

Certificate 2: Device hardware test describes hardware
properties that need to be checked. These low-level tests
are orthogonal to the protocol perspective that we focus on.

Certificate 3: Interoperability test is a manual procedure
where the device under test is connected to other ENERGY-
BUS-compliant devices in order to understand whether they
are interoperable and provide the desired functionality.

Certificate 1 conformance can be checked by combining the
CANopen conformance test tool by CiA e.V. (see www.can-
cia.org) with the scripting functionality of the CANOPEN
DEVICEEXPLORER tool by emtas (see www.emtas.de).

Certificate 1 will at some point need to be extended by
dynamic tests, i.e. longer sequences of interactions will be
executed on the device under test, simulating its inclusion
and use in an ENERGYBUS network. Designing, specifying,
implementing and running these test cases manually will be
time-consuming, cumbersome, and costly. The same holds for
checking Certificate 3 conformance. Fortunately, model-based
testing can automate checking for these requirements:

V. MODEL-BASED TESTING FOR ENERGYBUS

A formal model of a system’s specification is the starting
point for model-based testing. Moreover, it is the prerequisite
for modern protocol engineering approaches—including the
design phase, where it guarantees unambiguous and precise
documentation—and enables the use of further formal analysis
methodologies like (statistical) model checking.

A. Formal Specification

Since ENERGYBUS is defined as a layer on top of CAN-
open, an ENERGYBUS device is a CANopen device and there-
fore inherits several CANopen features. Thus ENERGYBUS
documentation as well as the CANopen documentation have to
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Figure 3. The MOTEST model-based testing setup

be taken into account for formal modelling. Both specifications
are provided as informal combinations of text, protocol flow
charts, data tables, and finite state automata (FSA). The FSA
model the view from other network devices on a particular
ENERGYBUS/CANopen device as a graph-based notation for
state-dependent interaction capabilities, like IOTS. The basic
CANopen specification is defined in [23] (∼150 pages). CAN-
open associates to each device several data structures (e.g.
the object directory (OD)) and various services for e.g. initial
configuration [24], data exchange, and basic communication
capability control. On top of this, ENERGYBUS is defined as
a collection of 14 documents [21] (about 400 pages, of which
300 only describe OD entries). Most of them give detailed
information for particular virtual devices, including specific
OD entries and specifying their behaviour as one or several
FSA. Several general documents provide the definitions for
ENERGYBUS-specific communication and control services.

Our formal model of ENERGYBUS uses the MODEST mod-
elling language. Each FSA is directly translated to a sequence
of MODEST process definitions, one for each FSA state,
resulting in the corresponding IOTS semantics. The different
FSA are intended to run in parallel, loosely coupled. They syn-
chronise over matching pairs of input and output actions and
communicate using a combination of handshaking and shared
variables. A straightforward modelling of the OD would
consist of a two-dimensional array hosting different types of
data, which would certainly cause state space explosion in the
underlying IOTS. We therefore chose to model only relevant
OD entries and implement them depending on the specific
nature of each OD entry. Constants and variables are modelled
as plain MODEST constants or variables, respectively, whereby
the level of locality in the processes corresponds to the locality
of the virtual device combination. Global variables serving
as communication interfaces are modelled using dedicated
MODEST processes with communication actions to update
these variables and additional actions that notify all “listeners”
of any value update. This approach also avoids the need for
explicit models for the different communication services.

Aside from the basic control functionality, the ENERGY-
BUS protocol is all about data. To overcome the state space
explosion problem, we applied several abstraction techniques
to appropriate areas of our model. From a conformance testing
point of view, such abstractions can be seen as a simple ap-
plication of action refinement [25], transferring the complexity
from the MODEST model to the adapter component.

B. A Modest Testing Tool

Triggered by the needs of ENERGYBUS, model-based test-
ing has recently been added to the MODEST TOOLSET in

the form of the MOTEST tool. Its overall structure is depicted
in the left part of ?? and follows the approach of [26]. The
explorer component makes use of the MODEST TOOLSET’s
infrastructure to access the transition system representation of
the given specification. Test generation proceeds according to
a particular implementation relation, and this is effectuated by
the primer. Aside from the classic implementation relation of
input-output conformance (ioco), we needed to add an asyn-
chronous version that supports bounded message reordering.
The decision whether the tester should wait for an output of
the implementation, or go ahead in providing an input to it
and if so, which one, is taken by the IO chooser. The default
behaviour provides a simple random number generator with
configurable probabilities assigned to the different options,
but more enhanced decision taking algorithms are possible.
The driver steers the test execution algorithm by pipelining
received outputs from the IUT to the primer to evolve the
model state and request the next action to be taken from the
IO chooser, which is then sent to the IUT via the instantiator.
The driver is the central component where a protocol of the
performed test run including the test verdict is compiled.
Translating abstract model actions into concrete messages to
be sent to the IUT, possibly including data values, and vice
versa, is the instantiator’s task. The actual communication
with the IUT is done via the adapter, which implements the
required communication protocols. In our particular testing
scenario, the adapter is split in two adapters for the different
communication layers—ENERGYBUS and CANopen/CAN.
The latter is provided by emtas.

We had the opportunity to apply MOTEST to several pro-
totypes and retail devices successfully. It, including the spe-
cification models, has been made available free-of-charge to
the entirety of the EnergyBus e.V. association and can be used
by its members for in-house testing. MOTEST itself is available
as part of the MODEST TOOLSET at www.modestchecker.net.

C. Results

We already identified several issues with the (at that time
current version of the) ENERGYBUS specification documents
in the modelling phase: there were gaps in the specification,
preventing some parts of the services to be modelled to a
reasonable extent; and there were ambiguities in some parts of
the specification, possibly inducing non-interoperability. These
have been reported so as to be corrected in standardisation.

The actual test runs then revealed three different types of
further errors. The first type were traditional implementation
bugs of a non-severe nature that have been reported and
fixed. The second type were rooted in two distinct inter-
pretations of the ENERGYBUS basic device initialisation and
the core ENERGYBUS device control leading to incompatible
implementations. To pinpoint this, we developed two different
models of the specification and continued testing with the
respective version. The third type of observed errors were
intricately related to the hard- and software hierarchy of the
test and IUT architecture, i.e. the CAN bus system. They can
be viewed as spurious “fail” verdicts rooted in the fact that the
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different communication layers made the traditional model-
based testing assumption of synchronous communication un-
sound. Asynchronous communication may make responses of
the IUT arrive later than expected on the specification side, and
the same may happen to stimuli on the IUT side. This is rooted
in the latency of communication induced by the ENERGYBUS,
CANopen and CAN layers that partially operate concurrently.
In addition, we observed that some CAN implementations
take the liberty to reorder messages within responses, so that
consecutive messages passed by an IUT’s application to its
local CAN controller may be sent out in reverse order.

The asynchronicity phenomenon triggered the implement-
ation of a new asynchronous model-based testing method:
MOTEST now provides an asynchronous version of input-
output conformance for sound testing results with all order-
preserving CAN implementations. In case of message reorder-
ing inside the CAN stack, however, manual inspection would
still be needed to definitely rule out spurious “fail” verdicts.

VI. CONCLUSION

In this paper, we have discussed how state-of-the-art formal
methods and tools have been applied in the context of the
ENERGYBUS specifications for light electric vehicles. We
introduced formal modelling as the essential basis for all
model-based analyses and elaborated on the characteristics that
suitable formalisms have to fulfil. The MODEST modelling
language has been introduced as a suitable formalism and
its defining features have been presented, together with an
overview of the three main model-based analysis methods:
simulation, model checking, and model-based testing, which
are all available in the MODEST TOOLSET.

Our contributions in the context of ENERGYBUS specific-
ation and implementation support the entire process from
specification, modelling, verification and certification includ-
ing both traditional test case programming and model-based
testing. Specification inaccuracies as well as programming
bugs have been found in tested prototype and retail devices.
Based on our insights, documentation and implementations
have been improved. The testing process itself motivated us
to extend the supported conformance relations in MOTEST to
asynchronous testing in order to eliminate spurious errors.

Both the exchange of data values between devices in
the network as well as the actual distribution, consumption,
and production of electrical energy are important parts of
ENERGYBUS. While the MODEST TOOLSET has the needed
functionality to formally model these characteristics, only
simulation and model checking are able to analyse models
combining them all. So far, our model-based testing approach
for the certification process has to be abstract w.r.t. data and
the physical quantities and effects involved to be applicable.
However, to overcome the state space explosion problem,
model-based testing has already been studied with respect to
symbolic specifications [27], [28], [29] and we are currently
in the process of integrating symbolic testing into MOTEST.
Acknowledgments: This work is supported by the ERC Ad-
vanced Grant POWVER (695614), the Sino-German project CAP
(GZ 1023), and the 3TU project “Big Software on the Run”.
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