
POWER TO THE PEOPLE
VERIFIED

This report contains an author-generated version of a publication in WSC 2017.

Please cite this publication as follows:

Arnd Hartmanns, Sean Sedwards, Pedro R. D’Argenio.
Efficient Simulation-Based Verification of Probabilistic Timed Automata.
2017 Winter Simulation Conference, WSC 2017, Las Vegas, NV, USA, December 3-6, 2017.
IEEE 2017, ISBN 978-1-5386-3428-8. 1419–1430.

POWVER
TechnicalReport2017-11

Title: Efficient Simulation-Based Verification of Probabilistic Timed
Automata

Authors: Arnd Hartmanns, Sean Sedwards, Pedro R. D’Argenio

Report Number: 2017-11

ERC Project: Power to the People. Verified.

ERC Project ID: 695614

Funded Under: H2020-EU.1.1. – EXCELLENT SCIENCE

Host Institution: Universität des Saarlandes, Dependable Systems and Software
Saarland Informatics Campus

Published In: WSC 2017

http://www.powver.org/publications/TechRepRep/ERC-POWVER-TechRep-2017-11.pdf
http://www.powver.org/
http://cordis.europa.eu/project/rcn/203431_en.html
http://cordis.europa.eu/programme/rcn/664099_en.html
http://www.uni-saarland.de/nc/startseite.html
http://depend.cs.uni-saarland.de/
http://sic.saarland/
http://dx.doi.org/10.1109/WSC.2017.8247885

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
W

S
C

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

EFFICIENT SIMULATION-BASED VERIFICATION OF PROBABILISTIC TIMED AUTOMATA

Arnd Hartmanns

University of Twente
Drienerlolaan 5

7522 NB Enschede
NETHERLANDS

Sean Sedwards

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo 101-8430
JAPAN

Pedro R. D’Argenio

Universidad Nacional de Córdoba
Avenida Medina Allende s/n

X5000HUA Córdoba
ARGENTINA

ABSTRACT

Probabilistic timed automata are a formal model for real-time systems with discrete probabilistic and
nondeterministic choices. To overcome the state space explosion problem of exhaustive verification, a
symbolic simulation-based approach that soundly treats nondeterminism to approximate maximum and
minimum reachability probabilities has recently become available. Its use of difference-bound matrices
to handle continuous real time however leads to poor performance: most operations are cubic or even
exponential in the number of clock variables. In this paper, we propose a novel region-based approach
and data structure that reduce the complexity of all operations to being linear. It relies on a particular
mapping between symbolic regions and concrete representative valuations. Using an implementation
within the MODEST TOOLSET, we show that the new approach is not only easier to implement, but indeed
significantly outperforms all current alternatives on standard benchmark models.

1 INTRODUCTION

Probabilistic timed automata (PTA, Kwiatkowska et al. 2002) are a formal model for real-time systems
with nondeterministic and discrete-probabilistic choices and delays. Their most prominent application is in
the study of distributed algorithms such as network protocols, where real-time behavior (e.g. transmission
delays) and requirements (e.g. on response times) meet uncertain operating environments (e.g. sporadic
message loss) and randomized algorithms (e.g. exponential backoff). PTA also serve as the semantic
foundation for domain-specific languages (van den Berg et al. 2015, Hartmanns, Hermanns, and Bungert
2016) and for the analysis of more expressive formalisms (e.g. Hahn, Hartmanns, and Hermanns 2014).

Nondeterminism is a crucial feature of PTA. It enables abstraction, concurrency, and the representation
of absence of knowledge. For example, in a PTA model of wireless communication, each station may
nondeterministically choose the exact time when it starts to send. In this way, the model remains abstract
w.r.t. any particular ordering and timing of communication. We would then like to answer questions such
as “what is the minimum probability to transmit a complete file within 12s” or “what is the maximum
expected time to success”. In both cases, we implicitly ask for an optimal scheduler to concretely resolve all
nondeterministic choices so as to minimize or maximize the quantity of interest. In our example, this could
mean choosing send times that cause many, few, or just the right combination of collisions on the shared
channel. PTA model checking (Norman, Parker, and Sproston 2013) is a formal verification technique to
precisely compute measures such as the above. It is limited by the state space explosion problem: the
model’s space of reachable configurations, exponential in the number of model variables and their domains,
must be explored and stored in memory for the quantities of interest to be computed via e.g. value iteration.

As statistical model checking (SMC, Younes and Simmons 2002, Hérault et al. 2004), the use of Monte
Carlo simulation to analyze formal models has become popular because it avoids state space explosion: in
a simulation run, only the current and next states are stored, so memory usage is constant. However, SMC
is limited to fully stochastic models like Markov chains or semi-Markov processes since nondeterminism
is incompatible with simulation. It is possible when a concrete scheduler to decide all nondeterministic

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
W

S
C

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Hartmanns, Sedwards, and D’Argenio

choices is assumed, but doing so naively leads to non-optimal results. In the first query above, for some
scheduler, the resulting estimate would lie somewhere between the min. and max. probabilities. This implicit
use of a hidden scheduler is implemented for PTA in UPPAAL SMC (David et al. 2011), and its results
indeed fall unpredictably close to or far from the optima on standard examples (D’Argenio et al. 2016).

Previous work. Performing sound SMC for nondeterministic models is a hard problem. For Markov
decision processes, Henriques et al. (2012) first proposed the use of machine learning to incrementally
improve a partial scheduler, although their approach later turned out to be unsound. Brázdil et al. (2014)
proposed a sound alternative. Both suffer from memory usage linear in the number of explored states as
all scheduler decisions must be stored explicitly. The same problem affects UPPAAL STRATEGO (David
et al. 2015), which explicitly synthesizes a good scheduler before using it for a standard SMC analysis.
Classic memory-efficient sampling approaches such as the one of Kearns, Mansour, and Ng (2002) address
discounted models only. We recently presented the first approach to perform SMC for PTA (D’Argenio
et al. 2016) that (1) soundly deals with nondeterminism by statistically approximating optimal schedulers
while also (2) keeping memory usage constant via a particular use of pseudo-random number generators
and hash functions (Legay et al. 2014). It is a symbolic simulation approach using zones to compactly
represent convex sets of clock valuations and perform large delays in a single step. Yet the complexity of
most zone operations is in O(n3), where n is the number of clock variables, and the currently best method
to select a region uniformly at random is exponential in n. Performance thus scales unsatisfactorily.

Our contribution. With this paper, we make sound SMC for PTA practical: we present a new
algorithm to simulate PTA and approximate optimal schedulers where all operations are in O(n). It uses
regions instead of zones. Its efficiency is due to a novel data structure for regions and a particular mapping
between regions and representative clock valuations that we introduce in this paper. In contrast to a naive
region-based approach, the latter crucially allows us to still perform large delays in a single step. Regions
have so far only been considered as a theoretical tool to prove decidability of verification problems on
(probabilistic) timed automata via the region graph construction: in practice, the region graph is prohibitively
large for any exhaustive approach. However, this does not affect simulation. Consequently, and to the best
of our knowledge, this paper is the first to investigate efficient data structures and operations for regions,
motivated by the simulation perspective. We describe the implementation of our new algorithm, publicly
available as part of the MODEST TOOLSET (Hartmanns and Hermanns 2014), and evaluate its performance
on a number of case studies from the literature. We see that the new approach consistently outperforms the
zone-based method: it is already faster for single-clock PTA (where theoretical complexity is the same),
and provides increasing gains as the number of clocks grows. Not least, it is also far simpler to implement.

2 PRELIMINARIES

N is {0,1, . . .}, the set of natural numbers. R+ is (0,∞), the set of positive real numbers; R+
0 is [0,∞). Q+

0
is the set of nonnegative rational numbers. Z32 is the set of 32-bit signed integers. P(S) is the powerset
of S. If S is a continuous subset of R, I (S) is the set of intervals over S. lbi and ubi denote the lower resp.
upper bounds of i ∈I (S). The concatenation of two objects interpreted as bitstrings is denoted by a.b.
Definition 1 A (discrete) probability distribution over a set Ω is a function µ ∈ Ω → [0,1] such that
support(µ) def

= {ω ∈ Ω | µ(ω) > 0} is countable and ∑ω∈support(µ) µ(ω) = 1. Dist(Ω) is the set of all
probability distributions over Ω . D(ω) is the Dirac distribution for ω , defined by D(ω)(ω) = 1.
Definition 2 A uniform pseudo-random number generator (PRNG) is a an object U that, once initialized
with a seed i ∈N (denoted U := PRNG(i)), can be iterated (denoted U ()) to produce a new value that is
pseudo-uniformly distributed in [0,1) and pseudo-statistically independent of previous iterates. We only
consider deterministic PRNG where the sequence of iterates is always the same for a given seed.

For a probability distribution µ , let U (µ) denote the pseudo-random selection of a value from support(µ)
according to a value sampled from U and the probabilities in µ . In what follows, when we write “random”
w.r.t. a choice made by a PRNG we implicitly mean “pseudo-random” unless qualified otherwise.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
W

S
C

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Hartmanns, Sedwards, and D’Argenio

l0
x≤2

Me:

l1
y≤1 l2

l3

x>0

true

0.9, {x}

0.1,{y}

0.8

0.2
x−y>1

Figure 1: Example PTA Me.
0

1

2

3

1 2 3

y

x

Figure 2: Regions of Me.
0

1

2

1 2 3

y

x

Figure 3: A symbolic trace through Me.

2.1 Probabilistic Timed Automata

Probabilistic timed automata deal with time through clocks: variables with domain R+
0 that advance

synchronously with rate 1 over time. Given a set of clocks C , the valuation 0∈ Val def
=C →R+

0 assigns zero
to every clock c ∈ C . For v ∈ Val and t ∈R+

0 , we denote by v+ t the valuation where all clocks have been
incremented by t, i.e. ∀c∈C : (v+t)(c) = v(c)+t, and by v[X] the one where all clocks in X ⊆C have been
reset to zero. Clock constraints are expressions of the form CC ::= true | false |CC ∧CC | c∼ n | c1−c2 ∼ n
where ∼ ∈ {>,≥,<,≤}, c,c1,c2 ∈ C and n ∈ N. The form c1− c2 ∼ n is called a diagonal, and a clock
constraint without diagonals is diagonal-free. If all comparison operators used in a clock constraint are in
{≥,≤}, it is closed. [[e]] for e ∈ CC is the set of valuations v ∈ Val such that e evaluated in v is true.
Definition 3 A probabilistic timed automaton (PTA) is a 6-tuple M = 〈Loc,C ,E, linit, tpc〉 where Loc is a
countable set of locations, C is a finite set of clocks, E ∈ Loc→P(CC ×Dist(T)) is the edge function with
E(l) finite for all l ∈ Loc and targets T def

=P(C)×Loc, linit ∈ Loc is the initial location, and tpc∈ Loc→CC
maps each location to a time progress condition.

A triple 〈l,g,µ〉 s.t. 〈g,µ〉 ∈ E(l) is an edge, also written as l g−→ µ . It consists of the guard g and the
probability distribution µ ∈ T over sets of clocks to reset and target locations. Intuitively, the semantics of
a PTA is as follows: When in location l, time can pass while tpc(l) is satisfied. Edge l g−→ µ can be taken
if g is true at the current point in time. Then a target 〈X , l′〉 is chosen according to µ , the clocks in X are
reset, and we move to the target location l′. PTA are timed Markov decision processes (MDP): an MDP
is a PTA with C =∅ where all time progress conditions are false and all guards are true.
Example 1 We show an example PTA Me in Figure 1. It has locations { l0, l1, l2, l3 } and clocks {x,y}.
The time progress condition is x≤ 2 in the initial location l0, and y≤ 1 in l1. We omit true time progress
conditions. There is one edge out of l0 with guard x > 0 into distribution µ1: back to l0 with probability 0.9,
resetting x, and to l1 with probability 0.1, resetting y. There are two edges out of l1. The one with diagonal
guard x− y > 1 goes to l3 with probability 1. We omit empty clock reset sets. In l0 and l1, the time to
delay before taking an edge is nondeterministic; in l1 additionally the choice of edge is nondeterministic.

Using PTA to directly build models of complex systems is cumbersome. Instead, higher-level formalisms
such as MODEST (Bohnenkamp et al. 2006) are used. Aside from a parallel composition operator, they
add to PTA variables over finite domains. This allows to compactly describe very large PTA.

2.2 Semantics and Reachability Probabilities

Let us fix a PTA M as in Definition 3. A state of M is a pair 〈l,v〉 ∈ S def
= Loc×Val of a location and a

valuation for the clocks. To define the valid behaviors of M, we formalize the choices available from a
state 〈l,v〉: either take an edge whose guard is true in v, or delay for t ∈R+ time units if allowed by tpc(l):
Definition 4 Let Enabled(〈l,v〉) def

= {µ | l g−→ µ ∧v ∈ [[g]]} be the set of enabled target distributions in state
〈l,v〉. Define the allowed delays as Delay(〈l,v〉) def

= { t ∈R+ | ∀ t ′ ∈ [0, t] : v+ t ′ ∈ [[tpc(l)]]}. A (memoryless
deterministic) scheduler is a function S s.t. S(〈l,v〉) ∈ Delay(〈l,v〉)]Enabled(〈l,v〉) for all states 〈l,v〉.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
W

S
C

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Hartmanns, Sedwards, and D’Argenio

A scheduler resolves all nondeterminism over edges and delays. If it chooses an edge, the set of clocks
to reset and the target location are chosen probabilistically according to µ . A valid behavior is a path:
Definition 5 A path is an infinite alternating sequence 〈l0,v0〉a0 〈l1,v1〉a1 . . . of states 〈li,vi〉 ∈ S with
〈l0,v0〉= 〈linit,0〉 and delays or target distributions ai ∈R+]Dist(T) if there exists a scheduler S such that
∀ i∈N : S(〈li,vi〉) = ai and either ai = t ∈R+ and 〈li+1,vi+1〉= 〈li,vi+t〉 (a delay step), or ai = µ ∈Dist(T),
〈X , l′〉 ∈ support(µ), and 〈li+1,vi+1〉= 〈l′,vi[X]〉 (an edge is taken).

Using the usual cylinder set construction (Kwiatkowska et al. 2002), every scheduler S defines a
probability measure PS on the set of all paths. Let δ (π) be the sum of all ai ∈R+ on path π . As is standard,
we restrict to time-divergent schedulers, i.e. we only considerSwherePS({π ∈Paths(M) | δ (π) =∞}) = 1.
Example 2 Let us write valuations v as tuples 〈v(x),v(y)〉. Then one concrete path in Me that reaches location
l3 is 〈l0,〈0,0〉〉0.8〈l0,〈0.8,0.8〉〉µ1 〈l0,〈0,0.8〉〉1.1〈l0,〈1.1,1.9〉〉µ1 〈l1,〈1.1,0〉〉D(〈∅, l3〉)〈l3,〈1.1,0〉〉 . . .

We want to answer queries of the form “what is the maximum/minimum probability of eventually/within
time t reaching a location l ∈ L when c ∈ CC holds”. Time-bounded queries can be turned into unbounded
ones by adding a new clock ct to M that is never reset, and using ct ≤ t ∧ c in place of c. An objective
〈L,c〉 characterizes the measurable set Π of paths that include a state 〈l,v〉 such that l ∈ L∧ v ∈ [[c]]. We
are thus interested in the extremal reachability probabilities supSPS(Π) (the maximum probability) and
infSPS(Π) (the minimum probability) and refer to them by Pmax(L∧ c) and Pmin(L∧ c), respectively,
omitting set notation when L is a singleton for readability. Schedulers that realize the sup (inf) exist, and
we call them optimal or maximizing (minimizing) schedulers. We can also compute the probabilities of
linear-time safety path properties by running M in parallel with a deterministic timed automaton observer
and using its final states for L. We abstractly treat such observers as path properties φ .
Example 3 In Me, the minimum probability to eventually reach l3 is Pmin(l3) = 0.2. The maximum is
Pmax(l3) = 1; it is only achieved by always waiting in l0 until x is greater than 1 before taking the edge.

2.3 Symbolic PTA: Regions and Zones

The semantics of a PTA is uncountable: states contain real-valued clock valuations, and paths contain
real-valued delay steps. To prove the decidability of PTA verification, i.e. of computing reachability
probabilities, Kwiatkowska et al. (2002) have shown that it suffices to consider the finite region graph
of a PTA, a concept originally introduced by Alur and Dill (1994) for timed automata. The region graph
is too large to be useful in practice; effective timed automata verification tools instead use zones. Both
constructions exploit the restriction that clocks can only be reset to zero and compared to integers in PTA:
Definition 6 Let kc ∈ N be the maximum constant appearing in any comparison involving clock c in a
given PTA M as in Definition 3. Then a zone is a non-empty set of valuations that can be described by
a clock constraint in which all diagonals have the form c1− c2 ∼ nc1c2 for nc1c2 ∈ {0, . . . ,max{kc1 ,kc2 }}
and all other comparisons have the form c∼ nc for nc ∈ {0, . . . ,kc }.
Definition 7 A region is a minimal zone. The successor of a region r is the unique region r+ such that
∀v ∈ r : v+min{ t ∈ R+ | v+ t /∈ r} ∈ r+, i.e. the first other region encountered when delaying from any
valuation in r. For X ⊆ C , r[X] is the unique region obtained from region r by resetting all clocks in X .
Example 4 In Me, we have kx = 2 and ky = 1. The regions of Me are visualized in Figure 2: Every gray
point, line segment and area is a region. With three clocks, the bounded regions would be points, line
segments, triangles and tetrahedrons, and so on for higher dimensions. To find a region’s successor, follow
a 45-degree line from any point within up to the next region. In Figure 3, we show a symbolic trace through
the regions of Me that includes the behavior of the path shown in Example 2 (omitting the locations). Solid
arrows are delay steps to the successor region and dotted arrows correspond to taking an edge.

The standard data structure to represent zones in a verification tool are difference-bound matrices (DBMs,
see e.g. Bengtsson and Yi 2003). For a PTA with C = {c1, . . . ,cl }, a DBM is a (|C |+ 1)× (|C |+ 1)
matrix that stores the strict or inclusive upper bound on ci− c j at position 〈i, j〉, where c0 represents the

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
W

S
C

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Hartmanns, Sedwards, and D’Argenio

Input: MDP M = 〈Loc,∅,E, linit, false〉, path property φ , scheduler identifier σ ∈ Z32
Output: Sampled trace ω

1 l := linit, ω := 〈linit,∅〉
2 while φ(ω) = undecided∧E(〈l,∅〉) 6=∅ do // run until property decided or deadlock
3 Und := PRNG(H (σ .l)) // seed Und with hash of σ and l
4 〈g,µ〉 := dUnd() · |E(〈l,∅〉)|e-th element of E(〈l,∅〉) // use Und to select an edge
5 〈l′,∅〉 := Upr(µ) // use Upr to select a target according to µ

6 l := l′, ω := ω.〈l′,∅〉 // update current location and append to trace

Algorithm 1: Lightweight simulation for an MDP and a scheduler identifier.

constant 0. Most operations on DBMs, such as computing the intersection of two zones or resetting a set
of clocks, require the solution of an all-pairs-shortest-path problem on a graph represented by the matrix
and thus take time in O(|C |3), although some can be optimized to O(|C |2) (Bengtsson and Yi 2003). To
select a single region uniformly at random from within a zone, the best algorithm we know uses rejection
sampling and takes time exponential in n (D’Argenio et al. 2016).

3 LIGHTWEIGHT APPROXIMATION OF OPTIMAL SCHEDULERS

Simple Monte Carlo simulation is not sufficient to compute reachability probabilities for a nondeterministic
model: resolving nondeterminism in a randomized way leads to estimates that only lie somewhere between
the desired extremal values. In addition to computing probabilities, we also need to find (near-)optimal
schedulers. One approach is to use simulation-based machine learning algorithms following the ideas of
Brázdil et al. (2014) to incrementally improve a candidate optimal scheduler. However, these methods
need to store the scheduler’s decisions for all (visited) states. This may lead to excessive memory usage.

3.1 The Lightweight Approach for MDP

Legay et al. (2014) introduced a lightweight scheduler sampling approach for MDP that identifies a scheduler
by a single integer (typically of 32 bits, providing more than sufficient schedulers in practice). This allows
to randomly select a large number of schedulers (i.e. integers), perform Monte Carlo simulation/SMC for
each, and report the maximum and minimum estimates over all sampled schedulers as approximations of
the actual extremal probabilities. Care needs to be taken to account for the accumulation of statistical error
introduced by the repeated simulation experiments, and performance can be improved by sampling in a smart
way (for details, see D’Argenio et al. 2015). We show the core of the lightweight approach—performing
a simulation run for a given scheduler identifier σ—as Algorithm 1. It uses two PRNGs: Upr to simulate
the probabilistic choices in the MDP in line 5, and Und to resolve the nondeterministic choices in line 4.
We want σ to represent a deterministic memoryless scheduler. Therefore, within one simulation run as
well as in different runs for the same value of σ , Und must always make the same choice for the same
location l. To achieve this, Und is reinitialized with a seed based on σ and l in every step (line 3).

The overall effectiveness of the lightweight approach then depends on the likelihood of selecting a σ

that represents a (near-)optimal scheduler. Since we do not know a priori what makes a scheduler optimal,
we want to sample “uniformly” from the space of all schedulers. This at least avoids actively biasing
against “good” schedulers. More precisely, a uniformly random choice of σ shall result in a uniformly
chosen (but fixed) resolution of all nondeterministic choices. Algorithm 1 achieves this naturally for MDP.

3.2 The Naive Extension to PTA Fails

The naive extension of the lightweight approach to PTA is to use Algorithm 1 to generate concrete paths
like the one shown in Example 2. The input to Und is then a hash of σ and the current state 〈l,v〉 of

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
W

S
C

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Hartmanns, Sedwards, and D’Argenio

location l plus clock valuation v. Und selects a delay permitted by the time progress condition followed by an
enabled edge, if available. A fundamental problem of the naive approach is that it can make (near-)optimal
schedulers infeasibly rare. Consider PTA Me of Example 1 and Pmax(l3) again. An optimal scheduler must
achieve the maximum probability of 1 and thus has to select a delay > 1 whenever we arrive in l0 (and
also select the lower edge from l1 to l3 whenever possible). Assuming we pick σ uniformly at random,
what is the probability of thus picking an optimal scheduler? Let us write Pσ (l3) for the probability to
reach l3 with scheduler identifier σ and step through the naive adaptation to PTA of Algorithm 1:
1. Every run starts in s0 = 〈l0,〈0,0〉〉. We initialize Und with the hash of σ and s0 and use it to choose

a delay d1 ∈ [0,2]. The probability that we chose σ such that Und picks a value ≤ 1 is 0.5. We then
delay into 〈l0,〈d1,d1〉〉 and take the edge. In the case we picked d ≤ 1, we go to l1 and then l2 with
probability 0.1 ·0.8 = 0.08. Thus, with probability 0.5, we picked σ such that Pσ (l3)< 0.92.

2. Now assume we did pick a “good” σ and d1 is greater than 1, but Upr causes us to loop back to l0 on
the current run. We then reinitialize Und with a completely different hash (since the state now includes
v(y) = d1 6= 0) to pick another delay d2 ∈ [0,2]. The probability that we chose σ such that Und now
picks a value ≤ 1 is again 0.5. Thus, with probability 0.5+0.25, we picked σ such that Pσ (l3)≤ 0.928.

Even though σ is fixed, we get to make a new decision every time we come back to l0 because the value of y
is a different real number in [0,2] every time. The optimal scheduler would have to choose di > 1 for every
i ∈N, and the probability of choosing a σ that identifies such a scheduler is zero. If σ is picked from Z32,
likely no σ corresponds to an optimal scheduler. Even near-optimal schedulers are rare: the probability of
having chosen a σ such that Pσ (l3)≤ 1− ε grows quickly while ε decreases slowly. The problem is that
we sample from an uncountable space of schedulers where the optimal schedulers have measure zero. We
must find an alternative approach where the probability of sampling an optimal scheduler is high.

3.3 Lightweight Zone-Based SMC for PTA

To increase the probability of sampling a (near-)optimal scheduler, we can reduce the space of schedulers.
For PTA, some finite abstractions preserve reachability probabilities. On a finite abstraction, there are only
finitely many (memoryless deterministic) schedulers. Such abstractions include the region and zone graphs,
but also the digital clocks approach (Norman, Parker, and Sproston 2013). In the latter, clocks are replaced
by integer variables that are incremented as long as the time progress condition is satisfied, resulting in
an MDP. However this only works if all clock constraints in the PTA are closed and diagonal-free. We
could naively use Algorithm 1 on the digital clocks MDP (if we accept its restrictions) or the region graph.
Both cases are conceptually the same; with the latter, the states are pairs 〈l,r〉 of the current location l
and the clock region r. Since all except the point regions represent uncountably many clock valuations,
this is a symbolic simulation technique and we generate runs like the one shown in Figure 3. That figure
highlights the main drawback of such an approach: performing a long delay corresponds to a large number
of simulation steps to sequentially move through all the successor regions. We found this to cause significant
performance problems. The second issue is that we cannot sample schedulers uniformly: As long as the
location’s time progress condition is satisfied, the only reasonable way to implement the scheduler is to
let Und choose uniformly between delaying or taking an edge. The total delay per scheduler thus follows
a geometric distribution, biasing the algorithm towards taking edges early.

To solve these two problems, in (D’Argenio et al. 2016) we proposed an approach based on zones, using
the standard DBM data structure. We can easily obtain and represent an entire sequence of regions as a single
zone, determine the edges enabled throughout that zone, and use Und to uniformly (but deterministically
for fixed σ and symbolic state) select one. The resulting algorithm (shown as Algorithm 2 in D’Argenio
et al. 2016) is not a simple extension of Algorithm 1 for several reasons that we explore in that paper.
In particular, when taking an edge, we need to select a single region from within the target zone. This is
to avoid over-/underapproximating the max./min. reachability probabilities since we perform a forwards
exploration (Kwiatkowska et al. 2002). As previously mentioned, most operations on zones are in O(|C |2)
or O(|C |3) and region selection is currently exponential in |C | if we aim for uniformly random selection.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
W

S
C

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Hartmanns, Sedwards, and D’Argenio

Not surprisingly, profiling our previous implementation with standard case studies showed that indeed most
of the runtime (∼ 66 to 77%) was spent in various zone operations. In the remainder of this paper, we
show how to overcome the two problems that so far prevented the use of regions, in order to significantly
improve performance both theoretically and practically.

4 AN EFFICIENT DATA STRUCTURE FOR REGIONS

The concept of regions has been key to proving decidability of various verification problems for (probabilistic)
timed automata, including the computation of optimal reachability probabilities for PTA. The total number
of regions of a PTA is in O(|C |! · 2|C | ·∏c∈C (2 · kc + 2)) (Alur and Dill 1994), so any standard model
checking approach that exhaustively explores and stores the region graph is infeasible. Consequently, and
to the best of our knowledge, the question of finding an efficient data structure for regions has not been
considered yet, but it is central to an efficient implementation of the lightweight approach for PTA. In this
section we describe our efficient data structure for regions, shown as Algorithm 2. Most importantly, it is
set up such that we can perform long delays without having to enumerate successor regions.

4.1 Storing Regions

A region represents a set of clock valuations that cannot be distinguished by any clock constraint. It is
fully characterized by the integral part of the value of each clock and whether that value is integer (i.e.
whether it is in N or in R+

0 \N) plus the relative order of the fractional parts. We store the integer part of
the clock values in vector vint (line 4). Vector ofrac (line 5) stores, for each clock, the index of the fractional
part of its value in the order of fractional values. If isInt (line 2) is true, the values of the clocks c with
ofrac(c) = 0 are integer; otherwise all clocks have fractional values. This fully characterizes the region; as
an optimization for operations defined below, we also store the number of different fractional values as nd .
Note that nd−1 = maxc∈C ofrac(c); if all clock values are fractional, then nd is the dimension of the region.
Example 5 With four clocks, the region that contains the valuation 〈2,3.43,4.6,4.43〉 is stored as vint =
〈2,3,4,4〉, ofrac = 〈0,1,2,1〉 and isInt = true. As two fractional values are the same, we also store nd = 3.
Since isInt = true, the region is a two-dimensional object (a triangle) in the four-dimensional space spanned
by the values of the four clocks. Its successor, with isInt = false, is three-dimensional (a tetrahedron).

4.2 Delay Steps and Resets

The standard operations on regions are delay() (moving to the successor region) and reset(r) (resetting
clock r to zero). The implementation of the former is straightforward by observing (cf. Figure 2) that
successor regions alternate between having (a) some clocks with integer values (i.e. isInt = true) and (b) only
fractionally-valued clocks (i.e. isInt = false). The relative order and dimension do not change. In case (a),
all we need to do is set isInt to false (line 12). In case (b), the clocks with the highest fractional values
move up to the next integer value, their index in the fractional order becomes zero, and all other clocks
move one index up (lines 10 and 11). The implementation of reset(r) is technically more involved: nd
may change depending on whether another clock’s value has the same fractional part or is already integer;
if it does change, we need to shift the fractional order and/or fill the “hole” left by r. This is implemented
in lines 18 to 27. To reset a set of clocks, we call reset(r) for each, but this could be optimized.

4.3 Representatives and Durational Delays

The two operations described above were sufficient for the theoretical works using regions that we mentioned
before, but result in the problem of having to call delay() many times to perform a long delay. To overcome
this, we propose two key extensions: The first is the value(c) function (line 6) that returns a concrete
representative value in Q+

0 for every clock c. For brevity, we will write r not only for the (symbolic)
region r, but also for its (concrete) representative clock valuation {c 7→ r.value(c) | c ∈ C } whenever a

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
W

S
C

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Hartmanns, Sedwards, and D’Argenio

1 type region
2 isInt := true ∈ { true, false} // are one or more clocks integer?
3 nd := 1 ∈ {1, . . . ,n} // number of different fractional values
4 vint := 0 ∈ C → N // integer values for all clocks
5 ofrac := 0 ∈ C → N // position in the order of fractional values

6 function value(c ∈ C)
7 return vint(c)+(2 ·ofrac +(if isInt then 0 else 1))/(2 ·nd)

8 function delay()
9 if ¬ isInt then foreach c ∈ C do

10 ofrac(c) := ofrac(c)+1 mod nd // cyclic shift of the order of fractional values
11 if ofrac(c) = 0 then vint(c) := vint(c)+1 // highest fractional clocks go to next integer

12 isInt := ¬ isInt

13 function delay(d/(2 ·nd)) // equivalent to calling delay() d times
14 foreach c ∈ C do
15 vint(c) := vint(c)+ b(2 ·ofrac(c)+(if isInt then 0 else 1)+d)/(2 ·nd)c
16 ofrac(c) := (ofrac(c)+ b(d +(if isInt then 0 else 1))/2c) mod nd

17 if d is odd then isInt := ¬ isInt

18 function reset(r ∈ C)
19 if isInt∧ofrac(r) = 0 then vint(c) := 0; return // r is already integer
20 same := {c ∈ C \{r} | ofrac(c) = ofrac(r)} 6=∅ // other clock at same position in order?
21 if ¬same then nd := nd−1 // r’s old fractional order position becomes free
22 if ¬ isInt then nd := nd +1 // no other clock has fractional value of 0 yet
23 foreach c 6= r do
24 if ¬same∧ofrac(c)> ofrac(r) then
25 ofrac(c) := ofrac(c)−1 mod nd // fill gap of r’s old position

26 if ¬ isInt then ofrac(c) := ofrac(c)+1 mod nd // make room for r’s new ofrac

27 ofrac(r) := 0, vint(r) := 0, isInt := true // perform the reset for r

Algorithm 2: An efficient data structure for regions.

valuation is required by the context. The second extension is the delay(d′) function (line 13) that, given
a certain delay based on a representative valuation, performs that entire delay in one go.

The concrete choice of representative valuations is the key insight of our data structure. For every
clock, we select a multiple of 1/(2 ·nd): even multiples if the values of one or more clocks are integer,
odd multiples otherwise. For illustration, we show as black dots in Figure 4 the representatives of some
regions of our example PTA Me: the one of the region x = y = 0 (which has nd = 1), the one of the region
0 < x < y∧y = 0 (with nd = 2), and all successors. The choice is not immediately obvious for all-fractional
regions (i.e. triangles in the two-dimensional case) because we select an off-center point. However, it is the
only choice where the representatives for a fixed nd are equally spaced: for any region r, if we delay from
its representative for 1/(2 ·nd) time units, we arrive exactly at the representative of r+. This means that
the only concrete delays to account for are for multiples of 1/(2 ·nd) time units, which makes it possible
to implement delay(d′) with d′ = d/(2 · nd) very efficiently: for each clock, the new integer value is
obtained via addition and integer division by 2 · nd (line 15, since a delay of 1 time unit corresponds to
d = 2 ·nd) while the new fractional order index is obtained by adding d/2 modulo nd (line 16, the division

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
W

S
C

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Hartmanns, Sedwards, and D’Argenio

0

1

1 2

y

x

Figure 4: Representatives.

delays(v, true) = [0,∞) delays(v, false) =∅
delays(v, c≥ n) = [n− v(c),∞) delays(v, c≤ n) = [0,n− v(c)]
delays(v, c > n) = (n− v(c),∞) delays(v, c < n) = [0,n− v(c))
delays(v, cc1∧ cc2) = delays(v, cc1)∩delays(v, cc2)
delays(v, c1− c2 ∼ n) = if v(c1)− v(c2)∼ n then [0,∞) else ∅

Figure 5: Mapping clock constraints to delay intervals.

by 2 being due to the alternation between regions where isInt is true resp. false as time passes). Another
consequence is that our implementation only needs to work with integer numbers—multiples of the current
value of 2 ·nd—instead of floating-point or rational numbers, giving both efficiency and precision.

4.4 Complexity

The complexity of all operations on our data structure is at most linear in the number of clocks. This drastic
reduction compared to zones is because zones are much more expressive than regions—expressiveness that
we do not need for our simulation algorithm. For space reasons, Algorithm 2 is simplified: When the
values of all clocks are sufficiently large, we must drop upper bounds and eventually stay in the unbounded
regions (resulting in the non-triangular areas and half lines in Figure 2). This is possible in linear time, too.

5 REGION-BASED SIMULATION FOR PTA

The new region data structure now allows us to implement the lightweight approach for PTA efficiently:
All operations are in O(|C |) and we can perform any delay in a single step (i.e. in O(|C |) independent of
the length of the delay). The overall approach (Algorithm 3 in D’Argenio et al. 2015) remains the same:
1. Randomly select a set M of m integers in Z32 (which represent the schedulers we sample);
2. for each σ ∈M, perform n random simulation runs, resulting in the reachability probability estimate pσ ;
3. return maxσ∈M pσ as an approximation for Pmax(·) and minσ∈M pσ as an approximation for Pmin(·).
In step 2, in place of Algorithm 1, which is for MDP, or Algorithm 2 of D’Argenio et al. (2016), which is
inefficient, we can now use our new region-based simulation algorithm for PTA that is shown as Algorithm 3.

It crucially relies on the ability to convert between a region and its representative valuation. In line 3,
it computes the interval I of possible delays admitted by the current location’s time progress condition
using the delays function. Shown in Figure 5, this recursive function takes any valuation v plus a clock
constraint cc—e.g. the time progress condition—and returns the interval I ∈I (R+

0) of delays where cc is
valid, i.e. ∀d ∈ I : v+d ∈ [[cc]]. I is intersected with each edge’s guard (an interval of delays obtained in
the same way) in line 6. When the algorithm arrives at line 10, it has collected all enabled edges and the
interval of delays during which each is enabled. At that point, it reinitializes Und to act as a memoryless
scheduler and lets it (deterministically) select one of the edges (line 11). In lines 12 and 13, we then exploit
our particular choice of representatives to let Und select one out of a finite set of delays, each leading
directly to one of the successor regions where the selected edge is enabled. The rounds(G) function
takes an interval G and returns the largest closed interval G′ ⊆ G such that its bounds are multiples of s.
For example, round0.5((0.5,1.6]) = [1.0,1.5]. Upr finally selects a target (implementing the Monte Carlo
aspect of the simulation) in line 14 and we perform the delay (in a single step) and take the edge in line 15.

The algorithm contains some technicalities to deal with the possibility to let time pass beyond the last
enabled edge (“delay into deadlock”, but not necessarily timelock). We record all delays in the trace so as
not to “jump over” intermediate points where a clock constraint in the property is temporarily satisfied.

6 EXPERIMENTS

We have extended the MODEST TOOLSET (Hartmanns and Hermanns 2014) with implementations of (1) the
zone-based approach of D’Argenio et al. (2016), replacing the earlier prototype used for the experiments

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
W

S
C

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Hartmanns, Sedwards, and D’Argenio

Input: PTA M = 〈Loc,C ,A,E, linit, tpc〉, path property φ , scheduler identifier σ ∈ Z32
Output: Sampled trace ω

1 l := linit; r := 0; ω := 〈linit,r〉
2 while φ(ω) = undecided do
3 I := delays(r, tpc(l)); J :=∅; j := 0 // get delay interval for the time progress condition
4 if 0 /∈ I then I := [0,0] // time progress condition does not allow time to pass
5 foreach l g−→ µ do // for each edge in this location:
6 J := J∪{〈µ, I∩delays(r, g)〉} // store its distribution and the enabled interval
7 j := max{ j,ubdelays(r, g) } // keep track of the max. delay that enables an edge

8 if J =∅ then ω := ω.ubI; break // can only delay into deadlock
9 if j 6= ubI then J := J∪{D(〈∅, l〉), [j, j]} // possible delay into deadlock

10 Und := PRNG(H (σ .l.r)) // use hash of σ , l and r as seed for Und
11 〈µ,G〉 := dUnd() · |J|e-th element of J // use Und to select one of the edges
12 G := round1/(2·r.nd)(G) // make guard interval closed and round its bounds
13 t := bUnd() · (ubG− lbG) ·2 · r.ndc/(2 · r.nd)+ lbG // use Und to select representative delay
14 〈X , l′〉 := Upr(µ) // use Upr to select resets, target according to µ

15 r.delay(t), r.reset(X), l := l′, ω := ω.t.〈l,r〉 // delay, reset, update location and trace

Algorithm 3: Lightweight symbolic simulation for a PTA and a scheduler identifier using regions.

in that paper, (2) the naive adaptation of Algorithm 1 to the region graph with iterative calls to delay()
to step through successor regions as described in Section 3.3, and finally (3) our new approach described
in Section 5 based on the new region data structure of Section 4 where even long delays are only a single
step using the delays(v,cc) and delay(d) functions. The MODEST TOOLSET is publicly available at
www.modestchecker.net. We have applied this implementation to four case studies from the literature, the
first three adapted from the PRISM benchmark suite (Kwiatkowska, Norman, and Parker 2012):
firewire: A MODEST PTA model of the IEEE 1394 FireWire root contention protocol. We calculate the
minimum and maximum probability of termination within 4000 ns.
wlan: A MODEST PTA model of IEEE 802.11 wireless LAN with two stations, using the original timing
parameters from the standard (e.g. a maximum transmission time of 15717µs). We calculate the minimum
and maximum probability that either station’s backoff counter reaches value 2 with one transmission.
csmacdD

n : A MODEST PTA model of the exponential backoff procedure in the IEEE 802.3 CSMA/CD
protocol with n stations on a shared medium. We calculate the minimum and maximum probability of all
stations correctly delivering their packets within Dµs.
mpeg4: A flexible scenario-aware dataflow (xSADF) model (Hartmanns, Hermanns, and Bungert 2016) of
a streaming MPEG-4 SP decoder with 4 kernels and 1 detector operating in 9 scenarios. In contrast to the
original SADF model, we have made the execution time of the VLD kernel nondeterministic for I-frames.
We calculate the minimum and maximum probability for kernel MC to fire within 1000 model time units.

All our experiments used a 2.7-3.5 GHz Intel Core i5 6600T system running 64-bit Windows 10, using
3 simulation threads. We show the results in Table 1. Column “|C |” lists the number of clocks in each
model. The firewire model and two of the csmacd instances are small enough to be amenable to exhaustive
model checking, so we can report the true interval [Pmin,Pmax] of the min. and max. probability under
heading “mc”. For the three simulation-based approaches, we sampled m = 500 schedulers and performed
n = 29068 random simulation runs for each. Thus by the adapted Chernoff bound of D’Argenio et al.
(2015), with probability 0.95, estimates (an upper bound for the min. and a lower bound for the max.
probability) will be within ±0.01 of the true values for the sampled schedulers. Columns “time” report the
simulation time in minutes for all 14534000 runs, “|ω|” are the average lengths of each run (in simulation
steps, i.e. transitions taken and calls to delay(d) or delay()), and “results” list the obtained estimates.

http://www.modestchecker.net/

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
W

S
C

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Hartmanns, Sedwards, and D’Argenio

Table 1: Experimental results.

mc zones regions regions (naive)
model |C | results time results |ω| time results |ω| time results

firewire 1 [0.781,1] 1.2 [0.78,1] 8 0.8 [0.79,1] 3811 84.4 [1,1]
wlan 2 — 16.9 [0.04,0.07] 71 12.5 [0.04,0.07] > 10h

csmacd1800
2 4 [0.729,0.872] 24.4 [0.72,0.87] 43 8.0 [0.72,0.85] 2351 266.3 [0.73,0.88]

csmacd2700
3 5 [0.663,0.892] 71.0 [0.76,0.87] 106 23.8 [0.77,0.85] 3881 482.1 [0.88,0.90]

csmacd3600
4 6 — 152.8 [0.79,0.86] 197 45.7 [0.80,0.85] > 10h

mpeg4 5 — 191.2 [0.61,0.62] 347 71.2 [0.61,0.62] 1811 168.2 [0.61,0.62]

We see that, as expected, the zone-based approach (heading “zones”) is slow, and scales poorly
with the number of clocks. This is despite our implementation in the MODEST TOOLSET using a non-
uniform algorithm for region selection that is faster than the original rejection sampling-based method of
D’Argenio et al. (2016). If we use regions, but restrict to the delay() and reset(r) functions (heading
“regions (naive)”), we have to iterate through a large number of successor regions individually for large
delays and bias towards short delays as explained in Section 3.3. We see that, accordingly, the simulation
runs have many steps and mostly take an order of magnitude more time than the other approaches. Finally,
our new approach using regions with representatives and the delay(d) function (heading “regions”) is
consistently the fastest. Its performance depends mostly on the length of the simulation runs and not
significantly on |C |. The estimates are not always close to both optimal probabilities where we could
model-check. This could likely be improved by simulating a much larger number of schedulers on a
compute cluster with higher m, or by using the smart sampling approach of D’Argenio et al. (2015). The
estimates of the three approaches are not always the same: In addition to the low number of schedulers, this
is likely because region selection is not uniform in the zone-based approach, and we heavily bias towards
shorter delays in the naive approach. The latter means that we did not happen to sample any scheduler
that leads to a minimum probability < 1 for the firewire model.

7 CONCLUSION

The lightweight scheduler sampling technique is a practical method to exploit the scalability of Monte
Carlo simulation for the verification of the nondeterministic formalism of probabilistic timed automata.
Motivated by this simulation perspective, we presented a novel data structure for regions. To the best of
our knowledge, it is the first investigation of this problem. Building on the ability to convert regions to a
particular form of representative valuations in order to perform long delays in a single step, we proposed
a new symbolic simulation algorithm for use within the lightweight technique. In contrast to previous
zone-based approaches, the complexity of a single simulation step is reduced from cubic or even exponential
to only linear in the number of clocks. We demonstrated its superior performance on several case studies.

ACKNOWLEDGMENTS

This work is supported by the 3TU.BSR project, the JST ERATO HASUO Metamathematics for Systems
Design project (JPMJER1603), ERC grant 695614 (POWVER), and SeCyT-UNC projects 05/BP12, 05/B497.

REFERENCES

Alur, R., and D. L. Dill. 1994. “A Theory of Timed Automata”. Theor. Comput. Sci. 126 (2): 183–235.
Bengtsson, J., and W. Yi. 2003. “Timed Automata: Semantics, Algorithms and Tools”. In Lectures on

Concurrency and Petri Nets, Advances in Petri Nets, Volume 3098 of LNCS, 87–124: Springer.
Bohnenkamp, H. C., P. R. D’Argenio, H. Hermanns, and J.-P. Katoen. 2006. “MoDeST: A Compositional

Modeling Formalism for Hard and Softly Timed Systems”. IEEE Trans. Software Eng. 32 (10): 812–830.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
W

S
C

20
17

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Hartmanns, Sedwards, and D’Argenio

Brázdil, T., K. Chatterjee, M. Chmelik, V. Forejt, J. Kretínský, M. Z. Kwiatkowska, D. Parker, and M. Ujma.
2014. “Verification of Markov Decision Processes Using Learning Algorithms”. In ATVA, Volume 8837
of LNCS, 98–114: Springer.

D’Argenio, P. R., A. Hartmanns, A. Legay, and S. Sedwards. 2016. “Statistical Approximation of Optimal
Schedulers for Probabilistic Timed Automata”. In iFM, Volume 9681 of LNCS, 99–114: Springer.

D’Argenio, P. R., A. Legay, S. Sedwards, and L.-M. Traonouez. 2015. “Smart Sampling for Lightweight
Verification of Markov Decision Processes”. Software Tools for Technology Transfer 17 (4): 469–484.

David, A., P. G. Jensen, K. G. Larsen, M. Mikucionis, and J. H. Taankvist. 2015. “Uppaal Stratego”. In
TACAS, Volume 9035 of LNCS, 206–211: Springer.

David, A., K. G. Larsen, A. Legay, M. Mikucionis, and Z. Wang. 2011. “Time for Statistical Model
Checking of Real-Time Systems”. In CAV, Volume 6806 of LNCS, 349–355: Springer.

Hahn, E. M., A. Hartmanns, and H. Hermanns. 2014. “Reachability and Reward Checking for Stochastic
Timed Automata”. Electronic Communications of the EASST 70.

Hartmanns, A., and H. Hermanns. 2014. “The Modest Toolset: An Integrated Environment for Quantitative
Modelling and Verification”. In TACAS, Volume 8413 of LNCS, 593–598: Springer.

Hartmanns, A., H. Hermanns, and M. Bungert. 2016. “Flexible Support for Time and Costs in Scenario-Aware
Dataflow”. In EMSOFT: ACM.

Henriques, D., J. Martins, P. Zuliani, A. Platzer, and E. M. Clarke. 2012. “Statistical Model Checking for
Markov Decision Processes”. In QEST, 84–93: IEEE Computer Society.

Hérault, T., R. Lassaigne, F. Magniette, and S. Peyronnet. 2004. “Approximate Probabilistic Model Check-
ing”. In VMCAI, Volume 2937 of LNCS, 73–84: Springer.

Kearns, M. J., Y. Mansour, and A. Y. Ng. 2002. “A Sparse Sampling Algorithm for Near-Optimal Planning
in Large Markov Decision Processes”. Machine Learning 49 (2-3): 193–208.

Kwiatkowska, M. Z., G. Norman, and D. Parker. 2012. “The PRISM Benchmark Suite”. In QEST, 203–204:
IEEE Computer Society.

Kwiatkowska, M. Z., G. Norman, R. Segala, and J. Sproston. 2002. “Automatic Verification of Real-Time
Systems with Discrete Probability Distributions”. Theor. Comput. Sci. 282 (1): 101–150.

Legay, A., S. Sedwards, and L.-M. Traonouez. 2014. “Scalable Verification of Markov Decision Processes”.
In WS-FMDS, Volume 8938 of LNCS, 350–362: Springer.

Norman, G., D. Parker, and J. Sproston. 2013. “Model Checking for Probabilistic Timed Automata”. Formal
Methods in System Design 43 (2): 164–190.

van den Berg, F., J. Hooman, A. Hartmanns, B. R. Haverkort, and A. Remke. 2015. “Computing Response
Time Distributions Using Iterative Probabilistic Model Checking”. In EPEW, Volume 9272 of LNCS,
208–224: Springer.

Younes, H. L. S., and R. G. Simmons. 2002. “Probabilistic Verification of Discrete Event Systems Using
Acceptance Sampling”. In CAV, Volume 2404 of LNCS, 223–235: Springer.

AUTHOR BIOGRAPHIES

ARND HARTMANNS is a postdoctoral researcher at the University of Twente in the Netherlands. His re-
search interests include modeling formalisms, scalable verification algorithms and efficient user-friendly tools
for the quantitative analysis of critical cyber-physical systems. His email address is a.hartmanns@utwente.nl.

SEAN SEDWARDS works at the National Institute of Informatics in Tokyo, Japan. Focusing on scalable
formal verification, he is currently interested in applying machine learning to verification and formally veri-
fying machine-learned systems in the area of autonomous vehicles. His email address is sedwards@nii.ac.jp.

PEDRO R. D’ARGENIO is a full professor at Universidad Nacional de Córdoba and researcher of CON-
ICET, Argentina, and visiting professor at Saarland University, Germany. His research interests include mod-
eling and verification of concurrent systems, performance and dependability evaluation, and the mathematical
foundations of nondeterministic and probabilistic systems. His email address is dargenio@famaf.unc.edu.ar.

mailto://a.hartmanns@utwente.nl
mailto://sedwards@nii.ac.jp
mailto://dargenio@famaf.unc.edu.ar

	Introduction
	Preliminaries
	Probabilistic Timed Automata
	Semantics and Reachability Probabilities
	Symbolic PTA: Regions and Zones

	Lightweight Approximation of Optimal Schedulers
	The Lightweight Approach for MDP
	The Naive Extension to PTA Fails
	Lightweight Zone-Based SMC for PTA

	An Efficient Data Structure for Regions
	Storing Regions
	Delay Steps and Resets
	Representatives and Durational Delays
	Complexity

	Region-Based Simulation for PTA
	Experiments
	Conclusion

