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Abstract

Markov decision processes (MDPs) are a popular model for perfor-

mance analysis and optimization of stochastic systems. The param-

eters of stochastic behavior of MDPs are estimates from empirical

observations of a system; their values are not known precisely.

Different types of MDPs with uncertain, imprecise or bounded

transition rates or probabilities and rewards exist in the literature.

Commonly, analysis of models with uncertainties amounts to

searching for the most robust policy which means that the goal is

to generate a policy with the greatest lower bound on performance

(or, symmetrically, the lowest upper bound on costs). However,

hedging against an unlikely worst case may lead to losses in other

situations. In general, one is interested in policies that behave well
in all situations which results in a multi-objective view on decision

making.

In this paper, we consider policies for the expected discounted

reward measure of MDPs with uncertain parameters. In particular,

the approach is defined for bounded-parameter MDPs (BMDPs) [8].

In this setting the worst, best and average case performances of a

policy are analyzed simultaneously, which yields a multi-scenario

multi-objective optimization problem. The paper presents and eval-

uates approaches to compute the pure Pareto optimal policies in

the value vector space.

CCS Concepts

• Theory of computation → Theory and algorithms for ap-
plication domains; • Applied computing → Operations re-
search;
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1 Introduction

Markov decision processes (MDPs) are a common tool to describe

decision situations in many different contexts such as performance

optimization and planning [2, 3, 13, 16]. The general idea is to spec-

ify a system by means of different states in which it can be, actions
which a decision maker can perform to affect the (probabilistic)

future behavior, and rewards or costs that depend on the state and

decision such as energy costs of a server starting up or the amount

of users served in a queue if a service is active. After an action has

been chosen, the system changes its state depending on the action

and the current state but not on the past behavior; transitions are,

in general, randomized and defined by the system’s properties.

However, modeling a physical or an artificial system suffers from

several limitations. Most prominent is the inherent loss of preci-

sion that is introduced by measurement errors and discretization

artifacts which necessarily happen due to incomplete knowledge

about the system behavior. So the true probability distribution

to be associated with transitions is in most cases uncertain and

instead can be given by either external parameters or confidence in-

tervals. To account for the latter, the MDP model has been extended

to bounded-parameter MDPs (BMDPs) [8] or the slightly more

general classes of MDPs with incomplete or uncertain transition

probabilities [19, 25]. In these classes of MDPs, best-case and worst-

case policies for expected discounted reward measures have been

considered. These policies result in upper and lower bounds for

the value vector that contains the discounted accumulated reward

gained after starting in the different states of the process.

Robust optimization techniques [29] are useful to derive poli-

cies that hedge against model uncertainties. In particular, these

robust policies optimize the expected discounted reward against the

worst possible realization of the uncertainty. From the viewpoint

of a potential decision maker, however, a robust solution may be

overly pessimistic. A decision maker is often interested in a so-

lution that might be not fully robust, but instead could have an

acceptable worst-case behavior while retaining good best-case and

https://doi.org/10.1145/3150928.3150945
https://doi.org/10.1145/3150928.3150945
https://doi.org/10.1145/3150928.3150945
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average-case (for a properly defined concept of “average”) perfor-

mance. This property may be formalized in several alternative ways;

most notably, there are several competing definitions of “almost

robust” solutions [12]. A further optimization goal in this context

may be the probability of reaching a certain performance bound,

assuming some probability distribution over the uncertainty set.

Unfortunately, the latter seems to be inherently hard, especially for

uncertain MDPs [20].

Thus a promising approach considers not only one extremal mea-

sure (either the upper or the lower bound), but at least both bounds,

and possibly the expectation, and optimizes all of them simultane-

ously. This means doing multi-objective optimization which yields

several mutually incomparable, so-called non-dominated policies

for the uncertain MDP from which the user may select the one

which has the most suitable performance measures. This may be in

particular of interest if the differences between the optimal policies

in the different scenarios are sufficiently large to consider different

tradeoffs besides the obvious extremal points. In this paper, we

develop methods to compute all pure non-dominated policies for a

given uncertain MDP in a specific uncertainty setting which can be

generalized to other notions of parameter uncertainty. This problem

which is basically an instance of multi-scenario optimization asks

to compute policies which are optimal in the presence of trade-offs

between several conflicting objectives.

It is worthwhile tomention that for the consideredmulti-objective

optimization problem, the number of optimal, i.e., mutually incom-

parable and non-dominated solutions may be exponentially high,

which is a structural feature of the problem, and computing all of

these solutions might take a prohibitive amount of time. However,

for “stationary” decision-making problems which only rarely vary

with time, we argue that the amount of time invested in finding

an optimal policy is often negligible when compared to the actual

performance of the policy implementation.

Related work. The Bounded-parameter MDP (BMDP) model

is introduced and widely discussed in [8]. BMDPs are a specific

subclass of MDPs with uncertain or imprecise transition proba-

bilities proposed by [19] and [25]. The methods extend to more

general notions of uncertainty in MDPs such as convex uncertainty

sets discussed by [15]; further aspects of parameter uncertainty in

MDPs are covered in [6, 11, 29]. However, in almost all cases, the

goal is to compute a robust policy which ensures the best possible

behavior in the worst case. In many scenarios however, we may

have a multidimensional reward function and hence search for a

policy which simultaneously maximizes all reward dimensions. To

account for the latter, multi-objective Markov decision processes

are discussed in [1, 5, 14, 26, 28]. The extension to multi-objective

Markov decision processes under bounded parameter uncertainty

has recently been investigated in [9]. In this paper, we target an-

other facet of multi-objective multi-scenario optimization for MDPs

with parameter uncertainty where the goal is to simultaneously

optimize the worst, best and average case behavior.

There exist numerous applications of MDPs and uncertainty

modeling in the performance optimization world. They include

decision support in medical screening procedures [3] and product

line design [2]. Applications and the general formulation of multi-

scenario optimization are given in [27].

Our Contribution. This work considers the multi-scenario

multi-objective optimization problem for BMDPs where the mul-

tiple scenarios correspond to the maximal, minimal, and average

performance measures of a given policy in the uncertainty set of

BMDPs. The notion of average performance is given by slightly

extending the existing BMDP formalism and defining a designated

average MDP in the uncertainty set. In particular, we define the

average MDP by introducing a probability distribution over the

uncertainty set and deriving the expected value. This has the advan-

tage of possible further applications such as percentile optimization.

In summary, the main contributions of this paper are threefold.

First, we provide an exact algorithm that computes the desired

set of pure Pareto optimal policies, albeit at a (almost certainly)

prohibitively high computational cost. Second, we design a heuristic

that is efficient in the sense that it computes a set of mutually

non-dominated policies that are likely to be Pareto optimal with

reasonable time complexity. Finally, we develop a prototype tool

and apply it to some case studies to show the effectiveness of our

approach.

2 Mathematical Preliminaries

We start with common notations and formalisms used in this paper.

For a matrixM , we denote bymi , j the entry in row i and column

j. Vector identifiers, such as v, appear in bold script, to distinguish

them from scalars and matrices. For a natural number n, we desig-
nate by [n] the set {1, 2, . . . ,n}. For multi-dimensional identifiers,

such asmatrices or vectors, the order relations ≤ or ≥ are performed

componentwise. Additionally, we define v >P v′ to be short for

v ≥ v′ ∧ v , v′.
We next motivate and formally introduce the modelling formal-

ism considered in this paper.

In a Markov decision process, transition probabilities and re-

wards are estimates resulting frommeasurements or expert opinion.

This implies that there is always uncertainty about the parameters

of the model and also about the behavior of the real system accord-

ing to some policy that has been derived from the MDP. The class

of stochastic bounded-parameter MDPs (SBMDPs) includes this

uncertainty by considering intervals rather than point estimates

for the parameters of MDPs and defining a probability distribution

over the uncertainty set. We shall use the probability distribution in

order to derive the “average” MDP and then work with this MDP;

for the sake of generality, we would like to define the formalism

here completely with the probability distribution.

Definition 2.1 (Stochastic bounded-parameter Markov pro-
cess). A stochastic bounded-parameter Markov decision process
(SBMDP) is a tuple (S,A,T↕,R↕, Pr ) where S = [n] is a (fi-

nite) state space, A = [m] is a (finite) set of actions, T↕ =
((P1
↓
, P1
↑
), . . . , (Pm

↓
, Pm
↑
)) is a set ofm matrix pairs where for each

a ∈ A, 0 ≤ Pa
↓
≤ Pa
↑
, Pa
↓
I1 ≤ I1 ≤ Pa

↑
I1, R↕ = ((r1↓, r

1

↑
), . . . , (rm

↓
, rm
↑
)) is

a set ofm reward vector pairs where for each a ∈ A, 0 ≤ ra
↓
≤ ra
↑

and Pr =
{
(pa,r : R

n → R,pa,P : R
n,n → R) | a ∈ A

}
is a probabil-

ity measure on the rewards and the transition matrices for each

action.
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We denote by pa
↕s all vectors p

a
s such that pa

↓s ,s ′ ≤ pas ,s ′ ≤ pa
↑s ,s ′

for all s ′ ∈ [n] and
∑n
s ′=1 p

a
s ,s ′ = 1. Similarly ra ∈ ra

↕
specifies all

vectors ra such that ra
↓s ≤ ras ≤ ra

↑s .

It is worthwhile to note that the model of SBMDPs extends the

formalism of BMDPs introduced by [8] with a probability measure

on the possible transition matrices and reward vectors, so as to

enable to take the “average performance” into consideration by

deriving expected values for the transition matrices and rewards.

This is different from the expected value of the value vector under

the probability distribution, as here the expectation operator is

applied on themodel and serves to define an additional optimization

objective, in addition to the upper and lower bounds for the value

vectors.

To optimize the performance of a (SB)MDP, a decision rule or
policy is needed. Formally, a policy is a function f : SN → ∆(A)
where SN is the set of (finite) histories of states and ∆(A) is the set of
probability distributions onA. We call a policy f pure if it is station-
ary, i.e., it depends only on the current state, and deterministic, i.e,

it always maps a history to a Dirac distribution, i.e., f (·,a) ∈ {0, 1}.
We use f for general policies and π for stationary and pure policies.

We denote by π (s) ∈ A the action that is chosen in state s using
policy π , if π is pure.

Moreover, a stationary policy π induces aMarkov reward process

with transition matrix P (π ) and reward vector r(π ). For a transition
matrix P and state s , we denote by ps the s-th row of P . Accordingly,

we denote by pπ (s)s the s-th row of P (π ) and by r
π (s)
s the reward

of state s under policy π . For pure policies, we define a Hamming

distance measure d by d(π , π ′) = |
{
s ∈ S | π (s) , π ′(s)

}
|.

The expected discounted reward for an infinite horizon is taken as

performance metric. For a MDP, a given policy f defines a sequence

of transitionmatrices (P
(f )
t )t ∈N and reward vectors (r(f )t )t ∈N where

P
(f )
t resp. r(f )t is the transition matrix resp. the reward in the t-th

time step. Using this sequence, we derive a probability distribution

on sequences of states and corresponding rewards, from which the

expected discounted reward is defined by Ex

∑
t ∈N γ

t−1r(f )t .

A value vector v collects the computed expected discounted re-

ward for all states where each entry equals the expected discounted

reward one obtains starting from the respective state. The math-

ematical properties of expected discounted rewards on which we

shall rely in the sequel are widely discussed by [16].

We assume that the goal is the maximization of the expected

discounted reward. For a SBMDP policies assuring best and worst

case behavior can be determined by solving the following Bellman

equations for the value vectors v↓, v↑.

v↓s = maxa∈A

(
ra
↓s + γ minpas ∈pa↕s

(
pas v↓

))
v↑s = maxa∈A

(
ra
↑s + γ maxpas ∈pa↕s

(
pas v↑

)) (1)

As shown by [8], the optimal policies are pure. We denote them by

π↓ and π↑, respectively.

Additionally, we are interested in the “average-case” properties

of SBMDPs and a policy that maximizes the performance under the

“average-case” assumption. The reasoning here is fairly straightfor-

ward: Since the probability distribution for the transition matrices

is known, we can define for each action a ∈ A, P
a
= Ex

[
Pa

]
=∫

Pa
↕

P ·pa,P (P) dP and ra = Ex[ra ] =
∫
ra
↕

r ·pa,r (r) dr, where pa are

probability densities on transition matrices and reward vectors for

action a. The Bellman equations become

vs = maxa∈A
(
ras + γp

a
s v

)
(2)

which is a standard MDP problem. The optimal policy is pure and

is denoted as π . For a policy f , by v(f )
↓

, v(f )
↑

and v(f ) we designate
the lower, upper and average value vectors, furthermore, the triple

(v(f )
↓
, v(f ), v(f )

↑
) is designated by v(f ), if not mentioned otherwise.

Obviously v(f )
↓
≤ v(f ) ≤ v(f )

↑
and also v↓ ≤ v ≤ v↑ hold, as v

(f )
↓

and v(f )
↑

are the minimal resp. maximal value vectors for f over

all MDPs in the uncertainty set. Usually π↓, π↑, and π differ and a

compromise between two or all three goals has to be found.

Before we discuss specifics, we would like to mention a possible

alternative approach in this setting. It is possible to consider the

SBMDP formalism in a Bayesian setting, where the information

from the probability distribution over the uncertainty set of MDPs

is taken into account completely, thus seeking for maxf ExM v(f )M
where v(f )M is the value vector of the policy f in the MDPM . This

approach can be undertaken in the case where it is possible to

integrate over the probability distribution overM↕ easily.

Here, we explicitly choose the multi-objective approach mainly

for the reason of larger applicability. Even if a Bayesian approach

can be motivated from the standpoint of stochastic BMDPs, one can

easily see that any reasonably good solution in the multi-objective

setting can be transferred to “plain” BMDPs and, furthermore,

to multi-objective MDPs even without introducing a probability

distribution over the uncertainty set.

As we shall consider multi-objective optimization problems, we

define the set of solutions that interest us.

Definition 2.2 (Pareto Optimality). Let Ppure be the set of pure
policies π : S → A, then we define the Pareto frontier as

PPareto =
{
π ∈ Ppure | ∄π ′ ∈ Ppure : v(π

′) >P v(π )
}

the set of pure policies that result in Pareto optimal value vectors.

We denote by VPareto and Vpure the corresponding sets of value

vectors.

It is easy to see that PPareto ⊆ Ppure holds and usually, the

subsets are proper. For convenience, we shall use an operator PO(·)
that operates on sets with a partial order ≥P and is defined by

PO(X ) =
{
x ∈ X | ¬∃y ∈ X : y >P x

}
.

3 Computation of Optimal Policies

The computation of Pareto optimal policies in multi-objectiveMDPs

is challenging as the number of optimal policies can be large or

even infinite (for non-stationary policies). Therefore, algorithms

are required to approximate the Pareto set efficiently instead of

computing the whole set of Pareto optimal policies. Several works

have already explored methods to compute or approximate the

Pareto set, e.g., [1, 5, 14, 17, 26, 28] albeit for the computation of

several expected values or in a setting that has only amulti-objective

reward. In SBMDPs we have to face optimization of, ultimately,
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Algorithm 1 Exact computation of PPareto andVPareto

1: function Pure-opt-exact (P = (S , A,T↕, R↕, Pr ), γ )
2: P ←

{
arbitrary policy

}
▷ initialize current policy set

3: F ← P ▷ initialize the Pareto frontier

4: for i ∈
{
1, . . . , |S |

}
do

5: P ← ∪π ∈P
{
π ′ | d (π , π ′) = 1, vπ ≯ vπ

′
}

6: F ← PO (F ∪ P )
7: return F

several MDPs with related but not identical transition probabilities;

furthermore, we consider the worst and best case vectors. This

seems to be a different, and generally harder problem.

For most non-trivial models the number of Pareto optimal poli-

cies is still much too large to compute them all and many policies

show a similar behavior. From a practical point of view it is suffi-

cient to compute a subset of the Pareto frontier if the correspond-

ing value vectors are evenly distributed in the value vector space.

Theoretically, one can try value iteration or policy iteration-based

approaches to compute policies from PPareto and the corresponding

value vectors fromVPareto, as in [28]. The disadvantage of value iter-

ation algorithms is that the number of intermediate partly evaluated

policies can become enormous before the value iteration converges

and the policies get completely evaluated. In this case, one has to

stop the algorithm with a large number of non-comparable policies

which might even not be optimal since value iteration provided

only an approximation or a lower bound of the true value vectors.

Thus, we consider a policy iteration-based approach.

In the following, we present two algorithms. The first algorithm

computes PPareto exactly, albeit at a possibly high computational

cost. The second algorithm is a fixed-point iteration that computes

an increasing set of mutually non-dominating policies. Our first

approach relies on the following result. The proofs of this and the

following results can be found in the online companion [23].

Lemma 3.1. Let P = (S,A,T↕,R↕, Pr ) be a SBMDP. Let further-
more π , π ′ be two policies where π ′ lies on the Pareto frontier. Then
there exists a finite sequence of policies π = π0, π1, . . . , πN = π ′

where d(πi , πi+1) = 1, v(πi ) ≯ v(πi+1) and, additionally, N ≤ |S |.

From this result, we develop a procedure that computes PPareto
as sketched in Algorithm 1. Intuitively, the algorithm generates for

each currently considered policy possible non-dominated neighbor

policies and updates a global set of non-dominated policies. This

continues for |S | steps.

Theorem 3.2. Algorithm 1 correctly computes PPareto.

The complexity of the exact algorithm is, as of yet, unclear. In

the worst possible case the algorithm will produce large numbers

of temporarily optimal policies that will be dominated by a few

Pareto-optimal policies in the end, making the worst-case complex-

ity O
(
mn )

, theoretically independent of the final size of PPareto. To

avoid this, we propose a slightly different algorithm that computes

a set of policies that seem to be a reasonably good approximation

of PPareto. It is important to note that the following approach is

an heuristic; later, we shall discuss the (empirical) quality of this

heuristic.

The heuristic approach is a simplification of the Algorithm 1.

The simplification lies in including only those policies into the

non-dominated set that are non-dominated with respect to all other

policies. This decreases the number of candidate policies and, thus,

the runtime at the cost of possible inaccuracy.

The practical implementation tries to find quickly policies that

are spread over the Pareto frontier by analyzing first those policies

which are likely to belong to the Pareto frontier. It is known that the

policies π↓, π , π↑ belong to PPareto, as no other policy has a greater

value vector in the lower bound, average, and upper bound case,

respectively, by definition. Starting with these policies makes the

algorithm walk through the policy space from the extreme points of

the Pareto frontier which, as we hope, yields an evenly distributed

non-dominated set of policies.

The following simple observation helps to find good policies

which are candidates for the Pareto frontier without too many

policy evaluations. Let for a policy π and a state-action pair (s,a)
the gradient be

∇(π , s,a) =
©­«ra↓s + γ min

pas ∈pa↕s
pas v
(π )
↓
−v
(π )
↓s ,

ras + γp
a
s v
(π ) −v

(π )
s , r

a
↑s + γ max

pas ∈pa↕s
pas v
(π )
↑
−v
(π )
↑s

ª®¬ .
(3)

If, for some policy π , a state s and an action a ∈ A \ {π (s)} can be

found such that

∇(π , s,a) >P 0 (4)

then a policy π (s ,a) can be defined with π (s ,a)(t) = π (t) for t , s

and π (s ,a)(s) = a and for π (s ,a) it is v(π
(s ,a)) >P v(π ). We define an

operator

π ′ = popt
(
π , v(π )

)
that generates a new policy from π by selecting for each s the

lexicographically smallest action a that observes (4), whenever this

is possible. Looping popt until convergence, which occurs in the

repeat-loop in lines 14–17, yields a locally optimal policy in the

Pareto frontier.

The function popt considers only pairs (s,a) where the gradient

is positive in all components, making π (s ,a) dominate π . In fact,

the gradient gives a hint how the new policy will behave. From the

gradient, the direction of the different value vectors of a new policy

can be estimated without evaluating it. Policy evaluation is done by

a function eval which solves the following three sets of equations

to compute the value vectors for some pure policy π .

u↓ = r(π )
↓
+ γ min

P ∈P (π )
↕

(
Pu↓

)
, u = r(π ) + γP

(π )
u,

and u↑ = r(π )
↑
+ γ max

P ∈P (π )
↕

(
Pu↑

) (5)

The equations for the average values define a set of linear equations

which can be solved with standard techniques. For the vector of the

worst and best case an iterative approach is applied: The vectors

are successively computed by solving the LP and optimizing the

matrix until convergence [8].

In our algorithm we use a set PV that contains tuples (π , v(π )).
Additionally, we use a set P where all evaluated policies are stored

to avoid re-evaluations of policies. In the current description, new
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Algorithm 2 An heuristic for PPareto andVPareto

1: function Pure-opt(P = (S , A,T↕, R↕, Pr ), γ )
2: PV ← {(π↓, v↓), (π , v), (π↑, v↑)};
3: P ← {π↓, π , π↑ } ;
4: while |PV | < max. number of policies do
5: Π = ∅ ;
6: for π ∈ PV and all (s , a) where π (s ,a) < P do
7: (д(π ,s ,a)

↓
, д(π ,s ,a), д(π ,s ,a)

↑
) = ∇(π , s , a) ; Π = Π ∪{

(π , s , a
)
} ;

8: if no non-negative gradient exists for (π , s , a) ∈ Π then
9: break (all locally non-dominated solutions found);

10: for д ∈
{
д↓, д, д↑

}
do

11: if д(π ,s ,a) > 0 exists then
12: (π , s , a) ← argmax(π ,s ,a)∈Π

{
д(π ,s ,a)

}
;

13: π ′ ← π (s ,a);
14: repeat ▷ compute local optimum

15: v(π
′) = (v↓, v, v↑) ← eval (P, π ′) ;

16: π ′ ← popt (π ′, v(π
′));

17: until π ′ does not change
18: PV ← PO

(
PV ∪ {(π ′, v(π

′))}

)
; P ← P ∪ {π ′ } ;

19: if PV was not changed then
20: break (all new policies are explored or dominated)

21: return PV

policies are generated starting from available policies by maximiz-

ing one direction of the gradient. The algorithm stops if in the

current set of non-dominated policies, the neighbors of each policy

are either explored or dominated. A further stopping condition is

to explore a predefined number of policies.

As the algorithm is a heuristic, it is difficult to argue about guar-

anteed performance in terms of quality of the output, that is, if the

resulting policies Pr =
{
π | (π , ·) ∈ PV

}
fulfill PPareto ⊆ Pr and

Pr ⊆ PPareto. It is still possible to make several observations. The

main difference between Alg. 2 and Alg. 1 lies in the bookkeeping

that disallows Alg. 2 to explore policies that have been already eval-

uated and, more importantly, are dominated by some other policy

that has been found. By doing this, Alg. 2 may ignore policies that

are dominated yet lead (by choosing an appropriate sequence of

policy changes) to the Pareto frontier; if there are no other ways

to the Pareto frontier, this makes the output of Alg. 2 incomplete.

On the other hand, one can provide a heuristic argument: Since

the initial set of policies contains known “extreme points” π↓, π , π↑,
the policies that will be found by Alg. 2 in realistic settings will

stem from a gradual transition from one extreme policy to another,

as there will always exist a path of policies that improves one of

the objectives until an optimum is reached. This way, we can ex-

pect that in real-life problems, the resulting set Pr will cover the
Pareto frontier or at least the space between the value vector tuples

v↓, v, v↑ adequately, i. e., the resulting set of value vectors will be
evenly distributed in the space between the extreme value vectors

stemming from π↓, π , π↑. Furthermore, we expect that for practi-

cal problems, the following assumption will hold: If for a set of

policies P it is P ⊆ PPareto and P contains not all Pareto optimal

policies, then there exists a policy π ∈ P and a state-action pair

(s,a) ∈ S × A such that π (s ,a) < P and π (s ,a) is not dominated by

any other policy in P . This especially means that there is always a

“globally” non-dominated path of policies from a set P of mutually

non-dominating policies to a policy in PPareto \ P if PPareto , P .
We expect that this assumption holds for practical instances. Fur-

thermore, we conjecture that our assumption is also true for the

problem in general. Finally, since Algorithm 2 is a variation of Al-

gorithm 1, the same complexity reasoning applies here. However,

the practical complexity should be lower than that of Algorithm 1,

as less SBMDP evaluations have to be performed.

4 Evaluation

We have performed a series of experiments where we considered

several questions. First, we compared the performance of Algo-

rithm 2 against a black-box multi-objective optimization method

as reference. We have chosen SPEA2 [30] as reference since it is

a well-studied, simple black-box optimization algorithm. Second,

we have evaluated the general performance of the algorithm with

respect to problem size and the number of computed solutions.

For the evaluation, we have used amachinewith an Intel® Core™

i7-4790 CPU and 16 GB RAM. We have set a time limit of 1000 s

for SPEA2 and a limit for Algorithm 2 of 50 000 checked policies.

The archive size for SPEA2 has been set to 50 000. Concerning the

implementations, we have used OpenMP parallelization methods to

use multiple CPU cores when possible. Furthermore, we have used

advanced numerical algorithms to evaluate (1) and (2). Specifically,

for large instances, we substituted the direct LU solver [24] by

preconditioned GMRES [18, 24] with an ILU0-preconditioner. The

code and testing infrastructure are available at [22] and [21].

4.1 The Model of Multi-Server Queue

As the first case study, we have chosen a parameterizable model

that can be easily generated; more concretely, we have considered

a multi-server queue where servers can be switched off to save

energy and switched on if the load in the system increases. Such

queues are abstract models for server farms [7]. The goal is to

find a compromise between small response times and low energy

consumption.

We consider a system where customers arrive according to a

Poisson process with rate λ and require an exponentially distributed
service with mean µ−1. As our algorithms are designed for discrete-

time BMDPs, we consider a (morally) equivalent discrete model

where the probability of arrival of a customer in a time unit is p, the
service probability is q and, thus λ and µ are multiples of p−1 resp.
q−1. The system has a capacity ofm and contains c servers. Each
server can be in one of three states on, off and start. A server can be

switched off after the end of a service or if it is idle. A server that is

switched off immediately changes its state from on to off. Servers
in state off can be switched on which means that they change their

state to start. The duration of the starting period is exponentially

distributed with rate ν , then the server changes its state to on and is
ready to serve customers. A state of the system can be described by

(i, j,k, l) where i ∈ [0,m] describes the number of customers, j,k, l
include the number of servers in state on, start and off, respectively.
Consequently, j +k + l = c has to hold. The number of states equals

n = (m + 1)(c + 2)(c + 1)/2. The reward in the state (i, j,k, l) equals
(m − i)/(jω1 + kω2 + lω3) where ω1,ω2, ω3 describe the energy

consumption in the on, start, and off state.
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The upper and lower bounds for the transition probabilities were

chosen randomly by generating Gaussian noise and adding it to

the transition probabilities defined above.

Comparison to a generic heuristic. As we consider a new

problem, we have chosen to compare our approach to a black-box

heuristic. More specifically, we have considered multi-objective

optimization heuristics and decided to compare our algorithm to

SPEA2 as it is a well-studied evolutionary optimization algorithm

that is specifically designed to compute non-dominated sets for

multi-objective optimization problems.

The SPEA2 algorithm. In detail, SPEA2 keeps two sets: a pop-
ulation P and an archive A where the non-dominated solutions are

stored. In each iteration of the optimization cycle,A is updated with

non-dominated elements of P . Then, a selection step takes place in

which first, all elements of A ∪ P are assigned a fitness value and
then, the solutions with lower fitness values are chosen to generate

new solutions by application of mutation and crossover operators.

The newly generated solutions are then the new population.

The distinctive feature of this approach is the fitness evaluation:

The fitness of an individual solution p depends on the strength of

other solutions p′ that cover p. The strength itself is defined as the

number of covered solutions; thus, the non-dominated solutions

have maximal strength and minimal fitness values by definition,

otherwise the ranking aims at picking more diverse solutions, i. e.,

solutions that are more evenly distributed in the objective value

space.

In our SPEA2 implementation,we have defined problem-specific

mutation and crossover operators. As possible solutions are station-

ary policies, the operators could be defined in a straightforward

fashion. Mutation affects a decision in one state with probability

1/n, if n is the number of states in the MDP, and replaces the previ-

ous action in the policy with a random one. Crossover takes two

“parent” policies and chooses for the result an action from either of

the original policies with probability 1/2.

Comparisonmetrics. To quantify performance differences, we

have used the coverage metric that has been introduced in [31]. This

performance metric has been designed to compare two output sets

of (heuristic) multi-objective optimization algorithms on the same

problem and computes the fraction of one output that is covered

(i. e., is dominated by or equal to) by an element of the other output

set. Concretely, for two sets of vectorsX and Y , the coverage metric

is defined by C(X ,Y ) = 1

|Y | |
{
y ∈ Y | ∃x ∈ X : x ≥ y

}
|. C(X ,Y ) = 1

means that all points in Y are dominated by or equal to points in X
whereasC(X ,Y ) = 0 means that no point in Y is covered by a point

in X . It is worth noting that the coverage metric is asymmetric and

in most cases it is interesting to compute both C(X ,Y ) and C(Y ,X ).

Results.The results of the comparison can be found in Fig. 1. The

first figure describes the coverage metric where the first argument

is the policy set computed by Alg. 2, the second figure describes

the converse. In the run, SPEA2 took always 1000 s while Alg. 2 did

never take more than 330 s.

It is easy to see that Algorithm 2 almost always delivers a signif-

icantly better performance with respect to both time complexity as

well as quality of computed policies. More concretely, in nearly all

cases Algorithm 2 has computed a set that completely covered all

solutions generated by SPEA2; the evolutionary heuristic, however,

has never produced a policy that strictly dominated a policy from

Alg. 2 and was only able to yield comparable solutions on small

instances with state space size of at most 20.

Comparison to an exact computation. For some instances,

we have furthermore compared the performance of Algorithm 2 to

the exact approach in Algorithm 1. Concretely, we have considered

the case m = 2, c = 3. It has turned out that for this case, the

coverage metric was always 1. This suggests that Algorithm 2 may

compute the complete Pareto frontier not only heuristically but

also in theory. This is, however, a conjecture subject to further

investigation.

4.2 Time complexity measurements

As the number of policies was bounded by an upper limit of 50 000

and |A| = o(|S |), the complexity can be roughly estimated by a

cubic term in |S |. For practical applications, we are also interested

in runtimes on real-life instances. For this, we have used a slightly

different but more general (and somewhat more scalable) model.

The grid model. We have chosen a model that resembles a

grid with nm states S =
{
si , j | i ∈ [n], j ∈ [m]

}
and m actions

A = [m]. The rewards for actions in each state are chosen ran-

domly with mean 100 and variance 20. The transition probabilities

are also chosen randomly according to the Dirichlet distribution.

Concretely, the transition probability vector from state si , j to states
s
min(n,i+1), j′ for action a is Dirichlet-distributed with concentra-

tion parameters

(
αa
1
, . . . ,αam

)
where αaj′ = 10 if a = j ′ and αaj′ = 1

otherwise which yields an (expected) 10 times larger probability

to land in si+1,a than in other states. The upper and lower bounds

are, as before, generated by adding Gaussian noise.

Complexity. We present the results in graphical form. To get

the results, we have run Algorithm 2 on instances with up to 400

states, with n andm between 5 and 20. For each (n,m), we have
created 4 instances.

The results can be seen in Fig. 2a and Fig. 2b. The red dots are

the empirical data, the blue lines describe a confidence interval

that stems from a (scaled) t-distribution guess. The green line is

the cubic regression term for convenience. One can see that the

experimental performance generally matches a polynomial term,

but also that even on large instances, the mean time until a non-

dominated solution is generated lies under a second.

4.3 The Model of Autonomous Nondeterministic Tour
Guides

Our second case study is inspired by “Autonomous Nondetermin-

istic Tour Guides” (ANTG) in [4, 10], which models a complex

museum with a variety of collections.

Models in [4] are MDPs. In our experiment, we will insert some

uncertainties into the MDP. Due to the popularity of the museum,

there are many visitors at the same time. Different visitors may

have different preferences of arts. We assume the museum divides

all collections into different categories so that visitors can choose

what they would like to visit and pay tickets according to their

preferences. In order to obtain the best experience, a visitor can first

assign certain weights to all categories denoting their preferences to
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(a) CI E (b) CEI

Figure 1: The C-measures in dependence of state space size

(a) Total time in dependence of problem size (b) Mean time for a policy in dependence of problem size

Figure 2: Time complexity measurements on the grid model

the museum, and then design the best strategy for a target. However,

the preference of a sort of arts to a visitor may depend on many

factors like price, weather, or the length of queue at that moment

etc., hence it is hard to assign fixed values to these preferences. In

our model we allow uncertainties of preferences such that their

values may lie in an interval.

For simplicity we assume all collections are organized in an n×n
square with n ≥ 10. Let m = n−1

2
. We assume all collections at

(i, j) are assigned with a weight 1 if |i −m | > n
5
or

��j −m�� > n
5
,

with a weight 2 if |i −m | ∈ ( n
10
, n
5
] or

��j −m�� ∈ ( n
10
, n
5
]; otherwise

they are assigned with a weight interval [3, 4]. In other words, we

expect collections in the middle will be more popular and subject

to more uncertainties than others. Furthermore, we assume that

people at each location (i, j) have two non-deterministic choices:

either move to the north and east, that is, (min(n, i + 1),min(n, j +
1)) or to the north and west, that is, (min(n, i + 1),max(0, j − 1))

if i ≥ j, while if i ≤ j, they can move either to the north and

east, (min(n, i + 1),min(n, j + 1)), or to the south and east, that

is, (max(0, i − 1),min(n, j + 1)). The transitions also depend on

the location of the collection. For the collections in the middle,

the main direction of transition is chosen with probability [0.8, 1]

while the probability to move to some other neighbor collection is

[0, 0.2]. In the expected case, we set the probability to move to the

collection in the main direction to 0.8 and distribute the remaining

probability mass evenly among other neighbor collections. For

collections outside the middle, the main direction (for example,

north and west) is chosen with probability 1.

Therefore a model with parameter n has n2 states in total and

roughly 2n2 transitions, 2% of which are associated with uncertain

weights and uncertain transition probabilities. Notice that a tran-

sition with uncertain weights essentially corresponds to several

transitions with concrete weights.

We define a reward structure denoting the reward one can obtain

by visiting each collection. For simplicity, we let the reward be the

same as the weight of a collection. We can ask for the optimal policy

for the expected discounted reward criterion, that is, in the scenario

where it is preferable to make better rewarding moves early.

Evaluation of the ANTG model We have performed an eval-

uation of the model for 10 ≤ n ≤ 20, with the results depicted in

Fig. 3. For convenience, the runtime and the number of policies

are plotted in dependence of the number of states, which is n2. We

see that on large instances, the problem structure yields a large

number of optimal policies, thus decreasing performance. On small

instances, however, the number of optimal policies generated is

small, which allows for a fast computation of the Pareto frontier.

5 Conclusions

In this paper, we have presented a novel approach to analyze

bounded-parameter Markov decision processes. In contrast to

known approaches [8] that usually analyze the worst case behavior

and result in a variant of robust optimization, the problem is han-

dled here as a multi-objective problem. Of course, the price for this

extension can be an exponential complexity due to an exponential
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Figure 3: Evaluation of the ANTG model

number of optimal and mutually incomparable policies in this case.

The problem differs from many other multi-objective optimization

approaches for MDPs where several expected values are analyzed,

whereas here worst, expected and best case behavior are consid-

ered together which together yields a multi-scenario optimization

problem.

In order to find all Pareto optimal policies in multi-objective op-

timization of BMDPs, two computational algorithms are presented.

One of the algorithms computes the desired set of policies exactly,

but has a prohibitive runtime complexity. The second algorithm

that is explicitly designed for the problem is a heuristic and seems

to perform well on a large number of test instances. In particular,

we have shown that the policies obtained by the heuristic were in al-

most all cases better than those produced by a generic evolutionary

multi-objective optimization algorithm.

The approach presented here can be extended in various direc-

tions. As mentioned it is fairly easy to consider additional goals

beyond worst, average and best cases. Our results not only apply

to bounded-parameter Markov decision processes, but can also

be utilized for Markov decision processes with convex uncertain-

ties [15]. Therefore, the same basic algorithms can be used in order

to compute Pareto optimal policies, if one adjusts them to solve the

convex program in the iteration step.

For future research, it would be interesting to consider the sto-

chastic multi-scenario problem for stochastic BMDPs. There, the

goal is to optimize the expected value of the value vector, in con-

trast to the value vector of the expected MDP we have used here.

This problem is a slightly different, single-objective optimization

problem and needs to be considered separately.
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