
POWER TO THE PEOPLE
VERIFIED

This report contains an author-generated version of a publication in FMICS-AVoCS 2017.

Please cite this publication as follows:

Alexander Graf-Brill, Holger Hermanns.
Model-Based Testing for Asynchronous Systems.
Critical Systems: Formal Methods and Automated Verification - Joint 22nd International Work-
shop on Formal Methods for Industrial Critical Systems - and - 17th International Workshop on
Automated Verification of Critical Systems, FMICS-AVoCS 2017, Turin, Italy, September 18-20,
2017, Proceedings. Lecture Notes in Computer Science 10471, 2017, ISBN 978-3-319-67112-3:
66–82.

POWVER
Technical Report 2017-07

Title: Model-Based Testing for Asynchronous Systems

Authors: Alexander Graf-Brill, Holger Hermanns

Report Number: 2017-07

ERC Project: Power to the People. Verified.

ERC Project ID: 695614

Funded Under: H2020-EU.1.1. – EXCELLENT SCIENCE

Host Institution: Universität des Saarlandes, Dependable Systems and Software
Saarland Informatics Campus

Published In: FMICS-AVoCS 2017

http://www.powver.org/publications/TechRepRep/ERC-POWVER-TechRep-2017-07.pdf
http://www.powver.org/
http://cordis.europa.eu/project/rcn/203431_en.html
http://cordis.europa.eu/programme/rcn/664099_en.html
http://www.uni-saarland.de/nc/startseite.html
http://depend.cs.uni-saarland.de/
http://sic.saarland/
http://dx.doi.org/10.1007/978-3-319-67113-0_5

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Model-Based Testing for Asynchronous Systems

Alexander Graf-Brill and Holger Hermanns

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Abstract Model-based testing is a prominent validation technique, in-
tegrating well with other formal approaches to verification, such as model
checking. Automated test derivation and execution approaches often
struggle with asynchrony in communication between the implementation
under test (IUT) and tester, a phenomenon present in most networked
systems. Earlier attacks on this problem came with different restrictions
on the specification model side. This paper presents a new and effective
approach to model-based testing under asynchrony. By waiving the need
to guess the possible output state of the IUT, we reduce the computa-
tional effort of the test generation algorithm while preserving soundness
and conceptual completeness of the testing procedures. In addition, no
restrictions on the specification model need to be imposed. We define a
suitable conformance relation and we report on empirical results obtained
from an industrial case study from the domain of electric mobility.

1 Introduction

Model-based testing is a validation technique where, based on a formal specific-
ation of a system, a suitable set of experiments (test suite) is generated in an
automated manner and executed on the implementation of that system, so as
to assert some notion of conformance between the implementation and its spe-
cification. In model-based testing it is common to use variants of input-output
transitions systems (IOTS) as formal models to capture the system behaviour on
the specification side. In IOTS, transitions between states have structured action
labels: the name of a performed action and an identifier of its type, i.e. input
(stimuli) to the implementation or output (response) of the implementation. By
automated inspection of the possible inputs and outputs in the current states of
a given specification model, a model-based testing tool can either provide one of
these inputs to or records an output from the implementation under test (IUT).
It then updates its knowledge of the current state in the specification model.
Whenever an unexpected output of the IUT occurs, i.e. an output which is not
considered possible according to the current state(s) of the specification model,
the IUT is refused with a verdict “fail”. Testing is usually employed for finding
problems in an IUT, instead of for verifying the absence of any problems. Nev-
ertheless it is theoretically appealing to discuss the size a complete test suite
needs to have in order to be usable for such a verification. Finiteness of such a
complete test suite however requires finite and acyclic behaviour, which is rarely
the case for embedded systems, the class of systems we look at.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

2 Alexander Graf-Brill and Holger Hermanns

While the specification can be provided as a formal model, this is not nat-
urally given for the IUT, which is most often a real physical object, or a piece
of code. To enable a formal relation between the specification and the IUT, the
so-called testing hypothesis or test assumption, is usually put in place, assuming
the existence of an equivalent formal model of the IUT. It is common to use
IOTS for both, the model of the specification and the IUT, as we do in the
sequel.

The most prominent conformance relation in use is input-output conformance
(ioco) [24]. It is defined for systems interacting synchronously with their envir-
onment, and especially with the model-based testing tool. Here “synchronously”
means that each input to the IUT instantaneously leads to a state transition in
the IUT, and each output of the IUT can be instantaneously processed by its
environment. Model-based testing for synchronous communication has been ex-
tensively studied for decades [22,23,2,10,19,17,9,8,21,18], spanning varying con-
formance relations and modelling formalisms. IOTS may be nondeterministic in
the sense that a state has several outgoing transitions with the same label, so as
to support abstraction or implementation freedom wrt. certain system aspects.

In contrast to synchronous testing, where the exact state of an IUT on the
specification side is known modulo non-determinism, this does not hold if testing
systems communicating asynchronously, especially if being tested via one or more
asynchronous channels. Rooted in possible message delays, it is then no longer
guaranteed that inputs provided to and outputs received from an IUT are being
processed in the order they appear to the tester.

Asynchronous communication can appear in different flavours, since buffering
and delaying of messages may happen in various ways, depending on the charac-
teristics of the channels connecting the two sides. Channels may only delay inputs
wrt. outputs, or the other way around, they may allow arbitrary re-ordering of
messages, for instance if separate channels for different inputs or outputs are in
place. However, the most commonly assumed communication scenario is that of
bidirectional FIFO (first-in-first-out) communication, effectuated by two inde-
pendent FIFO channels, one for inputs, one for outputs.

The problem of asynchronous testing has received attention since the in-
ception of model-based testing [22]. A conceptually pioneering approach [27,26]
considers a so-called queue operator, which adds infinite queues for inputs and
outputs, so as to model the entirety of the possible asynchrony in interaction
between tester and IUT. Modelling these queues explicitly however is challen-
ging because of their infinite size. Indeed, it is left unanswered how the presented
theory could be implemented without the need for restrictions on the model to
be taken into account. Additionally, the queue context may induce that the test
case generation algorithm [27] produces irrelevant test cases. This is because
the queue context is always ready to receive any input action, which includes
inputs which are impossible according to the specification at the current state
(and states reachable by a sequence of output actions of the system), thereby
inspecting executions which are irrelevant for testing conformance.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Model-Based Testing for Asynchronous Systems 3

A conceptually different approach [20] proposes to divide the tester into an
input test process and an output test process, both operating with finite buf-
fer. This approach comes with appropriate implementation relations and test
derivation procedures which however require a fault model for the tester archi-
tecture, and focusses on input-enabled specifications, i.e. systems where in every
state, every input action is enabled, and without output cycles. Under these
assumptions, completeness relative to the fault model can be achieved by a fi-
nite suite. Subsequent work [16] considers a single interaction sequence derived
from a specification to generate asynchronous test cases. By applying the delay
operator [1], outputs of the system are shifted along the sequence to emulate
asynchrony. This enables relaxations of several of the restrictions on the spe-
cification model imposed before. Test case generation is incomplete but driven
by coverage criteria w.r.t. the specification model. The need for repeated delay
operator constructions is costly, and the proposed algorithm is only applied to
offline test generation.

Another approach [28] considers IUTs which are internal-choice IOTS. Internal-
choice IOTS do only have inputs enabled in quiescent states, i.e. in states which
do not possess output transitions. With this assumption in place for both, IUT
and specification, asynchronous testing and synchronous testing are equivalent
and standard test case generation algorithms can be used. If the specification is
not an internal-choice IOTS, the methodology becomes incomplete.

Asynchronous test case generation from test purposes is considered in [7] for
specifications and IUTs obeying certain restrictions. A test purpose describes
a set of interaction sequences which are to be investigated at the IUT. By in-
corporating the asynchronous behaviour directly at the finite test purpose the
approach ensures finiteness of the test suite. A comparison of the complexity of
different asynchronous testing approaches can be found in [14], together with an
overview of several implementation relations for testing through asynchronous
channels [15].

All the approaches discussed above either impose restrictions on the spe-
cification, or sacrifice expressiveness of the generated test suite, or work with
potentially unboundedly growing representations. In this paper we propose a
methodology for model-based testing of asynchronous system which does not
impose restrictions on the specification model, while preserving soundness and
completeness. The method we are going to present is rooted in the theory of the
delay operator, but derives the test cases directly from an IOTS using a single
input queue, and executes them. The approach is effective and computationally
affordable, and can be applied to generate a test suite offline, or to construct a
test case online, i.e. incrementally during test execution. We thereby construct
on-the-fly the asynchronous transition system of the specification, based on its
input queue behaviour only. Our methodology is driven by the practical needs
arising in the context of the EnergyBus specification [6] which aims at estab-
lishing a common basis for the interchange and interoperation of electric devices
in the context of energy management systems (EMS).

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

4 Alexander Graf-Brill and Holger Hermanns

2 Synchronous Input-Output Conformance Testing

The basis for model-based testing is a precise specification of the IUT which
unambiguously describes what an implementation may do and what it may not
do.

Input-output transition systems. A common semantic model to describe the be-
haviour of a system are labeled transition systems (LTS). In the presence of
inputs and outputs, a suitable variation is provided by Input-Output Transition
Systems (IOTS).

Definition 1. An input-output transition system is a 5-tuple 〈Q,L?, L!, T, q0〉
where

- Q is a countable, non-empty set of states;
- L? and L! are disjoint countable sets (L? ∩ L! = ∅) of input labels and
output labels, respectively;

- T ⊆ Q × (L ∪ {τ}) × Q, with τ /∈ L, is the transition relation, where L =
L? ∪ L!;

- q0 is the initial state.

The class of input-output transition systems with inputs in L? and outputs in L!

is denoted by IOT S(L?, L!).

As usual, τ represents an unobservable internal action of the system. We
write q µ−−→ q′ if there is a transition labelled µ from state q to state q′, i.e.,
(q, µ, q′) ∈ T . The composition of transitions q1

µ1·µ2·...·µn−1−−−−−−−−−−→ qn expresses that
the system, when in state q1, may end in state qn, after performing the sequence
of actions µ1 · µ2 · ... · µn−1, i.e. ∃(qi, µi, qi+1) ∈ T, i ≤ n − 1. Due to non-
determinism, it may be the case, that after performing the same sequence, the
system may end in another state (or multiple such states): q1

µ1·µ2·...·µn−1−−−−−−−−−−→ q′n
with qn 6= q′n.

Traces and derived notions. Usually an IOTS can represent the entire behaviour
of a system, including concrete interactions between system and environment.
One such behaviour is represented by a so-called trace, of which we are only
interested in its observable part, obtained by abstracting from internal actions of
the system. Let p = 〈Q,L?, L!, T, q0〉 be an IOTS with q, q′ ∈ Q,L = L?∪L!, a, ai
∈ L, and σ ∈ L∗. We write q ε

=⇒ q′ to express that q = q′ or q τ ·...·τ−−−−→ q′. q a
=⇒ q′

denotes the fact that ∃q1, q2 ∈ Q : q
ε
=⇒ q1

a−→ q2
ε
=⇒ q′. This can be extended for a

sequence of actions q a1·...·an=====⇒ q′ s.t. ∃q0, ..., qn ∈ Q : q = q0
a1=⇒ q1

a2=⇒ ...
an=⇒ qn =

q′. q σ
=⇒ and q σ; are then defined as ∃q′ : q σ

=⇒ q′ and @q′ : q σ
=⇒ q′, respectively.

Furthermore, init(q) denotes the set of available transitions in a state q, i.e.,
{µ ∈ L ∪ {τ} | q µ−→}. The set of traces starting in state q is then defined as
traces(q) =def {σ ∈ L∗ | q

σ
=⇒}. For a given trace σ, the set of reachable states

is given by the definition q afterσ =def {q′ | q
σ
=⇒ q′}. The extension for starting

in a set of states Q′ is Q′ afterσ =def

⋃
{q afterσ | q ∈ Q′}. With der(q) we

denote the set of all reachable states from q, i.e., {q′ | ∃σ ∈ L∗ : q σ
=⇒ q′}.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Model-Based Testing for Asynchronous Systems 5

Definition 2. Let p = 〈Q,L?, L!, T, q0〉 be an IOTS with q, q1, q2 ∈ Q, a ∈ L?,
and σ ∈ L∗.

– q is input-enabled, iff ∀a ∈ L?.q
a
=⇒.

– q is input-progressive, iff @σ ∈ L+
! : q

σ
=⇒ q ∧ @q1, q2 : q

ε
=⇒ q1

τ−→ q2
ε
=⇒ q

– q is fully-specified, iff L? ⊆ init(q) ∨ init(q) ∩ L? = ∅

An IOTS p is input-enabled, or input-progressive, or fully-specified if and only if
all its reachable states are input-enabled, or input-progressive, or fully-specified,
respectively. It is common practice to work with specifications modelled as IOTS
without further restrictions while IUTs are often assumed to be represented as
input-enabled IOTS.

Input-output conformance and quiescence. A specific conformance relation, input-
out conformance (ioco) [24] dominates theoretical as well as practical work on
model-based testing. It relates implementations with specifications with respect
to the possible output behaviour observed after executing traces of the specific-
ation. In ioco, the output behaviour includes a designated output quiescence,
abbreviated with the special label δ. Quiescence represents the situation when
there is no output to observe at all. A state q is said to be quiescent, denoted
by δ(q), iff init(q) ∩ L! = ∅, whereby δ /∈ (L ∪ {τ}). In this case we add the
transition q δ−→ q for technical convenience. The set of possible outputs of a state
q is then defined as out(q) =def {a ∈ L! | q

a−→} ∪ {δ | δ(q)}, and this is lifted to
sets of states P by out(P) =def

⋃
{out(q) | q ∈ P}. Since quiescence is now in-

terpreted as an additional observable output, we extend the definition for traces
to suspension traces.

Definition 3. Let p = 〈Q,L?, L!, T, q0〉 ∈ IOT S(L?, L!). The suspension traces
of p are given by Straces(p) =def{σ ∈ (L ∪ {δ})∗ | q0

σ
=⇒}.

The definition of ioco then looks as follows:

Definition 4. Given a set of input labels L? and a set of output labels L!, the
relation ioco ⊆ IOT S(L?, L!) × IOT S(L?, L!) is defined for a specification s
and an input-enabled implementation i as

i ioco s⇔def ∀σ ∈ Straces(s) : out(iafterσ) ⊆ out(safterσ).

Underspecification. Since ioco is defined for specifications without further re-
strictions and only takes suspension traces of the specification into account, the
behaviour of an implementation after a trace not considered according to the
specification is irrelevant for the relation. Figure 1 displays three IOTS (for
readability we omitted the δ transitions as well as self-loops needed to ensure
input-enabledness). The trace x!b? is not in Straces(s), i.e. it is underspecified
w.r.t. s. So, any implementation of s is allowed to behave as it desires after that
trace, and therefore i ioco s. In contrast, the trace x!a? is in Straces(s) and the
allowed outputs after x!a? are {y!}. Therefore, i′ ioco s does not hold. However,
s1 afterx! = {s2, s3} and a? is not specified in state s2. Thus, one could argue

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

6 Alexander Graf-Brill and Holger Hermanns

that the trace x!a? actually constitutes a variant of underspecification, as well.
This reasoning leads to the definition of uioco [24] which actually excludes such
traces from consideration, and hence i′ uioco s.

s1

s2 s3

s4

s5

x! x!

a?

y!

(a) specification s

i1

i2 i3

i4 i5

i6 i7

x! x!

b? a?

y! y!

(b) implementation i

i′1

i′2 i′3

i′4 i′5

i′6 i′7

x! x!

a? a?

x! y!

(c) implementation i′

Figure 1: Variants of underspecification

Test generation and execution. Based on the definition of ioco, test cases are gen-
erated and executed in interaction with the IUT. A test case t = 〈Qt, L?, L!, Tt, v, t0〉
is an extension of IOTS s.t. 〈Qt, L?, L!, Tt, t0〉 ∈ IOT S(L?, L!). Qt is a set of
states of Q, i.e. Qt ⊆ P(Q) and Tt ⊆ Qt× (L? ∪L! ∪{θ})×Qt, where θ 6= τ 6= δ
and θ /∈ (L? ∪ L!) is a special label synchronising with δ to detect quiescence.
The function v ∈ Qt×V is the verdict label function which assigns to each state
of the test case a verdict in the set V = {none,pass, fail}. A test case is then
generated as follows: The initial state of a test case consists of the τ -closure of
the initial state of the specification, i.e. the set of all states which are reach-
able by a sequence of τ transitions. Then, one of the following three options is
chosen nondeterministically. Either the current state is marked in the verdict
label function as pass and test case generation is stopped; or an input action
which is enabled in one of the current states of the specification is chosen and a
transition for this action is added to the test. The successor state than consists
of all valid successor states for the chosen (weak) input action. In addition, to
be prepared to perform any output action of the IUT which might interrupt the
input, for all outputs in L! a transition is added to all corresponding successor
states of the specification. If the output is not foreseen by the specification, the
successor state is a new state labeled with fail. For all valid successor states the
test case generation algorithm is called recursively. The third option is to wait
for an output of the system. For all outputs in L! and quiescence a transition
is added to all corresponding successor states of the specification. Again, if the
output is not foreseen by the specification, the successor state is a new state
labeled with fail and for all valid successor states the test case generation al-
gorithm is called recursively. States which are neither labeled with pass nor fail
are marked with “none” in the verdict label function.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Model-Based Testing for Asynchronous Systems 7

An execution of a test case is then the parallel composition of the test case
and the IUT. A test run is than any trace of the parallel composition which ends
in a state which is labeled with pass or fail. An IUT then passes a test case if
and only if all possible test runs lead to states labeled with pass. It fails the test
case otherwise. By assuming some kind of fairness, an IUT will reveal sooner or
later all its nondeterministic behaviour when executed with a test case.

3 Asynchronous Input-Output Conformance Testing

The traditional synchronous testing theory is not applicable when testing com-
munication is asynchronous [27]. The implementation relations used for syn-
chronous testing are not testable in an asynchronous context, and test cases
derived from specifications to be used for synchronous testing do reject cor-
rect implementations when tested asynchronously. Therefore, the asynchronous
communication behaviour needs to be directly taken into account within the
conformance relation and the test case generation.

Queue operator. One approach to include the asynchronous communication be-
haviour of a system applies the so-called queue operator [26]. This takes an
IOTS s and yields an IOTS s′ which behaves like s in the context of an in-
put queue and an output queue, both with infinite capacity. The behaviour of
s ∈ IOT S(L?, L!) in a queue context [σ!�s�σ?

] (abbreviated by Q(s)), where
σ! ∈ L∗! and σ? ∈ L∗? represent the input and output queue state as words of
arbitrary length over inputs, respectively outputs. It is derived by applying the
following axioms and inference rules:

A1 [σ!�s�σ?]
a−→ [σ!�s�σ?·a] a ∈ L? A2 [x ·σ!�s�σ?]

x−→ [σ!�s�σ?] x ∈ L!

I1
s
τ−→ s′

[σ!�s�σ?]
τ−→ [σ!�s ′�σ?]

I2
s
a−→ s′

[σ!�s�a·σ?]
τ−→ [σ!�s ′�σ?]

a ∈ L?

I3
s
x−→ s′

[σ!�s�σ?]
τ−→ [σ!·x�s ′�σ?]

x ∈ L!

Obviously, the resulting state space of Q(s) is infinite. Looking at the output
queue, this infinity problem materialises for systems having at least one output
action on a cycle, i.e. ∃σ1, σ2 ∈ L∗, x ∈ L!, q, q1, q2 ∈ der(s) : q

σ1=⇒ q1
x−→ q2

σ2=⇒
q. The state space however remains finite at any finite depth of the testing
process, unless the system contains output loops. In the latter case, the weak
trace construction in the testing theory leads to an immediate explosion, rooted
in an infinite branching. This however can be prevented by putting restrictions
on the specification, namely input-progressiveness. The input queue, in turn, is
always ready to receive an input, thus, growing to unbounded size. In addition,
the input capability of Q(s) is in no sense related to the actual structure of the
underlying system s. Thus, providing input actions which are not specified in s

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

8 Alexander Graf-Brill and Holger Hermanns

at the current state, may lead to the execution of underspecified traces w.r.t. s,
which are being irrelevant for testing conformance. When only considering input-
enabled or fully-specified specifications, this discrepancy is obviously not there.
Therefore, using the queue operator as basis for asynchronous testing seems to
be rather inconvenient.

Delay operator. A conceptually different way of including asynchronous commu-
nication is the delay operator [1]. Instead of being directly applied to an IOTS,
the delay operator works on the traces of a system. For a set of action sequences,
e.g. traces, E ⊆ L∗ and a subset L′ ⊆ L, the operator delay [L′] : 2L

∗ → 2L
∗

gives the smallest superset of E s.t. for σ1, σ2 ∈ L∗, any a ∈ L \L′ and a1 ∈ L′ :

σ1a1aσ2 ∈ delay [L′](E)⇒ σ1aa1σ2 ∈ delay [L′](E).

Given a set of traces E and a set of actions L′, delay [L′](E) calculates a set
of traces where actions in L′ are shifted towards the end of a trace in E while
keeping the relative order of actions in L\L′. For an IOTS p = 〈Q,L?, L!, T, q0〉,
the observable traces in a queue context can then be defined as traces(Q(p)) =
pref (delay [L!](traces(p))), where pref (U) is the prefix closure of a set of traces
U . On the other hand, when a trace σ has been observed, p can have executed
any of the traces in delay [L?](σL

∗
!) ∩ traces(p).

Since the delay operator directly operates on traces of a system, genuine
underspecified traces are excluded. However, due to delayed input actions, it is
still possibly that an execution is steered away from specified traces, which has to
be dealt with in the test case generation algorithm [16]. Again, this problem does
not arise when only considering input-enabled or fully-specified specifications. If
assuming input progressive specifications (as in [16]) the test algorithm can be
made to assign verdicts in quiescent states of an IUT only. But this assumption
is otherwise not needed for generating test cases from given traces, which are in
fact, finite. Nevertheless, the test generation algorithm is only suitable for offline
test case generation due to the need for repeated calculation of delayed traces
and their intersection with traces of the system.

Our approach.

The method we are going to present is a practical approach to deriving test
cases directly from an IOTS, offline or online, while theoretically being (almost)
equivalent to applying the delay operator to the specification traces. Notably, we
neither have to propose any restrictions on the specification, nor do we examine
underspecified traces of the system, nor can our tester become trapped in an
immediate growth of the state space due to infinite branching. At the same
time, the approach is effective and computationally affordable.

Input queue context. The starting point of our approach is the construction
of the input queue context of a system s which represents the asynchronous
communication behaviour of s in the presence of an infinite input queue.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Model-Based Testing for Asynchronous Systems 9

Definition 5. For an IOTS s = 〈Q,L?, L!, T, q0〉, the input queue context is the
smallest IOTS s� = 〈Q�, L?, L!, T�, q0�〉 where Q� ⊆ (Q × L∗?), σ ∈ L∗?, µ ∈
L ∪ {τ} s.t.:

– q0� = (q0, ε) and q0� ∈ Q�
– T� = {((q, σ), τ, (q′, σ)) | q, q′ ∈ Q, q τ−→ q′}
∪ {((q, σ), a, (q, σa)) | q ∈ Q, a ∈ L?}
∪ {((q, aσ), τ, (q′, σ)) | q, q′ ∈ Q, q a−→ q′}
∪ {((q, σ), x, (q′, σ)) | q, q′ ∈ Q, x ∈ L!, q

x−→ q′}
– q ∈ Q� ∧ (q, µ, q′) ∈ T� ⇒ q′ ∈ Q�

The input queue context of a system behaves exactly as the queue context de-
rived by the queue operator, but without applying the rules A2 and I3. Interest-
ingly, despite the fact that for a system s, s� and Q(s) are not isomorphic, the
observable trace behaviour of both resulting systems is actually equivalent.

Proposition 1. Let s ∈ IOT S(L?, L!)

1. traces(Q(s)) = traces(s�)
2. Straces(Q(s)) = Straces(s�)

This follows from the observation already mentioned when introducing the delay
operator: traces(Q(p)) = pref (delay [L!](traces(p))).

Shifting outputs. The core property exploited by our approach (already appear-
ing above) is that the asynchronous behaviour can be modelled by only shifting
one action set, i.e. outputs, w.r.t. the other action set. To establish this shift, it
is actually irrelevant which set of actions is buffered. Notably, this means, that
we could equally well model the same phenomena by an output queue context
instead of an input queue context, but requiring input-enabled specifications.
However, inputs are under full control of the tester while outputs are under the
control of the IUT. So, with an output queue context we would still face the
immediate explosion problem due to infinite branching in the test generation al-
gorithm when dealing with output loops. This is not the case for the input queue
context as defined above. Thus, the input queue context is computable using the
standard test case generation algorithm proposed for synchronous communica-
tion.

Asynchronous transition system. In comparison with the delay operator ap-
proach, we however still have the issue with unnecessarily testing underspecified
traces. In order to remedy this, we define the asynchronous transition system on
top of the input queue context.

Definition 6. Given an IOTS s = 〈Q,L?, L!, T, q0〉 and its input queue context
s� = 〈Q�, L?, L!, T�, q0�〉, the asynchronous transition system (ATS) is the
smallest IOTS �s� = 〈�Q�, L?, L!,� T�,� q0�〉 where �Q� ⊆ P(Q × L∗?),
a ∈ L?, x ∈ L!, σ, σ1, σ2 ∈ L∗, µ ∈ L ∪ {τ, δ} s.t.:

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

10 Alexander Graf-Brill and Holger Hermanns

– �q0� = q0� after ε
– �T� = {(q̂, a, q̂′) | ∃(q, ε) ∈ q̂ : q a−→ ∧ ∀(q′, σ1) ∈ q̂ : (q′, σ1)

a
=⇒ (q′′, σ2) =⇒

(q′′, σ2) ∈ q̂′}
∪ {(q̂, x, q̂′) | ∃q ∈ q̂ : q x−→ ∧ q̂′ = q̂ afterx}
∪ {(q̂, δ, q̂′) | ∃(q, ε) ∈ q̂ : δ(q) ∧ q̂′ = {(q′, ε) | (q′, ε) ∈ q̂ ∧ δ(q′)}}

– q ∈� Q� ∧ (q, µ, q′) ∈� T� ⇒ q′ ∈� Q�

The initial state of the ATS is the τ -closure of the initial state of the under-
lying input queue context. Continuing from here, the ATS is further constructed
by adding transitions for the asynchronous behaviour and by eliminating non-
determinism (putting all successor states together). A state in the ATS can
receive an input action, iff there is one state in the input queue context which
has an empty input queue. Then, the successor state consists of all the successor
states of the input queue context after the corresponding input transition. By
restricting the input functionality in this way, we make sure that we always
follow specified traces of the system, i.e. we are not examining genuine under-
specified traces. The ATS can issue an output action, again, iff there is a state
in the input queue context which enables this output action. All states reach-
able by this output transition form the new successor state, including states
reachable by successive τ transitions inherited from the underlying system or
from the opportunity of the input queue context to process inputs present in
the input queue. The last part of the definition of the above transition relation
deals with our interpretation of quiescence in the asynchronous communication
setting. When quiescence is observed, we do not only assume that the system is
in no state which can produce an output, but we also assume the input queue
to be as processed as possible. Thus, we only can observe quiescence in a state
of an input queue context which is quiescent in the perspective of the under-
lying system and whose input queue is either empty, or the next input action
in the queue is blocking w.r.t. currently enabled input transitions. If the input
queue is not empty, we can conclude that this state configuration represents an
underspecified trace. Since it is quiescent, it can not evolve by further output
and it does not have a suitable input action enabled w.r.t. the specification, thus
it must be an underspecified trace. Therefore, we restrict quiescence further to
only quiescent states with empty input queues.

Passing underspecified behaviour. Regarding unintended examination of under-
specified traces due to the asynchronous communication, there is one situation
left which we did not take care of so far. When receiving an output from the
system, which is not foreseen in any of the current states, this is seen as an
illegal input. However, when we already drifted in an underspecified trace, the
reception of such an output should lead to the verdict “pass”. Such a situation is
identified by inspecting the input queues of the current states. If there is no state
with an empty input queue, we know that there is no trace of the specification
corresponding to the current execution. Note, a valid output in such a situation
will be processed further, since we could still be on a valid trace with pending
inputs not received so far by the IUT. Technically speaking, we observed a trace

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Model-Based Testing for Asynchronous Systems 11

σ1 s.t. delay [L?](σ1) ∩ traces(s) = ∅, but their might be a sequence of output
actions σ2 ∈ L+

! s.t. delay [L?](σ1σ2)∩traces(s) 6= ∅. Taking care of this situation
is done during the test case generation.

Role of ATS. Since the asynchronous transition system directly takes all non-
determinism and weak transitions in the input queue context into account, it
represents an intermediate step to the test graph of our testing approach.

Test generation algorithm. Our test case generation algorithm is provided as
Algorithm 1. Starting with an empty test case, we set the initial state to the
τ -closure of the initial state of the system with empty input queues. Following
the structure of the test case generation algorithm for synchronous communic-
ation, we then nondeterministically choose between ending with verdict pass
(lines 11-14), providing an enabled input to the IUT and recursively construct
the following subtree (lines 15-20), or add transitions for all outputs (including
quiescence) (lines 21-52) and recursively construct the following subtree for valid
outputs (lines 23-28 and 38-42). The provided algorithm is suitable for both, off-
line and online test case generation. For offline test case generation, it is common
to only explore one subtree of valid outputs and stop with the verdict pass for
the other output actions.

Asynchronous input-output conformance. With the test case generation algorithm
in place, what is missing is the definition of the actual conformance relation we
are testing for, which we call asynchronous input-output conformance (asyioco).
First, we need an additional definition.

Definition 7. For a given IOTS s ∈ IOT S(L?, L!) and a suspension trace σ ∈
Straces(s), the set of asynchronous trace executions is defined as the smallest
subset of Straces(s) s.t. for σ1, σ2 ∈ (L? ∪ L!)

∗, any x ∈ L! with x 6= δ and
a ∈ L?:

σ ∈ asyexecs(σ)
σ1axσ2 ∈ asyexecs(σ) =⇒ (σ1xaσ2 ∈ Straces(s) =⇒ σ1xaσ2 ∈ asyexecs(σ))

Here we directly encode the delay operator into the definition of asynchron-
ous trace executions to point out, that input actions can not be shifted along
quiescence.

Definition 8. Given a set of input labels L? and a set of output labels L!, the
relation asyioco ⊆ IOT S(L?, L!)× IOT S(L?, L!) is defined for a specification
s and an input-enabled implementation i as:

iasyioco s⇔def ∀σ ∈ Straces(s). out(iafter asyexecs(σ)) ⊆ out(safter asyexecs(σ))

In words, this definition says that an IUT conforms to a specification, iff for each
observable behaviour of the specification, the possible outputs of the IUT after
asynchronously executing this trace w.r.t. specified traces are foreseen by the
specification after all possible asynchronous executions.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

12 Alexander Graf-Brill and Holger Hermanns

Algorithm 1: Test case generation algorithm for asynchronous commu-
nicating systems through queues
1 Function TCG(s)

Input : IOTS s = 〈Q,L?, L!, T, q0〉
Output: Test case t = 〈Qt, L!, L?, Tt, v , t0〉

2 t0 ← (q0, ε)after ε
3 Qt ← {t0}
4 Tt, v ← ∅
5 〈Qt, L!, L?, Tt, v , t

′〉 ← reTCG(s, 〈Qt, L!, L?, Tt, v , t0〉)
6 return reTCG(s, 〈Qt, L!, L?, Tt, v , t0〉)
7 end
8
9 Function reTCG(s, t)

Input : IOTS s = 〈Q,L?, L!, T, q0〉,
Test case t = 〈Qt, L!, L?, Tt, v , t0〉

Output: Test case t′ = 〈Qt, L!, L?, Tt, v , t0〉
10 choice {pass, input , output} do
11 case pass do
12 v ← v ∪ {(t0,pass)}
13 return 〈Qt, L!, L?, Tt, v , t0〉
14 end
15 case input ∧ ∃a ∈ L?, (q, ε) ∈ t0. q

a−→ do
16 t′ ← t0 after a
17 Qt ← Qt ∪ {t′}
18 Tt ← Tt ∪ {(t0, a, t′)}
19 return reTCG(s, 〈Qt, L!, L?, Tt, v , t

′〉)
20 end
21 otherwise do
22 v ← v ∪ {(t0, none)}
23 for x ∈ L! : ∃(q, σ) ∈ t0 : q

x−→ do
24 t′ ← t0 afterx
25 Qt ← Qt ∪ {t′}
26 Tt ← Tt ∪ {(t0, x, t′)}
27 〈Qt, L!, L?, Tt, v , t

′〉 ← reTCG(s, 〈Qt, L!, L?, Tt, v , t
′〉)

28 end
29 for x ∈ L! : @(q, σ) ∈ t0 : q

x−→ do
30 Qt ← Qt ∪ {t′}
31 Tt ← Tt ∪ {(t0, x, t′)}
32 if ∃(q, ε) ∈ t0 then
33 v ← v ∪ {(t′, fail)}
34 else
35 v ← v ∪ {(t′,pass)}
36 end
37 end
38 if ∃(q, ε) ∈ t0 : δ(q) then
39 t′ ← {(q, ε) ∈ t0. δ(q)}
40 Qt ← Qt ∪ {t′}
41 Tt ← Tt ∪ {(t0, δ, t′)}
42 〈Qt, L!, L?, Tt, v , t

′〉 ← reTCG(s, 〈Qt, L!, L?, Tt, v , t
′〉)

43 else if ∃(q, ε) ∈ t0 ∧ ∀(q′, ε) ∈ t0 : ¬δ(q′) then
44 Qt ← Qt ∪ {t′}
45 Tt ← Tt ∪ {(t0, δ, t′)}
46 v ← v ∪ {(t′, fail)}
47 else
48 Qt ← Qt ∪ {t′}
49 Tt ← Tt ∪ {(t0, δ, t′)}
50 v ← v ∪ {(t′,pass)}
51 end
52 end
53 end
54 return 〈Qt, L!, L?, Tt, v , t0〉
55 end

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Model-Based Testing for Asynchronous Systems 13

Disconnected

Connected Compatibility
Check

Operating

Limiting

configure? reset?

reset?

resetPartial?

ready! setLimits?

operate?

operate?

Figure 2: EnergyBus Energy Management System FSA (simplified)

Proposition 2. Let specification s and implementation i ∈ IOT S(L?, L!). The
following holds for input-enabled i and for s being

1. input-enabled: iasyioco s⇔ i ≤qcst s⇔ Q(i) iocoQ(s)
2. fully-specified: iasyioco s⇐ i ≤qcst s⇔ Q(i) iocoQ(s)
3. partially-specified: iasyioco s⇐ Q(i) iocoQ(s) ∧ i ≤qcst s⇐ Q(i) iocoQ(s)

The definition of asyioco is similar to queue-context suspension trace in-
clusion(≤qcst) [16] if restricting to fully or partially specified IOTS. As already
discussed, these settings either exclude the need to handle underspecification of
the specification or they exclude underspecification in its entirety. The latter
can thus be considered as an asynchronous version of uioco [24]. In contrast,
asyioco follows the ioco philosophy and only exclude traces which in any case
are underspecified. Therefore, we think asyioco is a more natural extension of
ioco to asynchronous communication.

We claim that the test case generation algorithm we presented is sound and
complete w.r.t. asyioco. The latter feature is of only a theoretical nature. since
completeness can only be achieved by generating an infinite amount of test cases,
which can in practice not be executed in finite time.

4 EnergyBus Case Study

The EnergyBus specification [6] aims at establishing a common basis for the
interchange and interoperation of electric devices in the context of energy man-
agement systems (EMS). The central and innovative role of EnergyBus is the
transmission and management of electrical power: the purpose of its protocol
suite is not just to transmit data, but in particular to manage the safe access
to electricity and its distribution inside an EnergyBus network. Conceptually,
EnergyBus extends the CANopen architecture in terms of CANopen applic-
ation profiles endorsed by the CiA association [6]. Among these, the “Pedelec
Profile 1” (PP1) is very elaborate, targeting a predominant business context,
which is also at the centre of ongoing international standardisation efforts as
part of IEC/IS/TC69/JPT61851-3.

Formal EnergyBus Specification. Since EnergyBus is defined as a layer on top
of CANopen, EnergyBus documentation [6] as well as the CANopen docu-
mentation [4] have to be taken into account for formal modelling. Both specific-
ations are provided as informal combinations of text, protocol flow charts, data

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

14 Alexander Graf-Brill and Holger Hermanns

tables, and finite state automata (FSA). The definitions include several data
structures and various services for e.g. initial configuration, data exchange, and
basic communication capability control. Figure 2 presents a simplified view on
a core EnergyBus control functionality. Our formal model of EnergyBus uses
the Modest modelling language.

Aside from the basic control functionality, the EnergyBus protocol is all
about data. To overcome the state space explosion problem, we applied sev-
eral abstraction techniques to appropriate areas of our model, transferring the
complexity from the Modest model to the adapter component.

Results. Already during the model construction phase, our work [11] uncovered
several issues concerning the (at that time current version of the) Energy-
Bus specification documents. On the one hand there were gaps in the specific-
ation, preventing some parts of the services to be modelled to a reasonable
extent; on the other hand there were ambiguities in some parts of the specific-
ation, possibly inducing non-interoperability. These have been reported so as
to be corrected in standardisation. The actual test runs then revealed two dif-
ferent types of further errors. The first type were traditional implementation
bugs of a non-severe nature. The second type of observed errors were intric-
ately related to the hard- and software hierarchy of the test and IUT architec-
ture, i.e. the CAN bus system. They can be viewed as spurious fail verdicts
rooted in the fact that the different communication layers made the traditional
model-based testing assumption of synchronous communication unsound. One
of these spurious fail verdicts can be illustrated by means of Figure 2. An
already configured device can transit from state Connected to state Compat-
ibility Check by announcing being ready, or it can be ordered to switch back
to state Disconnected via a reset. One test execution trace we observed was
configure?.reset?.ready !. In the synchronous testing approach this should end in
a fail verdict, because after performing the prefix configure?.reset? the set of
potential states where the IUT might be in is {Disconnected}, and ready! is not
part of the out set of this state. However, the behaviour obviously represents
the case where the device already switched to the state Compatibility Check,
but the tester issued the reset? command before the ready! output arrived. In
our asynchronous approach, the above prefix we would instead lead to the set
{(Disconnected , ε), (Connected , reset?), (Disconnected , configured?.reset?)}. And
since ready! is in the out set of Connected, this turns ready! into a valid output.
We can thus conclude the test with a pass verdict, or, more importantly, we can
continue testing from the set {(Disconnected , ε), (CompatibilityCheck , reset?)}.

The above asynchronicity phenomena indeed triggered the development and
implementation of the asynchronous model-based testing method discussed here.
New test runs with this improved methodology confirmed the already uncovered
implementation bugs that have been reported and fixed. Since the spurious fail
runs no longer appear, we have invested in a better analysis of the remaining
errors. A newly identified type of error was rooted in two distinct interpreta-
tions of the EnergyBus basic device initialisation and the core EnergyBus
device control leading to incompatible implementations. To pinpoint this, we

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Model-Based Testing for Asynchronous Systems 15

developed two different models of the specification and continued testing with
the respective version. In addition, we observed that some CAN implementa-
tions take the liberty to reorder messages within responses, so that consecutive
messages passed by an IUT’s application to its local CAN controller may be sent
out in reverse order, which made manual inspection still be needed to definitely
rule out spurious fail verdicts.

Asynchronous Testing with Motest. The presented approach is implemen-
ted in our model-based testing tool Motest, which is part of the Modest
Toolset [13]. The tool platform is based on the Modest modelling language [12]
and encompasses several tools for formal modelling, simulation and verification
of systems. The Modest Toolset is available at www.modestchecker.net.

Due to our tight interaction with the EnergyBus consortium we had the
opportunity to apply motest to a variety of prototypes and retail devices im-
plementing EnergyBus as soon as those became available. Lately we went a
step further, by making motest together with the specification models avail-
able free-of-charge to the entirety of the EnergyBus e.V. association, so as to
enable its direct use by association members as part of their in-house testing.
The feedback collected is very encouraging.

5 Conclusion

This paper has discussed a novel, practical approach to model-based testing
for asynchronous communicating systems. Test cases are generated directly on
the model of the specification in a way that resembles the theory of the delay
operator. We presented a pseudo-code algorithm together with the definition of
asyioco, for which our algorithm produces sound and theoretically complete test
suites. Our algorithm is implemented in the Motest tool as part of the Modest
Toolset. As we discussed, this tool is in use for model-based conformance
testing of the EnergyBus standard over CAN.

Acknowledgments. This work is supported by the ERC Advanced Grant powver
(695614) and the Sino-German project CAP (GZ1023).

References

1. S. Balemi. Control of Discrete Event Systems: Theory and Application. PhD thesis,
Swiss Federal Inst. of Technology, Zurich, Switzerland, 1992.

2. G. Bernot, M.-C. Gaudel, and B. Marre. Software testing based on formal specific-
ations: a theory and a tool. Software Engineering Journal, 6(6):387–405, 1991.

3. M. Bijl, A. Rensink, and J. Tretmans. Action Refinement in Conformance Test-
ing. In Testing of Communicating Systems, volume 3502 of LNCS, pages 81–96.
Springer, 2005.

4. CAN in Automation Int. Users and Manufacturers Group e.V. CiA 301 CANopen
Application Layer and Comm. Profile, v. 4.2.0, 2011.

http://www.modestchecker.net/

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

M
IC

S
-A

V
O

C
S

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

16 Alexander Graf-Brill and Holger Hermanns

5. CAN in Automation Int. Users and Manufacturers Group e.V. CiA 305 Layer
setting services (LSS) and protocols, v. 3.0.0, 2013.

6. CAN in Automation Int. Users and Manufacturers Group e.V. and EnergyBus
e.V. CiA 454 Draft Standard Proposal Application profile for energy management
systems – doc. series 1-14, v. 2.0.0, 2014.

7. A. da Silva Simão and A. Petrenko. From test purposes to asynchronous test cases.
In ICST 2010 Workshops Proceedings, pages 1–10. IEEE Computer Society, 2010.

8. R. De Nicola. Extensional equivalences for transition systems. Acta Inf., 24(2):211–
237, 1987.

9. R. De Nicola and M. Hennessy. Testing equivalences for processes. Theor. Comput.
Sci., 34:83–133, 1984.

10. M.-C. Gaudel. Testing can be formal, too. In TAPSOFT 1995, LNCS 915:82–96.
Springer, 1995.

11. A. Graf-Brill, H. Hermanns, and H. Garavel. A model-based certification frame-
work for the EnergyBus standard. In FORTE 2014, LNCS 8461:84–99. Springer,
2014.

12. E. M. Hahn, A. Hartmanns, H. Hermanns, and J.-P. Katoen. A compositional
modelling and analysis framework for stochastic hybrid systems. Formal Methods
in System Design, 43(2):191–232, 2013.

13. A. Hartmanns and H. Hermanns. The Modest Toolset: An integrated environ-
ment for quantitative modelling and verification. In TACAS, LNCS 8413:593–598.
Springer, 2014.

14. R. M. Hierons. The complexity of asynchronous model based testing. Theor.
Comput. Sci., 451:70–82, 2012.

15. R. M. Hierons. Implementation relations for testing through asynchronous chan-
nels. Comput. J., 56(11):1305–1319, 2013.

16. J. Huo and A. Petrenko. On testing partially specified IOTS through lossless
queues. In TestCom 2004, LNCS 2978:76–94. Springer, 2004.

17. C. Jard and T. Jéron. TGV: theory, principles and algorithms. STTT, 7(4):297–
315, 2005.

18. R. Langerak. A testing theory for LOTOS using deadlock detection. In PSTV
1989, 87–98. North-Holland, 1989.

19. A. Petrenko. Fault model-driven test derivation from finite state models: Annot-
ated bibliography. In MOVEP 2000, LNCS 2067:196–205. Springer, 2000.

20. A. Petrenko, N. Yevtushenko. Queued testing of transition systems with inputs
and outputs. In Proc. of FATES 2002, 79–93., 2002.

21. I. Phillips. Refusal testing. Theor. Comput. Sci., 50:241–284, 1987.
22. J. Tretmans. A formal approach to conformance testing. PhD thesis, University of

Twente, Enschede, Netherlands, 1992.
23. J. Tretmans. Testing concurrent systems: A formal approach. In CONCUR 1999,

LNCS:1664:46–65. Springer, 1999.
24. J. Tretmans. Model-based Testing with Labelled Transition Systems. In Formal

Methods and Testing, LNCS:4949:1–38. Springer-Verlag, 2008.
25. J. Tretmans and E. Brinksma. TorX: Automated Model Based Testing – Côte de

Resyste, 2003.
26. J. Tretmans and L. Verhaard. A queue model relating synchronous and asynchron-

ous communication. In PSTV 1992, 131–145. North-Holland, 1992.
27. L. Verhaard, J. Tretmans, P. Kars, and E. Brinksma. On asynchronous testing. In

IWPTS 1992, 55–66. North-Holland, 1992.
28. M. Weiglhofer and F. Wotawa. Asynchronous input-output conformance testing.

In COMPSAC 2009, 154–159. IEEE Computer Society, 2009.

	Model-Based Testing for Asynchronous Systems

