
POWER TO THE PEOPLE
VERIFIED

This report contains an author-generated version of a publication in MALT 2017.

Please cite this publication as follows:

Sebastian Biewer, Felix Freiberger, Pascal Leo Held, Holger Hermanns.
Teaching Academic Concurrency to Amazing Students.
Models, Algorithms, Logics and Tools – Essays Dedicated to Kim Guldstrand Larsen on the Occasion of
His 60th Birthday. Lecture Notes in Computer Science 10460, Springer 2017, ISBN 978-3-319-63120-2.
170-195.

POWVER
Technical Report 2017-05

Title: Teaching Academic Concurrency to Amazing Students

Authors: Sebastian Biewer, Felix Freiberger, Pascal Leo Held,
Holger Hermanns

Report Number: 2017-05

ERC Project: Power to the People. Verified.

ERC Project ID: 695614

Funded Under: H2020-EU.1.1. – EXCELLENT SCIENCE

Host Institution: Universität des Saarlandes, Dependable Systems and Software
Saarland Informatics Campus

Published In: MALT 2017

http://www.powver.org/publications/TechRepRep/ERC-POWVER-TechRep-2017-05.pdf
http://www.powver.org/
http://cordis.europa.eu/project/rcn/203431_en.html
http://cordis.europa.eu/programme/rcn/664099_en.html
http://www.uni-saarland.de/nc/startseite.html
http://depend.cs.uni-saarland.de/
http://sic.saarland/
http://dx.doi.org/10.1007/978-3-319-63121-9_9

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Teaching Academic Concurrency
to Amazing Students

Sebastian Biewer1,2, Felix Freiberger1,2,
Pascal Leo Held1, and Holger Hermanns1

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 Saarbrücken Graduate School of Computer Science

Abstract. Milner’s CCS is a cornerstone of concurrency theory. This
paper presents CCS as a cornerstone of concurrency practice. CCS is the
semantic footing of pseuCo, an academic programming language designed
to teach concurrent programming. The language features a heavily simpli-
fied Java-like look and feel. It supports shared-memory as well as message-
passing concurrent programming primitives, the latter being inspired by
the Go programming language. The behaviour of pseuCo programs is
described by a formal translational semantics mapping on value-passing
CCS and made executable using compilation to Java. pseuCo is not only
a language but an interactive experience: pseuCo.com provides access
to a web application designed for first hands-on experiences with CCS
and with concurrent programming patterns, supported by a rich and
growing toolset. It provides an environment for students to experiment
with and understand the mechanics of the fundamental building blocks
of concurrency theory and concurrent programming based on a complete
model of the program behaviour. Altogether this implements the TACAS
(Teaching Academic Concurrency to Amazing Students) vision.

1 Introduction

In our times, concurrency is a topic that affects computing more than ever
before. The Calculus of Communicating Systems, CCS, is a foundational pillar
of concurrency theory, developed by Robin Milner in Edinburgh [21,22] in the
80ies of the last century. In this period, Kim Larsen was working towards his
PhD thesis under the guidance of Milner [17]. And Rance Cleaveland, Joachim
Parrow, and Bernhard Steffen were working on a verification tool for CCS, the
Concurrency Workbench [6,7].

The Concurrency Workbench is an automated tool to cater for the analysis
of networks of finite-state processes expressed in Milner’s Calculus of Communi-
cating Systems. It was part of a first wave of initiatives providing tool support
for process algebraic principles. Other initiatives at that time included the
AUTO/AUTOGRAPH project by Robert de Simone and Didier Vergamini [3]
in Sophia Antipolis, the tool VENUS [26] by Amelia Soriano, as well as the Cae-
sar/Aldebaran tools developed by Hubert Garavel and coworkers in Grenoble [10].
The latter focussed on LOTOS, an ISO standard developed by a committee

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

around Ed Brinksma [16,2] from Twente. In turn, AUTOGRAPH pioneered
graph visualisation and animation using early versions of tcl/tk. All three initia-
tives provided inspirations, in one way or another, to Kim Larsen in his early
efforts to pioneer tool support for real-time system verification [18], the topic
for which he would later become world famous [4]. And Bernhard, Ed, Kim,
and Rance later joined forces to found TACAS, a scientific conference that is
considered the flagship of European verification research by many.

In subsequent years, further tools emerged, such as the FDR toolset [24]
supporting Hoare’s CSP approach to concurrency theory, or the PAC tool [5] that
aimed at providing a front-end for different process algebras via instantiation of
the individual operational semantics. Also, the principles behind the Concurrency
Workbench were further developed by Rance Cleaveland in North Carolina [8].
Lately, an Aalborg edition of the workbench has been announced [1] for the
purpose of teaching concurrency theory with CCS [19].

At the turn of the millennium, Jeff Kramer and Jeff Magee proposed a new
level of tool support for process calculi as part of their textbook on “Concurrency –
state models and Java programs” [20]. This book came with an easy-to-install and
ready-to-use tool LTSA supporting their language FSP, a CSP-inspired process
calculus. The (to our opinion) most remarkable aspect of this toolset was the
deep integration of process-algebraic thinking into a lecture concept introduc-
ing concurrency practice: To develop a thorough understanding of concurrent
programming principles and pitfalls, informal descriptions and concrete Java
examples were paired with abstract FSP models, readily supported by the LTSA
tool.

The present paper follows this very line of work by presenting an even deeper
integration of concurrency theory into concurrency practice for the purpose of
teaching concurrent programming. It revolves around a programming language
called pseuCo. The language features a heavily simplified Java-like look and feel.
It supports shared-memory as well as message-passing concurrent programming
primitives, the latter being inspired by the Go programming language. The
behaviour of pseuCo programs is described by a formal translational semantics
mapping on value-passing CCS and made executable using compilation to Java.
pseuCo is not only a language, it is an interactive experience: pseuCo.com
provides access to a web application designed for first hands-on experiences
with CCS and with concurrent programming patterns, supported by a rich and
growing toolset. It provides an environment for students to experiment with and
understand the mechanics of the fundamental building blocks of concurrency
theory and concurrent programming based on a complete model of the program
behaviour. This platform provides access to the tools targeting pseuCo, most
notably: the pseuCo-to-Java compiler, the translation of pseuCo programs to
CCS, the CCS semantics in terms of LTS, and more.

2 The Concepts Behind pseuCo

This section describes the context, features and semantic embedding of pseuCo.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

2.1 Context

A profound understanding of concurrency has to be part of the basic repertoire of
every computer scientist. Concurrency phenomena are omnipresent in databases,
communication networks, and operating systems, in multi-core computing, and
massively parallel graphics systems, as well as in emerging fields such as compu-
tational biology. Nowadays, software developers are confronted with concurrency
problems on a daily basis, problems which are notoriously difficult to handle.
Therefore, competence in this field is a must for every computer scientist. Unlike
sequential systems, even non-critical applications can no longer be adequately
tested for functional correctness. Therefore, it is indispensable that formal ver-
ification procedures are known, at least conceptually, to every undergraduate
computer science student we educate. A solid theoretical underpinning of the
matter and its interrelation with the practice of concurrent programming is a
necessary prerequisite.

A Lecture on Concurrent Programming. For this purpose, the lecture “Concurrent
Programming” at Saarland University develops these competences starting off
with a solid explanation of concurrency theory and then lifts and intertwines them
with practical aspects of concurrent programming. The lecture is a mandatory
module worth 6 ECTS points in the Bachelor education of computer science and
related fields and is currently in its tenth edition. It is scheduled at the end of
the second year but we encourage talented students to already enrol into it at
the end of their first year. It received the 2013 award for innovations in teaching
from the Fakultätentag Informatik, the association of German computer science
faculties.

After an extensive motivation which stresses the relevance of the matter, the
students embark into the basics of CCS including syntax, labelled transition
systems, operational semantics, trace equivalence, strong bisimulation, and obser-
vational congruence, and finally value-passing CCS. At various places along the
lecture, the understanding is supported by the CCS view of pseuCo.com shown
in Figure 3.

At this point, the main innovation of our approach gradually enters the
stage: pseuCo. Contrary to CCS, pseuCo is a real programming language. It
supports both the shared-memory and message-passing programming paradigms.
In order to connect concurrency theory and concurrency practice, pseuCo has a
translational semantics mapping on value-passing CCS.

CCS with Value-Passing. We will base the discussion of our pragmatic extension
of CCS on the example shown in Listing 1.1. It describes a simple distortion-
tolerant transmission protocol between a sender and a receiver. While the data
is transmitted over a medium that may distort messages, for simplicity, acknowl-
edgements are assumed to travel directly from receiver to sender.

The first line defines a finite range of values to be used later. In line 3, we see
the defining equation of the Sender process. It receives a value x, and continues by
sending out that value with the action send. It then turns into the process Sending

https://pseuco.com/#/sku/default/tool/edit/remote/script-3-match-cracker
https://pseuco.com/#/sku/default/tool/edit/remote/knb6ay351rb4i492lz7w

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Listing 1.1: Distortion-tolerant transmission protocol in CCS
1 range Dig := 0..9 // defining a finite range of values
2

3 Sender := put?x. send!x. Sending[x] // take the value ,�

send it out , remember it
4 Sending[x] := ack?. Sender // forget value if ok
5 + nAck?. send!x. Sending[x] // resend if not ok
6

7 Medium[snd] := snd?x:Dig. (receive!x.1 + i. garbled !.1);�

Medium[snd]
8

9 Receiver[n] := receive?x:0..9. get!x. ack!. Receiver[n+1]
10 + garbled ?. nAck!. Receiver[n]
11 + when (n==4) println!"succ"^"ess".0
12

13 Protocol := (Sender | (Receiver [0]) | Medium[send]) \ {send ,�

receive ,ack ,nAck ,garbled}
14

15 (Protocol | put!2. put !4. put!2. put!8) \ {put}

defined in line 4 which is parametric in the value x so as to make it possible to
remember the value in case retransmissions are needed. This demonstrates that
process definitions can be parametrised by data values. Our CCS dialect allows
Booleans, integers or strings as process parameters. The Sending process waits
for either a positive acknowledgement and then returns to being a Sender or for
a negative acknowledgement which triggers a retransmission of the value.

Line 7 defines the Medium over which Sender and Receiver communicate
data. First, the Medium receives a value that was sent with the action snd!.
After having received a value in the range defined before, the Medium decides
nondeterministically to either pass it on or to instead transmit a (distorted)
garbled! message. In both cases, this part of the process ends as the special
process 1 indicating successful termination. This allows the sequence operator ;
to continue to a fresh Medium which waits for the next transmission. Sequencing
is usually not part of CCS but since it increases specification convenience and is
semantically well understood [22,2], it is included in our CCS dialect. The operator
is present in this line of our example for the sole purpose of demonstrating its
use, and the same holds true for the action snd appearing as a process parameter
of the Medium process. Using actions as process parameters enables emulating
restricted forms of action relabelling. Other than this, no explicit relabelling
operator is supported in our dialect of CCS.

Line 9 contains the definition of the Receiver process. It offers up to three
behaviours: (a) If a value x is received that lies in the integer range from 0 to 9,
that value is passed on with the get! action and acknowledged; (b) if a garbled?
message is received, a negative acknowledgement is sent; or (c) if 4 digits have

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

get!(2)

τ

get!(4)

get!(2)

get!(8)

println!("success")

1

0

2

3

4

5

Fig. 1: Behaviour of the process shown in Listing 1.1

been received, "success" (formed via string concatenation) is printed and the
receiver stops. For the latter, the process uses a data parameter and simple
arithmetic to count the digits that have been received. A when guard disables the
"success" message until this counter reaches 4. Such guards form the expectable
link between data values and behaviour.

Line 13 composes Sender, Receiver and Medium (appropriately parametrised)
running parallel to form a single Protocol process. The restriction operator \
enforces synchronisation between the processes where appropriate. Finally, line 15
defines the overall process consisting of the Protocol and a user requesting the
values 2, 4, 2 and 8 to be sent. The resulting behaviour (more precisely the
quotient transition system under observational congruence) of this example is
depicted in Figure 1.

2.2 The Language pseuCo

Nowadays, mainstream programming is carried out in imperative programming
languages. pseuCo is an imperative language featuring a heavily simplified Java-
like look and feel paired with language concepts inspired by the Go programming
language. It also has similarities with Holzmann’s Promela language [15]. A first,
very simplistic pseuCo example is depicted in Listing 1.2.

This program implements concurrent counting. A shared integer, n, is ini-
tialised to 10. The procedure countdown() decrements this counter five times.
The mainAgent, which is run when the program is started, starts a second agent
that runs countdown() before calling countdown() itself. After both agents have
executed this procedure, the mainAgent prints the final value of n. To ensure

https://pseuco.com/#/sku/default/tool/edit/remote/1pe1ay37jyzqnwkj3fmt
https://pseuco.com/#/sku/default/tool/edit/remote/1pe1ay37jyzqnwkj3fmt

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Listing 1.2: Shared memory concurrent counting in pseuCo

1 int n = 10;
2 lock guard_n;
3

4 void countdown () {
5 for (int i = 5; i >= 1; i--) {
6 lock(guard_n);
7 n--;
8 unlock(guard_n);
9 }

10 }
11

12 mainAgent {
13 agent a = start(countdown ());
14 countdown ();
15 join(a);
16 println("The␣value␣is␣" + n);
17 }

mutually exclusive access to the shared variable, a globally defined lock named
guard_n is used within the countdown() procedure.

An alternative (and usually recommended) way to perform safe computations
in the presence of concurrency and shared-memory is to encapsulate critical
sections within a monitor [14,12]. This concept is indeed supported in pseuCo.
For the example above, this would mean to wrap the shared variable in a monitor
AtomicInteger, offering procedures to read and to modify its value without
interference by others.

We demonstrate the pseuCo support for monitors by an implementation of
a semaphore [9]. Semaphores provide means of controlling access to common
resources, similar to locks, but are more general: they manage a pool of an
initially provided, limited number of resources (allocated by init(v)). Any agent
can request one of the resources by calling down(). When the agent does not
need the resource anymore, it can hand it back to the semaphore by calling
up(). Listing 1.3 presents the implementation of a semaphore providing the three
procedures init, down, and up as a monitor in pseuCo. An instance sem of such a
monitor is obtained by declaring Semaphore sem. For these instances, no explicit
locking is necessary because the data structure is declared as a monitor as opposed
to a simple struct. This means that each instance has an implicit, built-in lock.
This lock is automatically locked at the entrance of any procedure declared in
the monitor and unlocked on its exit.

As in the example, monitors can be equipped with conditions and condition
synchronisation in a way that very closely follows the original proposal [13]. For
the semaphore example, an agent has to wait in case it is requesting a resource
but finds the pool of resources to be empty. This non-emptiness condition (a

https://pseuco.com/#/sku/default/tool/edit/remote/hpq5zweyhk0mxzxzzor1

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Listing 1.3: A monitor in pseuCo implementing a semaphore
1 monitor Semaphore {
2 int value ;
3 condition valueNonZero with (!(value ==0));
4

5 void init (int v) {
6 value = v;
7 }
8 void down () {
9 waitForCondition(valueNonZero);

10 value -- ;
11 }
12 void up () {
13 value++ ;
14 signalAll (valueNonZero);
15 }
16 }

predicate on variables guarded by the monitor) is declared in line 3. It is checked
in line 9. The semantics of waitForCondition is exactly as described above: If the
condition is satisfied, the procedure continues. If it is not, the implicit lock of the
monitor is released and the agent needs to wait. In order to wake up the agent
and let it re-check the condition, the waiting agents are signaled in line 14 after
a resource has been handed back (which makes the condition satisfied). While
signalAll wakes up all agents waiting for the specific condition, signal would
nondeterministically pick a single waiting agent to wake up.

Message-passing concurrency is arguably less difficult to handle than shared-
memory concurrency. pseuCo provides native support for message-passing con-
currency, and indeed, this is explained to the students before discussing the latter.
An example is presented in Listing 1.4. An agent running the procedure concat
interacts via three different channels with the mainAgent. In a nutshell, concat
builds up a string s by prefixing it with parts received from channel arg. Empty
parts make it report an error on channel err while otherwise the updated value
of s is reported on channel res. This channel is declared globally in line 1, the
others are parameters of concat and declared in line 16 and 17. Two of them
are channels that can hold strings (res and parts), one can hold Booleans (err).
Channel parts is a FIFO buffer which can hold up to 2 elements, the others are
unbuffered, meaning that they induce a handshake between the agents sending to
(via <!) and receiving from (via <?) them. After starting the agent, the mainAgent
feeds three strings into the channel parts (one of them empty) and then waits
for results sent back to him. These may arrive on two different channels (err and
res) and therefore a select-case statement is used to specify dedicated reactions.
In case an error is reported, this is reported to the user in a println. Otherwise,
the results received on channel res are printed out. pseuCo has borrowed the

https://pseuco.com/#/sku/default/tool/edit/remote/ak13mtyjx81zn163dp29

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Listing 1.4: Message-passing concurrency in pseuCo

1 stringchan res;
2

3 void concat (stringchan arg , boolchan emp) {
4 string s = "";
5 while (true) {
6 string pref = <? arg;
7 if (pref == "") emp <! true;
8 else {
9 s = pref + s;

10 res <! s;
11 }
12 };
13 }
14

15 mainAgent {
16 stringchan2 parts;
17 boolchan err;
18

19 start(concat(parts , err));
20 parts <! "strand";
21 parts <! "";
22 parts <! "Guld";
23

24 string r;
25 while (true) {
26 select {
27 case r = <? res: {
28 println(r);
29 }
30 case <? err: {
31 println("Empty␣string␣reported!");
32 }
33 };
34 };
35 }

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

select-case concept from Go [11]. A select statements consist of several cases.
Except for default cases, each case has a guard and a statement. The guard
contains exactly one send (<!) or receive operation (<?). At runtime, a case can be
selected only if the message-passing operation of the guard is possible, i.e. if the
channel can be read or be written to, respectively. One of those cases is selected
nondeterministically and its guard and statement are processed. A default case
can always be selected. If there are multiple cases that can be selected, one of
them is selected non-deterministically.

These examples give an impression of the features provided by pseuCo, all of
which are given semantics by translation to CCS.

2.3 Translational Semantics

Several of the peculiarities of imperative programming languages do not have
a direct counterpart in process calculi like CCS. The most challenging ones
include jumping and branching, buffers, memory and dynamic object referencing,
buffered channels, reentrant locks, monitors, and condition synchronisation. In
the following sections, we give an intuition of how pseuCo programs are given
semantics in terms of CCS. We cover each part of the pseuCo language and
explain the non-trivial parts in particular detail.

Program Structure. In Listing 1.2 and 1.4, we have seen that concurrency is
supported in pseuCo by the possibility of wrapping procedures into agents which
run concurrently to the remainder of the program. Similar to the Go language [11],
any procedure can be started as an agent by using the start primitive in front of
the procedure call (lines 13 and 19). On the CCS level, each agent corresponds to
a process that runs in parallel to the others. In addition, further parallel processes
implement the necessary bookkeeping and coordination.

The translational semantics of pseuCo to CCS is of compositional nature
and best explained by looking at the abstract syntax tree of a pseuCo program.
Roughly speaking, the closer nodes are to the root of the tree, the more they
determine the top-level structure by influencing whether processes are composed
in parallel or sequentially. Nodes that are lowest in the syntax tree map pseuCo
terms to CCS terms. When passed to their parent nodes, these are usually
composed sequentially or as nondeterministic alternatives such that the control
flow of the pseuCo program is respected. The topmost nodes compose global
variables, locks, conditions, arrays, and channels (and the bookkeeping needed to
support those) as processes running in parallel to the execution of the main agent.
Moreover, for each procedure that is wrapped as an agent, there is a process
responsible for starting it, also running in parallel to the other processes. On the
outermost level, we hide all actions of the resulting model that are not println!
or exception!.

Whereas composing everything in parallel is very intuitive, finding appropriate
CCS terms and coordinating them in a control-flow-preserving way requires some
interesting concepts. In the remainder of this section, we provide a description of

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

the main ideas and concepts structured along the different language features of
pseuCo.

Expressions and Assignments. pseuCo supports arithmetic and Boolean expres-
sions, constants, and variables. For now, we only consider variables local to an
agent. Global variables are discussed later. Local variables in pseuCo are mapped
to process parameters on the CCS level. However, assignments to variables are
not supported there. Instead, an assignment triggers that on the CCS level, all
occurrences of that variable are substituted by the expression on the right side
of the assignment. For each arithmetic and Boolean operator in pseuCo there is
a counterpart operator in CCS. For instance, the following program is compiled
into the single CCS action println!3+(2*3)+(2*3):

1 int x = 3;
2 int y = 2 * x;
3 x = x + y;
4 println(x + y);

Memory. While local variables in a pseuCo program can be cast into process
parametrisation on the CCS level, we need to proceed differently for non-local
pseuCo variables. This applies especially to shared variables in shared-variable
concurrency. In order to represent such variables on the CCS level, we need to
represent memory in CCS. A common abstraction of memory is a set of memory
cells. A cell is independent of the representation of values (e.g. bits), its only
purpose is to store a particular value. In CCS, a memory Cell can be modelled
as a parallel process that provides actions for getting the currently stored value
cur and for setting it to a new value:

1 Cell_x[cur] := get_x!cur. Cell_x[cur]
2 + set_x?new. Cell_x[new]

When a process reads or writes the value of a cell, it needs to perform a handshake
synchronisation with the action provided by the cell as in the following CCS
snippet:

1 (get_x?x. println!x. 0 | Cell_x [-3]) \{get_x}

Object References. Imperative programming languages use references in order
to access objects in memory. In pseuCo, structs and monitors are accessed by
references, but also locks, arrays and channels are accessed this way. Consequently,
there can be arbitrarily many objects. Hence, memory cells of an object must
store the reference to the object they represent. Therefore, the cell definitions
for a member of a structure or monitor A need an additional argument i for
the reference as in Env_class_A[i, x]. For example, the process for the monitor
Semaphore in Listing 1.3 has the name Env_class_Semaphore[i, g, value] because
it holds a reference to its implicit lock g and it stores the value for its variable.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Anyhow, the actions for accessing variable x, get_x and set_x, would still be
shared across all memory cells for x of the struct (or the monitor), so using get_x
(for example) would cause an x-value from any struct instance to be read. In
order to make access to struct and monitor instances unique, each cell needs
unique actions for accessing it. Since there may be arbitrarily many instances,
making actions unique is not trivial. With the intention of keeping the resulting
CCS code readable and intuitive, we have added the possibility of parametrising
action names to our CCS dialect. This parametrisation effectively extends the
expressiveness of our dialect to that of the π-calculus [23] since the parameters
can be passed around as values. However, we restrict this mechanism to integer
parameters and allow integer arithmetic on those. The pseuCo semantics uses
this for integer references to memory cells and other objects. The definition
of such cells is to be adjusted as follows, where the (i) is the parametrisation
occurring in the action name:

1 Env_class_A[i, x] :=
2 env_class_A_get_x(i)!x. Env_class_A[i, x] +
3 env_class_A_set_x(i)?v. Env_class_A[i, v]

Another example of objects that are accessed by reference are arrays. Arrays
are modelled as simple CCS processes that have as many process parameters as
there are elements in the array (plus one reference i for identifying the object,
as explained above). In order to access a specific array element, the user must
first communicate the element index and can then choose between reading or
writing. For each array capacity occurring in the pseuCo program, there must
be a dedicated CCS process. Below we present one for capacity 3:

1 Array3[i, v0 , v1 , v2] := array_access(i)?idx. (
2 when (idx == 0) (
3 array_get(i)!v0. Array3[i, v0, v1, v2] +
4 array_set(i)?v. Array3[i, v, v1, v2]
5) + when (idx == 1) (
6 ...
7) + when (idx == 2) (
8 ...
9)

As it is the case for real memory, it must be possible to allocate a memory cell.
For example, in Listing 1.3, there is an allocation of a lock in line 2. Hence,
each type of cell has a constructor that manages the references and adds a new
memory process in parallel to the program processes whenever necessary. The
following listing shows the constructor for a struct A containing a single variable
x. The process Env_class_A is as shown above.

1 Env_class_A_cons[i] := class_A_create !(i).
2 (Env_class_A[i, 0] | Env_class_A_cons[i+1])

Some types of objects are supported by several constructors. Arrays, for
example, have a distinct constructor for every array size. Still, all arrays must

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

share the same reference space. There is one process that manages the references
(using integer arithmetic on references) for arrays and each array constructor
requests a free reference for the next instance it is supposed to initialise.

1 ArrayManager[i] := array_new !(i). ArrayManager[i+1]

Below is how the constructor of arrays of size 3 uses the array manager. The
constructor itself acts independent of the type of the elements so it is necessary
for initialisation to provide the constructor with a default value for the cells (i.e.
Array3_cons can be used for bool, int, or string arrays so the default value is
false, zero, or the empty string).

1 Array3_cons := array_new?i. array3_create !(i).
2 array_setDefault(i)?d. (Array3_cons | Array3[i, d, d, d])

The necessary communication with the array manager introduces some superfluous
interleavings because the next array reference can be requested at any time. This
can be avoided at the price of a more involved encoding.

Procedures and Jumping. In CCS, the base “execution” order is linear, i.e. its
semantics executes one prefix after the other. There is no built-in history that
enables going back to a previous point in execution. In pseuCo (and other
languages), however, it is possible to call procedures. After the procedure has
been executed, the execution of the program jumps back to the point where the
procedure was called. Hence, procedure calls can not be defined within CCS
directly, but they can be tackled by means of sequencing (;). With sequencing,
it is indeed straightforward to embed procedures in CCS processes. When a
procedure is called, the process’ name appears in front of the sequence operator.

For non-void procedures, it is necessary to return a value to the caller, but a
direct handshake is not possible (since they run sequentially, not in parallel). In
our encoding, we use a dedicated parallel process which collects and delivers the
values to return. With that, a procedure can return a value by sending it to the
dedicated process, and the caller can receive it from there as part of a sequence
operator.

Control Flow. Most imperative programs need conditional branching. For example,
the for loop in Listing 1.2 must jump from the end of its body either to the
beginning of the loop or behind the loop, and the if-then-else in Listing 1.4
determines the control flow according to its condition. In CCS, jumping and
branching is not supported directly. However, processes can be given names
(appearing on the left hand side of defining equations). Similarly to what has
been discussed for procedures, we accommodate conditional branching by splitting
into several named sub-processes. Each sub-process name is the equivalent of a
jump label, and branching to a sub-process boils down to using the name of the
sub-process. The following listing shows a simple loop:

1 while(a > 0) {
2 println("loop");

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

3 a = a-1;
4 }
5 println("a␣is␣zero");

Its semantics is the CCS code below:

1 P[a] := when (a <= 0) Q[a]
2 + when (a > 0) println!"loop". P[a-1]
3 Q[a] := println!"a␣is␣zero". 0

The presented pattern can be used for the other branching statements as well.

Mutual Exclusion and Locks. pseuCo supports locks, monitors, and conditions.
In its basic form, a lock is encoded as a process occupying one out of two states,
locked and unlocked. Only one parallel process can perform the locking at a time:

1 Lock[i] := lock(i)?. unlock(i)!. Lock[i]

As we have seen previously, the parameter i is a reference to allow uniquely
identifying a specific lock. The actions lock and unlock can then be used
to lock and unlock the lock, respectively, as demonstrated in the example
Lock[i] | lock(i)!. println!"CriticalSection". unlock(i)?. 0.

An advanced variant of locks are reentrant locks where a single agent, the lock
owner, is allowed to take the lock multiple times. The lock is released to other
potential owners only if the owner has unlocked it the same number of times
it has been locked. Modelling this in CCS is more intricate than single-entrant
locks. The lock process needs two additional arguments: one that holds the agent
identity owning the lock and one that keeps a count of the number of locks still
to be unlocked. The process allows anyone to become owner by acquiring the
lock provided nobody else already owns it. If an agent a owns the lock, then
the process ensures that further locks are only made possible for a. It throws an
exception if an unlock is requested by a non-owner:

1 Lock[i, c, a] :=
2 when (c==0) lock(i)?a. Lock[i, 1, a] +
3 when (c>0) (
4 lock(i)?(a). Lock[i, c+1, a] +
5 unlock(i)?a2. (
6 when (a==a2) Lock[i, c-1, a] +
7 when (a!=a2) exception !("Exception").0))

In this fragment, there is a peculiar difference between the lock actions in line 2
and 4. In line 4, there are additional parentheses around a. This forces the current
value of the expression a to be evaluated (instead of overriding it) and therefore
ensures that lock(i)!e (effectuated by some agent referenced as e who may not
be the owner) and lock(i)?(a) can handshake if and only if e and a evaluate to
the same value (a concept called value matching in some calculi). This is how
we ensure that re-entrances are only granted to the agent that already owns the
lock.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Agents. For each procedure that is used as an agent, there is an agent process
in parallel to existing agents. It is responsible for starting the agent, similar
to a constructor. The following listing shows the agent process Agent_f that is
responsible for starting a procedure f with one argument x:

1 Agent_f := get_free_ref?a. start_f!a. set_arg_x?v.
2 (Agent_f | Proc_f[a, v] ; 0)

As we have seen already for arrays, agents share a common reference space,
so Agent_f first gets an unused reference from a management process. It then
offers to send this reference with start_f!a. As soon as an agent wants to start f
as a new agent, it begins by receiving this message start_f?a to get the reference
for the new agent. If f needs arguments to be called, as in the example above,
then the starting agent has to send values for each of the arguments. Afterwards,
Agent_f calls the procedure f with the arguments it has received in parallel with
a fresh copy of itself.

Other agents can choose to wait for this new agent’s termination before they
continue their own execution. In pseuCo, this is done by calling the primitive join.
Hence, we augment the CCS representation so that after termination of the agent,
the process continues with a process that offers an unlimited number of join(a)!
actions. The translational semantics of the join primitive is the complementary
action join(a)?. Due to the unlimited offers of individual join(.)!-transitions
provided by each agent upon termination, any attempt to join(.)? an already
terminated agent will not block.

1 AgentJoins[a] := join(a)!. AgentJoins[a]
2 Agent_f := get_free_ref?a. start_f!a. set_arg_x?v.
3 (Agent_f | Proc_f[a, v] ; AgentJoins[a])

Message Passing via Channels. As shown in Listing 1.4, pseuCo supports message-
passing communication via unbuffered and via (FIFO) buffered channels of fixed
capacity (as in lines 17 and 16). CCS, on the other hand, provides unbuffered
communication via handshaking of complementary actions with value-passing.
Hence, pseuCo’s unbuffered channels can be encoded directly. For buffered
channels, we need the ability to store the buffer state which is comprised of
the items to be buffered and their order. Basically, a buffered channel behaves
similarly to an array of memory cells, however it has restricted actions for access
(namely only pushing and popping). A straightforward encoding is as follows:

1 Buffer_n[i, c, v_1 , ..., v_n] :=
2 when (c==0) put(i)?v_1. Buffer_n[i, c, v_1 , ..., v_n] +
3 ... +
4 when (c==n-1) put(i)?v_n. Buffer_n[i, c, v_1 , ..., v_n] +
5 when (c>0) chan(i)!v_0. Buffer_n[i, c-1, v_2 , ..., v_n , 0]

Here, n is the capacity of the buffer, c is the number of items that are currently
buffered and v_j are the cells of the buffer (i is the buffer reference as usual).

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

The channel allows sending values to it provided c < n. Due to the dedicated
when-statements guarding each put, the value received over action put is stored in
the next free cell. Values can be received from the channel provided c > 0. The
channel sends the value contained in v_0 over action chan, decreases the item
counter by one and shifts all buffered values to the left.

The type system of pseuCo needs to accommodate for the fact that channels
can be referred to without specifying whether they are buffered or unbuffered.
For example, in Listing 1.4, the type of the parameter arg of concat is stringchan
although the main agent passes a stringchan2 to it. Once such a channel is used
for sending, it is necessary to determine the buffer type dynamically because
unbuffered channels are used with action chan(i)! and buffered channels are
filled with action put(i)!. We overcome this problem by using negative numbers
as references for unbuffered channels and positive numbers for buffered ones. The
following listing shows the CCS code corresponding to sending a value v over a
channel with reference i for which the buffer type is not known in advance.

1 when (i < 0) chan(i)!v. 1 + when (i > 0) put(i)!v. 1

Select Statement. The select statement introduces nondeterministic choice to
pseuCo. For example, in Listing 1.4, the main agent can nondeterministically
choose to either process a result or an error sent by concat. There is a direct
counterpart in CCS, namely the nondeterministic choice operator +. In the
encoding, it is important to assure that on the CCS level, the leftmost prefix of
each resulting nondeterministic alternative corresponds to the channel appearing
in the respective case to ensure that the selection is made based on the correct
external stimulus.

Monitors and Conditions. As already shown in Listing 1.3, pseuCo supports
monitors in the form of a struct that has an implicit, built-in lock. We have
seen that monitors can be enhanced with conditions so as to support condition
synchronisation. The Semaphore in Listing 1.3 employs a condition to make agents
wait until a resource becomes available. A waiting agent does not perform any
work. In particular, it does not run in a loop that tries to enter and exit the
monitor over and over until the condition is found to be satisfied (a so-called
busy-wait). Instead, the classical monitor concept comes with a notification
mechanism where waiting agents wait until they are notified. pseuCo supports
this via the two primitives signal and signalAll that need to be used actively
by some agents. The Semaphore example in Listing 1.3 uses signalAll in line 14
once a resource has been handed back.

We illustrate the behaviour of a condition as agents that rest inside a waiting
room until they are notified that a change they are waiting for happened. This
metaphor emphasizes that agents actually stop working and do not have to do
anything actively until they receive a signal. In the semaphore example, an agent
that finds the pool of resources empty goes to the waiting room and stays there
until a resource is handed back and thus signalAll is called. pseuCo’s conditions

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

are only available inside monitors so there is always the implicit monitor lock
that the condition is related to.

In CCS, we adapt the waiting room metaphor and use two processes: one for
the waiting room and one that broadcasts the signal to waiting agents.

1 WaitRoom[i, c] :=
2 signal(i)?.(
3 when (c==0) WaitRoom[i, c] +
4 when (c>0) wait(i)?. WaitRoom[i, c-1]) +
5 add(i)?. WaitRoom[i, c+1] +
6 signal_all(i)?. WaitDistributor[i, c] ; WaitRoom[i, 0]
7

8 WaitDistributor[i, c] :=
9 when (c<=0) 1 +

10 when (c>0) wait(i)?. WaitDistributor[i, c-1]

The waiting room counts the number of waiting agents and supports the
following four operations:

– If an agent wants to use a condition, it must perform two steps. First, it must
add itself to the waiting room (using add) while still holding the monitor
lock.

– After an unlock, the agent synchronises over channel wait. However, the
waiting room joins the synchronisation only when the agent is supposed to
continue its work.

– Working agents use the action signal in order to notify one of the waiting
agents that the condition may have changed. When a signal is received, the
waiting room either ignores it if no agent is waiting or it offers a single
wait for synchronisation to the waiting agents. Which of the waiting agents
synchronises with the waiting room is non-deterministic.

– Similarly, signal_all is used to notify all waiting agents. This task is delegated
to the process WaitDistributor. The wait distributor gets the number of
waiting agents and then offers each of them a wait action for synchronisation.

The resulting CCS encoding of some program using conditions may look as
follows:

1 WaitAgt[m, c] := lock(m)!. getB?b.
2 when (b) println!"Condition␣holds". unlock(m)!. 1 +
3 when (!b) add(c)!. unlock(m)!. wait(c)!. WaitAgt[m, c]
4 WorkAgt[m, c] := lock(m)!.
5 setB!true. signal_all(c)!.
6 unlock(m)!. 1
7

8 WaitAgt[m, c] | WorkAgt[m, c] | Lock[m] | WaitRoom[c, 0]

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

(a) Initial view (b) After first click (c) Fully expanded LTS

Fig. 2: A labelled transition system as shown in pseuCo.com. The user has to
click on a state to reveal its successors. This is explained to first-time users by a
floating hint shown until two states have been expanded.

3 pseuCo.com – A Web Platform for Learning pseuCo

To propel the use of pseuCo in academic teaching, we have developed a web ap-
plication available on https://pseuco.com/. It serves as an interactive platform
for students learning CCS and pseuCo as part of our concurrent programming
lecture and provides the user with access to the translational semantics of pseuCo
described in Section 2.3. The following section provides a detailed description of
pseuCo.com.

LTS Viewing. pseuCo.com users will often find themselves looking at an LTS –
either one that was generated by the semantics of a CCS expression that they
entered or that was generated by the pseuCo compiler, or one that was sent to
them. In all cases, pseuCo.com uses the same approach to display them:

In the beginning, only the initial state of the LTS is shown. Clicking or, for
touch-enabled devices, tapping it reveals the initial state’s successors. The user
can continue expanding states step by step, either by continuing to click states
they are interested in, or by using the Expand all button which will reveal the
successors of all visible states. Expanded states can also be collapsed by another
click on them which hides all successor nodes that no longer have a path to the
initial state. Figure 2 demonstrates this behaviour in a small LTS.

This behaviour and the absence of support for infinitely branching transition
systems ensure that pseuCo.com never tries to display an infinite number of
states. The LTS itself can be infinite. In that case, the users will never be able to
fully expand the system. Still, he is free to explore any part of the graph he can
reach from the initial state.

Because of this interactive approach, we have certain requirements for our
graph layout algorithm:

1. Graph layout must be continuous: When the graph changes (for example
because a node has been expanded), the existing nodes should not move far,
and this move should be animated so users can easily keep track of the states.

https://pseuco.com/

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

2. Graph layout must be interactive: Users need to be able to move nodes as
they see fit, and the graph layout should pay respect to the user-given node
placement while still optimising overall readability.

3. Graph layout must feel natural so users are not confused by the visual changes
they cause by moving nodes.

To fulfil these requirements, we use a force-based approach to graph layout:
The visible part of the LTS behaves like a physical simulation where nodes
are inert masses that carry an electrical charge, connected by springs, with a
gravitational pull towards the middle of the graph. The inertia ensures a smooth,
continuous movement of all nodes. The electrical charge ensures that nodes repel
each other, avoiding overlap and keeping a reasonable distance from other nodes.
The springs can push or pull on nodes to achieve consistent spacing between
nodes. Finally, the gravitational pull centres the whole system within the allocated
space.

Because transitions are labelled by actions and multiple transitions may exist
between the same pair of states, both states and transitions correspond to nodes
in the simulation. The nodes for states directly correspond to the position where
the state is rendered. For transitions, the corresponding nodes (which have a
weaker simulated electrical charge than states) correspond to the position where
the transition’s label is drawn. Therefore, the electrical charge of these nodes
automatically optimises for overlap-free rendering of the labels. The transition
is rendered as a Bézier curve between the two states with the transition node’s
position serving as the control point. This ensures that multiple transitions
between the same states are rendered correctly as demonstrated in Figure 2c
by the transitions A c−→ C and C a−→ A. It also allows self-loops to automatically
rotate away from other transitions or states.

If the user wants to layout parts of the graph himself, he can drag and drop
nodes at any time using the mouse or touch. In the latter case, we also support
simultaneous dragging of multiple nodes. The remaining nodes continue to be
affected by the forces, and after the user stops dragging a node, it returns to
normal behaviour. This allows the user to get the graph into another stable state
that he prefers.

To gain even more control over the placement of nodes, the user can check
Pin dragged nodes . If this setting is enabled, after the user lets go of a node,

it will seize all movement and will no longer be affected by the forces. This allows
the user to layout any part of the graph manually without interference from the
automatic layout while the remaining part of the graph will still be arranged
automatically.

CCS Editing. While editing a CCS file, the user sees two windows as demonstrated
in Figure 3. The first one contains a text editor with his CCS code while the
second one contains the LTS editor described in Section 3. The user can drag
the grey separator bar to freely distribute the horizontal space between both
windows or use a Maximize button in the title bar to allocate all horizontal

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Fig. 3: A screenshot of the CCS editing interface

Fig. 4: A screenshot of the pseuCo editing interface

space to that window. In that case, the other window will be reduced to a thin
vertical strip.

During editing, the CCS expression is parsed continuously so the LTS shown
to the right is never stale.

pseuCo Editing. When editing a pseuCo file, the user is shown the pseuCo
code, the CCS code produced by the pseuCo compiler, and the corresponding
LTS, as demonstrated in Figure 4. As with CCS editing, the input is evaluated
automatically, and the user can freely divide the horizontal space between the
windows. While the CCS code is read-only (as it is generated by the compiler),
the user can experiment with it: A Fork button in the title bar of the CCS
window opens the generated CCS code as a new file to allow the user to edit it.
Of course, the user can always go Back to his original pseuCo file.

The pseuCo editor provides the support typical of a basic IDE including
snippet completion and in-line highlighting of compiler error messages as demon-
strated in Figure 5.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Fig. 5: A screenshot of the pseuCo text editor

File Management and Sharing. pseuCo.com allows users to store and manage
files in a virtual file system stored locally by their web browser. Files are always
saved automatically and kept until they are deleted assuming that the user has
entered a file name. Even unnamed files are saved temporarily to allow recovering
lost data but they expire after one week.

To encourage students to discuss their findings, pseuCo.com features a file
sharing facility. At any time during editing, users can select Share this file
to upload a copy of their current file to our server. In return, they receive
a sharing link containing a random identifier for them to share, for example
https://pseuco.com/#/edit/remote/50xshwwyuza86w4pjtke. Anyone open-
ing this link in a modern browser will immediately be presented with a read-only
view of this file.

pseuCo.com also allows users to export transition systems as TRA-, AUT-, and
DOT-files (in addition to its own JSON-based format) for processing with external
tools. It can also import AUT3-files.

Tracing Support. The application provides a way to compute random traces
through an LTS which can by shown including or omitting τ -steps.

In addition to allowing random tracing, pseuCo.com also collects a list of (non-
τ) actions found within an LTS (which can be shown by clicking Actions)
and can compute traces leading to these actions by backchaining. For example,
this can be used to check whether a pseuCo program can produce an unexpected
output and to synthesise an interleaving explaining this output.

Minimization. To aid in analysing large LTS, pseuCo.com implements minimiza-
tion under observational congruence [22]. This feature can be invoked by the

Minimize button in the LTS toolbar.
3 http://cadp.inria.fr/man/aut.html

https://pseuco.com/#/edit/remote/50xshwwyuza86w4pjtke
http://cadp.inria.fr/man/aut.html

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Fig. 6: A compressed, infinite LTS where states A and B have been merged

Whenever an LTS is displayed, a background thread is dispatched to precom-
pute all its states. When minimization is invoked, it only considers states that
have been found up to this point. If minimization is started before all states have
been explored, the result is not guaranteed to be minimal – it is only minimal
with respect to the already explored part of the system. While exploration is
running, the minimization button is labelled Compress to emphasize this
fact.

This behaviour allows compression of systems that are infinite or too large to
be explored in a reasonable time frame. Figure 6 shows an example of this.

Offline Use. pseuCo.com is a pure, JavaScript-based web application. While this
provides many benefits, most importantly the ability to run without any instal-
lation or bootstrapping, this opens up the question of whether the application
can be used without an internet connection. Indeed, pseuCo.com provides full
support for offline use using the HTML5 Application Cache APIs. Upon the first
visit of pseuCo.com, all major modern web browsers automatically download
the full web application and store it in a permanent cache. Afterwards, network
connectivity is only needed to download application or template updates and to
upload and download shared files.

All computation, including pseuCo-to-Java compilation and the CCS seman-
tics, is always performed directly in the user’s browser.

Modes, Exercises, and Use in Teaching. While pseuCo.com can be used by anyone
as a tool for exploring CCS and pseuCo semantics, it is specifically tailored to
educational usage. The needs of students learning concurrent programming differ
from those of an expert looking for a tool. By our experience, providing features
like CCS semantics or LTS minimization to students that have not yet understood
the corresponding concepts impedes learning because it takes away an incentive
to explore and apply these concepts by hand.

To accommodate these different needs, pseuCo.com can be operated in two
different modes. In tool mode, all features are available without restriction. In

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

teaching mode, users are prevented from creating files initially, only allowing them
to view (but not edit) files that were shared with them. Instead, they get access
to a set of exercises.

These exercises are meant to accompany a lecture or book teaching concurrent
programming and provide milestones that unlock pseuCo.com features. For
example, users need to demonstrate their ability to infer transitions of CCS terms
by the SOS rules and to write small CCS terms with predetermined characteristics
to unlock the ability to create and edit CCS files including the automatic creation
of the corresponding LTS.

Upon first use, pseuCo.com will normally ask the user to select a mode. When
providing links to students as part of the lecture notes, we use special links that
cause pseuCo.com to default to teaching mode.

pseuCo.com has been introduced in the Concurrent Programming lecture at
Saarland University in the summer term 2014.

4 Analysis Support

In our concurrent programming lecture, we sensitise our students to problems
related to concurrency. We explicate that data races (race conditions), deadlocks
and such are considered program errors and must be avoided at all costs. To
further aid our students, we want to have tool support to detect, investigate, and
possibly fix such errors.

This requires sophisticated and often computationally intensive program
analyses. This is where the pseuCo.com platform – and its JavaScript basis –
reaches its limits. To circumvent this issue and to complement the capabilities of
the pseuCo.com platform we have started exploring new ways of giving students
access to enhanced tools and analyses.

The first tool developed under this premise is able to statically detect data
races on a subset of the language facilities of pseuCo. It is implemented in C++.

Next, we describe the major ideas that underlie this analysis based on the
example in Listing 1.2 from Section 2.2.

Static Data Race Detection. In pseuCo, a data race occurs if two or more
agents can access the same global variable simultaneously and at least one of
these accesses is writing. In this respect, the example presented in Listing 1.2
is free of data races. However, the statement in line 7 is an access to the global
variable n. Without the lock and unlock statements in line 6 and 8, respectively,
this program would have a data race due to the concurrent, i.e. potentially
simultaneous accesses to n. How can we infer this automatically without running
the program?

To do so, we use a static program analysis that computes an overapproximation
of all possible program behaviours and then tries to find unguarded concurrent
memory accesses to global variables. This is done in three steps:

1. Compute a graph that holds all control flow information.

https://pseuco.com/#/exercises

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

mainAgent Agent a

global variables:
int n = 10;

lock guard_n;

entry_mainAgent

agent a = start(countdown());

countdown();

join(a);

(print): println("The␣value␣is␣"+ n);

exit_mainAgent A: {(n, R)}
L: {}

entry_countdown

int i = 5;

i >= 1 ?

lock(guard_n);

(cd1): n--;

unlock(guard_n);

i--;

exit_countdown

true

false

A: {(guard_n, R)}
L: {}

A: {(n, R/W)}
L: {guard_n}

A: {(guard_n, R)}
L: {guard_n}

entry_countdown

int i = 5;

i >= 1 ?

lock(guard_n);

(cd2): n--;

unlock(guard_n);

i--;

exit_countdown

true

false

A: {(guard_n, R)}
L: {}

A: {(n, R/W)}
L: {guard_n}

A: {(guard_n, R)}
L: {guard_n}

call

return

start

join

p

Fig. 7: Annotated control flow graph. A: accesses to global variables (R: read,
W: write, R/W: read and write), L: locks guaranteed to be held. Nodes without
annotation default to A: {} and L: {}

2. Annotate this graph with information relevant to identifying data races:
accesses to global variables and which regions are guarded by locks.

3. Perform a graph search to find pairs of memory accesses.
4. Check each of these pairs for a potential data race.

Figure 7 shows the relevant part of the annotated graph for the example
program. Deriving it is mostly straightforward4.

The graph search is a basic reachability analysis and applied to pairs of
memory accesses. First, all candidate memory accesses are collected (i.e. accesses
to global variables) and grouped by the accessed variables. Then, for each such
access group a list containing all the individual access pairs is constructed5.

The characteristics differentiating potentially harmful from harmless access
pairs are more interesting:

1. Do both accesses happen in the same agent?
2. Are both accesses read-only?
3. Do these accesses share common locks, i.e. is there at least one lock that is

held during both of the accesses?
4. Using the graph search, is it possible to construct a causality path between

the two accesses?

If at least one of these indicators is satisfied, the affected pair is no longer
considered to be a data race candidate. Otherwise, the access pair is considered
a potential data race. This does not imply that an actual data race materialises
but warns the user that the program may need more thought and reasoning. This
4 There are some corner cases requiring careful analysis. We omit them due to scope
and space constraints.

5 Reflexive and symmetric pairs are omitted directly for precision (by construction a
memory access cannot race with itself) and efficiency reasons.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

imprecision is rooted in our decision to overapproximate program behaviour and
to underapproximate locking information, if necessary. An argument showing the
absence of a data race in a program that exhibits more behaviour and has weaker
locking information than the real program (and its semantics) also extends to
that original program while the converse does not.

Continuing with our example, there are three memory accesses to n: cd1, cd2

and print . This yields the following data race candidates: (cd1, cd2), (cd1, print),
and (cd2, print). The first candidate is covered by the third indicator since guard_n
is a common lock held during both accesses. Candidate two is not considered a
data race as both accesses happen in the same agent and thus satisfy indicator
one. As illustrated in Figure 7, there is a causality path p (indicated in red)
connecting cd2 to print . Hence, the last candidate satisfies the fourth indicator
and is no data race either.

Without lines 6 and 8, the pair (cd1, cd2) would not satisfy any of the
indicators and would be returned by the analysis as a potential data race.

5 Conclusion

This paper has introduced the pseuCo approach to teaching concurrent program-
ming. We have presented an overview of the language features and presented
details of a translational semantics that maps any pseuCo program to the variant
of CCS we presented. That semantics is implemented as part of an interactive
web platform, pseuCo.com. This platform provides access to the tools targeting
pseuCo, most notably: the translation of pseuCo programs to CCS, the CCS
semantics in terms of LTS, the pseuCo-to-Java compiler, and more. Due to space
constraints, we have not covered the compilation of pseuCo to Java which makes
it possible to execute any pseuCo program, and we have only sketched our efforts
to enable deep semantic analyses for pseuCo, especially for flagging data race
problems in shared-memory concurrency. We will continue to work on the TACAS
(Teaching Academic Concurrency to Amazing Students) vision.

Acknowledgments. This work is supported by the ERC Advanced Investigators
Grant 695614 (POWVER) and by the CDZ project CAP (GZ 1023).

References

1. Andersen, J. R., Andersen, N., Enevoldsen, S., Hansen, M. M., Larsen,
K. G., Olesen, S. R., Srba, J., and Wortmann, J. K. CAAL: concurrency
workbench, aalborg edition. In Theoretical Aspects of Computing - ICTAC 2015 -
12th International Colloquium Cali, Colombia, October 29-31, 2015, Proceedings
(2015), M. Leucker, C. Rueda, and F. D. Valencia, Eds., vol. 9399 of Lecture Notes
in Computer Science, Springer, pp. 573–582.

2. Bolognesi, T., and Brinksma, E. Introduction to the ISO specification language
LOTOS. Computer Networks 14 (1987), 25–59.

3. Boudol, G., Roy, V., de Simone, R., and Vergamini, D. Process calculi,
from theory to practice: Verification tools. In Sifakis [25], pp. 1–10.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

4. CAV award. http://i-cav.org/cav-award, 2013.
5. Cleaveland, R., Madelaine, E., and Sims, S. A front-end generator for

verification tools. In Tools and Algorithms for Construction and Analysis of
Systems, First International Workshop, TACAS ’95, Aarhus, Denmark, May 19-20,
1995, Proceedings (1995), E. Brinksma, R. Cleaveland, K. G. Larsen, T. Margaria,
and B. Steffen, Eds., vol. 1019 of Lecture Notes in Computer Science, Springer,
pp. 153–173.

6. Cleaveland, R., Parrow, J., and Steffen, B. The Concurrency Workbench.
In Sifakis [25], pp. 24–37.

7. Cleaveland, R., Parrow, J., and Steffen, B. The Concurrency Workbench:
A semantics-based tool for the verification of concurrent systems. ACM Trans.
Program. Lang. Syst. 15, 1 (1993), 36–72.

8. Cleaveland, R., and Sims, S. The NCSU concurrency workbench. In Computer
Aided Verification, 8th International Conference, CAV ’96, New Brunswick, NJ,
USA, July 31 - August 3, 1996, Proceedings (1996), R. Alur and T. A. Henzinger,
Eds., vol. 1102 of Lecture Notes in Computer Science, Springer, pp. 394–397.

9. Dijkstra, E. W. Over seinpalen. circulated privately, n.d.
10. Garavel, H. Compilation et vérification de programmes LOTOS. PhD thesis,

Joseph Fourier University, Grenoble, France, 1989.
11. The Go programming language specification. http://golang.org/ref/spec.
12. Hansen, P. B. Shared classes. In Operating System Principles, Prentice-Hall

Series in Automatic Computation. Prentice-Hall, 1973, pp. 226–232.
13. Hansen, P. B. Monitors and concurrent pascal: A personal history. In History

of Programming Languages Conference (HOPL-II), Preprints, Cambridge, Mas-
sachusetts, USA, April 20-23, 1993 (1993), J. A. N. Lee and J. E. Sammet, Eds.,
ACM, pp. 1–35.

14. Hoare, C. A. R. Monitors: An operating system structuring concept. Commun.
ACM 17, 10 (1974), 549–557.

15. Holzmann, G. The Spin Model Checker – Primer and Reference Manual, first ed.
Addison-Wesley Professional, 2003.

16. ISO. Information processing systems – Open Systems Interconnection – LOTOS
– a formal description technique based on the temporal ordering of observational
behaviour. ISO ISO 8807:1989, International Organization for Standardization,
Geneva, Switzerland, 1989.

17. Larsen, K. Context–Dependent Bisimulation Between Processes. PhD thesis,
University of Edinburgh, Mayfield Road, Edinburgh, Scotland, 1986.

18. Larsen, K. G., Pettersson, P., and Yi, W. UPPAAL in a nutshell. STTT 1,
1-2 (1997), 134–152.

19. Luca Aceto, Anna Ingólfsdóttir, K. G. L., and Srba, J. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, 2007.

20. Magee, J., and Kramer, J. Concurrency – state models and Java programs.
Wiley, 1999.

21. Milner, R. A Calculus of Communicating Systems, vol. 92 of Lecture Notes in
Computer Science. Springer, 1980.

22. Milner, R. Communication and concurrency. PHI Series in computer science.
Prentice Hall, 1989.

23. Milner, R. Communicating and mobile systems - the Pi-calculus. Cambridge
University Press, 1999.

24. Roscoe, A. W. Modelling and verifying key-exchange protocols using CSP and
FDR. In The Eighth IEEE Computer Security Foundations Workshop (CSFW

http://i-cav.org/cav-award
http://golang.org/ref/spec

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

A
LT

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

’95), March 13-15, 1995, Kenmare, County Kerry, Ireland (1995), IEEE Computer
Society, pp. 98–107.

25. Sifakis, J., Ed. Automatic Verification Methods for Finite State Systems, Interna-
tional Workshop, Grenoble, France, June 12-14, 1989, Proceedings (1990), vol. 407
of Lecture Notes in Computer Science, Springer.

26. Soriano, A. Prototype de Venus: Un outil d’aide à la verification de systemes
communicants. In STACS 88, 5th Annual Symposium on Theoretical Aspects of
Computer Science, Bordeaux, France, February 11-13, 1988, Proceedings (1988),
R. Cori and M. Wirsing, Eds., vol. 294 of Lecture Notes in Computer Science,
Springer, pp. 401–402.

	Teaching Academic Concurrency to Amazing Students
	Introduction
	The Concepts Behind pseuCo
	Context
	The Language pseuCo
	Translational Semantics

	pseuCo.com – A Web Platform for Learning pseuCo
	Analysis Support
	Conclusion

