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Probabilistic Reachability
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2 Saarbrücken Graduate School of Computer Science, Saarbrücken, Germany

Abstract. The state space explosion problem is among the largest im-
pediments to the performance of any model checker. Modelling languages
for compositional systems contribute to this problem by placing each
instruction of an instruction sequence onto a dedicated transition, giv-
ing concurrent processes opportunities to interleave after every instruc-
tion. Users wishing to avoid the excessive number of interleavings caused
by this default can choose to explicitly declare instruction sequences as
atomic, which however requires careful considerations regarding the im-
pact this might have on the model as well as on the properties that
are to be checked. We instead propose a preprocessing technique that
automatically identifies instruction sequences that can safely be consid-
ered atomic. This is done in the context of concurrent variable-decorated
Markov Decision Processes. Our approach is compatible with any off-
the-shelf probabilistic model checker. We prove that our transformation
preserves maximal reachability probabilities and present case studies to
illustrate its usefulness.

Keywords: state space explosion · atomicity · partial order reduction ·
concurrency · interleavings · model checking

1 Introduction

Concurrency problems are notoriously difficult to study. One important reason
is that activities local to a single component can interleave in arbitrary order
with those of others, which is a root cause of the state-space explosion problem.

One of the earliest attempts to alleviate this problem is a feature of Holz-
mann’s language Promela [16], exploited in the model checker Spin. Promela
contains an atomic keyword, to be used by the modeller to group sequences
of computations so that they are executed atomically, i.e. without the need to
store intermediate states, which would otherwise contribute to state space explo-
sion. Nowadays, model checkers like Uppaal allow the modeller to place entire
C-code fragments as effects on single transitions [4]. As another example, Lnt,
the modern language of the Cadp model checking framework [10], provides a
dedicated “procedure” construct, the semantics of which ensure that the effect
of each procedure body does not span more than a single transition. Apart from
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2 G. Fox et al.

interesting semantic questions (what if the body does not terminate, what if
it cannot be made atomic?), these solutions burden the modeller with deciding
which computations to group together.

Instead, partial order reduction techniques (POR) take over the task of iden-
tifying local computations that can be considered independent, and thus need
to be explored in only one of their interleavings as opposed to all interleavings.
POR techniques usually fall into one of two categories: Static POR [12,18,21],
running mostly before state space exploration (hence the name “static”), com-
putes so-called persistent sets, that are subsets of the transitions enabled in the
different states of the system. Exploration then does not follow all the transi-
tions enabled in a state, but only the ones in the persistent set of that state.
Dynamic POR [1,9] on the other hand aims at materialising persistent sets dur-
ing state space exploration, which promises to be more precise, as information
about concrete executions is available and does not need to be overapproximated
as much. POR has also been adapted to the probabilistic setting [2,3,7,8,11].

The present paper describes a technique that achieves reductions comparable
to those of POR, but is actually geared towards automated placement of atomic’s
in the model source code. Executed as a preprocessing step prior to the actual
model checking, our approach analyses the model statically, in order to identify
instruction sequences inside components that can safely be made atomic. This
places the instructions on a single transition in the state space, instead of taking
multiple steps that would multiply when interleaved.

We present our technique for variable-decorated, concurrent probabilistic
models and probabilistic model checking. In this setting, the model checker usu-
ally constructs a Markov decision process that needs to be stored explicitly and
very often is of prohibitive size. Symbolic or SAT-based approaches do not work
particularly well here [15,20], basically because numerical computations need to
be performed at the end.

We call our approach “syntactic partial order compression”, because it has
the same goal as partial order reduction, i.e. to rule out redundant interleav-
ings. In general, POR techniques appear more capable of reducing the number
of interleavings than the placement of atomic’s, because POR can freely choose
between interleavings that involve several components of the system, whereas an
atomic sequence is restricted to allowing only one component to make progress.
We expect that the latter will often not suffice to preserve the property of inter-
est, while the former still can, i.e. POR can still find opportunities for reduction
when placing an atomic is just not sound anymore. In contrast to most POR
techniques however, our approach does not require the model checker to co-
operate (e.g. by pruning state space exploration) and thus can be used with
any off-the-shelf tool. Furthermore, traditional POR techniques do not work
well in our particular setting, rooted in the fact that probabilistic decisions (in-
side components) alternate with interleaving of components, and the resulting
tree-shaped executions contain cross-dependencies that are difficult to account
for [11]. Therefore, POR techniques have so far not delivered true success sto-
ries for probabilistic models. Recent work in this realm [8] did explore POR to
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Syntactic Partial Order Compression 3

find and syntactically enforce particular representative interleavings — but the
results of this approach do not translate to atomic’s, which we aim at.

Our main contribution is a perspicuous three-step approach that transforms
a parallel composition of processes without ever materializing the product pro-
cess: First, a generation step builds up a set of so-called chains for each process.
A chain is a sequence of alternating nondeterministic and probabilistic decisions
in one component, with the main requirement being that schedulers that never
interrupt this sequence by any transitions from other components still achieve
the same maximum reachability probability for the state-formula in question.
We give a wellformedness condition for these chain sets, largely independent of
how they are actually generated. Second, as a filtering step we describe an opti-
mization problem aimed at finding a subset of the generated chains that admits
as few interleavings as possible without changing said probability. Lastly, the fu-
sion step turns the remaining chains into proper probabilistic transitions again,
whereby sequences of decisions are compacted into atomic decisions, obtaining
a syntactic representation of the transformed system.

2 Preliminaries

We start off by reviewing the basics of variable-decorated Markov decision pro-
cesses in the style of Modest [5,13], building upon [14], which we recommend
for further details and elaborate discussions of the concepts.

Basic structures. Throughout the paper we assume a finite set V ar of variables
with countable domains Dom(x) for all x ∈ V ar and a set Exp of expressions over
these variables, the detailed syntax and semantics of which are not of importance.
We assume Bxp ⊆ Exp to comprise boolean expressions ranging over {tt,ff} and
Axp ⊆ Exp to denote arithmetic expressions ranging over Q. The set V al :=
V ar → Dom(V ar) of valuations contains all mappings of variables to values of
their domains, i.e. for each v ∈ V al we have ∀x ∈ V ar : v(x) ∈ Dom(x).

For x ∈ V ar and e ∈ Exp we call x := e an assignment. Two assignments
x1 := e1 and x2 := e2 are called consistent iff x1 6= x2 or Je1K(v) = Je2K(v)
for all v ∈ V al, where JeK(v) ∈ V al → V al is the function that evaluates
expression e given valuation v. The set Upd of all updates contains all sets of
pairwise consistent assignments. Consistency allows the definition of a function
JuK ∈ V al → V al updating valuations after simultaneous evaluation of the
assignments in u.

For a set S we call elements of S → Axp symbolic probability distributions
over S and the values these functions return weight expressions.
Given a function f the set Supp (f) contains the arguments f is defined for.
For all sets S of the form S = A × B we define S⊥ := (A × B)⊥ := A⊥ × B⊥
and if S is not a cartesian product we set S⊥ := S ∪ {⊥}, where ⊥ /∈ S is a
distinct placeholder element. Tuples (⊥, . . . ,⊥) will be abbreviated with ⊥. For
sequences s, t ∈ S∗ we call s a prefix of t and write s v t iff ∃t′ : t = s · t′.

For a, b ∈ N we define [a : b] := {i ∈ N | a ≤ i ≤ b} and for vector variables
we usually use the notation ~v = (v1, . . . , vn).
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4 G. Fox et al.

MDPs with Variables. Our models are based on parallel compositions of Markov
Decision Processes (MDP), enhanced with variables, guards and probability ex-
pressions [13,14]:

Definition 1 (VMDP). A Markov decision process with variables (VMDP)
is a tuple (Loc, A,E, linit) where Loc is a finite set of locations, A ⊇ {τ} is
a finite alphabet, including the silent action τ , and linit ∈ Loc is the initial
location. Furthermore, E ∈ Loc → P(Bxp × A × (Upd × Loc → Axp)) maps
each location to a set of transitions, which each consist of a guard g ∈ Bxp, a
label α ∈ A and a symbolic probability distribution m ∈ Upd× Loc → Axp that
weighs pairs of updates and target locations. We denote the set of all transitions
by T :=

⋃
l∈Loc E(l).

l1

l2

τ [consumed < total]

consumed := consumed + 1

τ
l3

1/3 : xi := 2

1/3 : xi := 3

1/3 : xi := 1

τ
l4

1/3 : yi := 2

1/3 : yi := 3

1/3 : yi := 1

l5

τ
[x

i
≤
y
i
]

τ [xi > yi]

(xi, yi) := (yi, xi)

τ

l6

1− (1− ei) · yi−xi
2

(1− ei) · yi−xi
2

:
ei := min(ei + 0.1, 1)

broken := broken + 1

l7
τ hi := hi + 1

τ [t ≥ hi]

processed := processed + 1

lc

τ
[t
≤
n

]
t

:=
t

+
1

Fig. 1. A VMDP network modelling Example 1

As examples, consider the two processes depicted in Fig. 1: Locations are con-
nected by transitions, which are decorated with their label and nontrivial guard.
Distributions m with |Supp (m) | > 1 are represented by splitting up transitions
at • and labeling arcs with their probability expressions and updates. Each pro-
cess transitions between locations: Given its current location l and a valuation v,
a transition (g, α,m) ∈ E(l) is picked nondeterministically, under the condition
that its guard expression is satisfied by v. Then, the weights assigned by m are
evaluated over v, turning weight expressions into actual probabilities, based on
which the new location l′, along with an update u is chosen. The process then
transitions to l′ and updates v to v′, according to u.

The fact that probability distributions are symbolic (i.e. probabilities depend
on the current valuation of variables) contributes to the expressiveness of the
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Syntactic Partial Order Compression 5

formalism, as we will see in Example 1. For the purposes of this paper, we require
that all symbolic probability distributions m be well-formed, i.e. they satisfy

∀v ∈ V al, (u, l) ∈ Supp (m) : 0 ≤ Jm(u, l)K(v) ∧
∑

(u,l)∈Supp(m)Jm(u, l)K(v) = 1

Violations of this condition will be considered modelling errors in practise, caus-
ing Modest to reject the model.

Networks of VMDPs. So far, we have not said a lot about the action labels
α ∈ A. They become significant when we consider networks of VMDPs. From
now on we will deal with finite sets of VMDP’s Ci = (Loci, Ai, Ei, liniti):

Definition 2 (VMDP network semantics). A VMDP network is a tuple
N = (C, vinit) consisting of an initial valuation vinit ∈ V al and a finite set
C = {C1, . . . , CN} of VMDP components. We call S := (Loc1× . . .×LocN )×V al
the state space of N , with initial state sinit := ((linit1 , . . . , linitN ), vinit) ∈ S.

We write (~l, v)
~g,~α,~p,~u−−−−→ (~l′, v′) iff there is α ∈ A and P ⊆ [1 : N ], such that

1. If α = τ , then |P | = 1, otherwise P = {i | α ∈ Ai}.
2. For all i ∈ P we have αi = α and (gi, α,m) ∈ Ei(li) for some m with

m(ui, l
′
i) = pi, such that JgiK(v) = tt and JpiK(v) > 0.

3. For all i ∈ [1 : N ] \ P we have li = l′i and (gi, αi, pi, ui) = ⊥
4. v′ = J

⋃
i∈P uiK(v)

A (finite) path in N to sn is a sequence of the form

π = sinit
~g0, ~α0,~p0,~u0−−−−−−−→ s1

~g1,~α1,~p1,~u1−−−−−−−→ s2 . . .
~gn−1,~αn−1,~pn−1,~un−1−−−−−−−−−−−−−−→ sn ∈ Paths

and we set state(π) := sn.

In a network, the executions of VMDPs interleave, i.e. the order in which they
progress is chosen nondeterministically. Definition 2 however mandates common-
alphabet synchronization in the style of Hoare [6], making steps in the network
fall into one of two categories: Either a silent τ -step is made by one single
process, or a different, nonsilent action label is chosen, requiring all processes
with this label in their alphabet to participate and execute a step synchronously.
In addition to communicating via synchronizing actions, processes also share all
the variables in V ar and can read and write them to exchange information.
Similar to the wellformedness of symbolic probability distributions above we
require that networks never lead to a state in which updates according to rule
4 would be inconsistent. Even after strengthening this condition to make it
easily implementable (e.g. in Modest), it remains a very light restriction and
is relevant only for non-τ steps.

Example 1 (Factory). A factory receives a delivery of machine parts that are to
be welded together in pairs. Part sizes are randomly distributed. A number of
workers start out with a certain amount of experience with this type of task.
Working in parallel, they grab pairs of parts and process them, which takes one
hour per pair. The less experienced a worker is and the more two parts differ in
size, the more likely it is that the worker makes a mistake and breaks the parts.
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6 G. Fox et al.

Fig. 1 depicts a model for Example 1: A global clock keeps track of time during
an n-hour day, while each worker is represented by a dedicated process (indexed
with i): Starting in l1, the worker obtains a pair of parts, unless all have been
obtained already. From l2 to l4 he measures the parts. From l4 to l5 measures
are sorted: xi should refer to the shorter part length. Based on the difference
in part lengths and his current level of experience, the worker will then either
succeed or fail in welding parts together, the latter of which will make him gain
experience. Both success and failure take one hour (l6 to l7) which is why the
worker can obtain another job only after the clock has progressed.

Note that at each location li a worker process might be nondeterministically
interrupted by others. To avoid the enormous number of interleavings that these
locations give rise to the modeller might want to manually compact subsequent
transitions into one. This error-prone transformation would require duplicating
parts of the model and thus lead to a less concise representation, justifying the
desire for a tool that performs such a transformation “under the hood”.

Probabilistic Reachability. Model analysis is often concerned with the question
of reachability, i.e. whether there is a path of the system such that at some point
of the path the system state satisfies a given condition. We denote such queries
by ♦ϕ, where ϕ is a predicate over states. By Paths(♦ϕ) we denote the set of
finite paths containing a state s satisfying ϕ.

Since exploring paths of the system usually involves probabilistic choices it
makes sense to not only ask for the existence of paths satisfying ♦ϕ, but for the
probability P(♦ϕ) with which one of these paths is chosen. These probabilities
depend on the way that nondeterministic choices are resolved and thus can be
defined only given a scheduler S ∈ Sched which is a function S→ T⊥1 × . . .×T⊥N ,

such that whenever S((~l, v)) = (g1, α1,m1, . . . , gN , αN ,mN ) we have

(~l, v)

 g1
...
gN

,
α1

...
αN

,~p,~u
−−−−−−−−−−−−→ (~l′, v′)

for some ~p, ~u, ~l′, v′ with ∀i ∈ [1 : N ] : mi(ui, l
′′
i ) = pi.

Intuitively, a scheduler thus resolves nondeterministic choices by selecting tran-
sitions that are enabled in the current network state. We define Paths(S) to be
the smallest set satisfying the following conditions:

1. sinit ∈ Paths(S)

2. If sinit
~g0, ~α0,~p0,~u0−−−−−−−→ s1 . . .

~gn−1,~αn−1,~pn−1,~un−1−−−−−−−−−−−−−−→ sn ∈ Paths(S) and we have

S(sn) = (~g, ~α, ~m), then for all steps sn
~g,~α,~p,~u−−−−→ sn+1 we also have

sinit
~g0, ~α0,~p0,~u0−−−−−−−→ s1 . . .

~gn−1,~αn−1,~pn−1,~un−1−−−−−−−−−−−−−−→ sn
~g,~α,~p,~u−−−−→ sn+1 ∈ Paths(S)

Remark 1. In full generality, schedulers base their decisions not only on the
current state, but the complete sequence of visited states and transitions, and
can randomize their decision. In our context this does however not add any
power [19], which is why we restrict to pure memoryless schedulers.
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Syntactic Partial Order Compression 7

This is what we need to properly define reachability probabilities:

For π = (~l0, v0)
~g0,~α0,~p0,~u0−−−−−−−→ (~l1, v1) . . .

~gn−1,~αn−1,~pn−1,~un−1−−−−−−−−−−−−−−→ (~ln, vn) ∈ Paths:

P(π) :=
∏

0≤i<n

∏
1≤j≤N

Jpi,jK(vi) and PS(♦ϕ) :=
∑

π∈Paths(S)∩Paths(♦ϕ)

P (π)

P(π) can be seen as a short-hand notation for the measure value P(Cyl(π)) of the
cylinder Cyl(π) composed of all maximal paths prefixed by π. It is easy to see that
this definition meets Carathodory’s extension theorem so that P defines a unique
measure over the σ-algebra generated by the finite paths. In particular, the
set maxv(Paths(S)) of (possibly infinite) prefix-maximal paths is a measurable
set and Paths(♦ϕ) identified as Cyl(Paths(♦ϕ)) is also measurable. Moreover,
PS(·) = P(maxv(Paths(S)) ∩ ·) is a probability measure.
In this paper we will focus on quantitative reachability properties:

Pmax(♦ϕ) := max
S∈Sched

PS(♦ϕ) or Pmin(♦ϕ) := min
S∈Sched

PS(♦ϕ)

Example 2. For the scenario modelled in Fig. 1 interesting queries include the
probability Pmax(♦(processed = total∧ t ≤ b)) of finishing work within a certain
time horizon and the probability Pmax(♦(processed = total∧broken = 0)) of not
breaking any parts. Since model checkers are able to output the schedulers that
achieve extremal probabilities, these queries correspond to finding strategies of
how to distribute work packages among the workers.

Chains. The key data structure of our approach is the concept of a chain:

Definition 3 (Branches, links and chains). For a transition t = (g, α,m)
we denote the branches of t by Br(t) := {(u, l′, p) | m(u, l′) = p}. Each branch
b ∈ Br(t) corresponds to a link t · b and we denote the set of all links in the
network by L. Two links t1 · (u, l′, p), t2 · b2 are called consecutive iff t2 ∈ E(l′).
A chain is a finite sequence t0 · b0 · t1 · b1 · · · tn · bn of consecutive links.

Example 3. Consider the arrows from l2 to l3 in Fig. 1: Together they depict a
transition that we refer to as t. The three segments between • and l3 represent
the branches of t. Every route from l2 to l3 depicts a link. A link itself is already
a chain. But also any finite route in Fig. 1 that starts at a location and ends at
a location is a chain, as it is a sequence of links.

If |Br(t)| = 1 we call t Dirac and write t ∈ Tnd, omitting the • in the graphical
representation. We call a location l pure iff l ∈ Locp := {l ∈ Loc | |E(l)| ≤ 1}.

The goal of our approach is to identify certain chains as “uninterruptible”,
i.e. to establish that while a process is inside such a chain, one can refrain
from switching control to a different process, without losing behavior relevant
for the reachability property in question. By collapsing these chains into single
transitions one obtains a new network that thus admits fewer interleavings than
the original one, while preserving the property.
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8 G. Fox et al.

Mobility. To establish chains as “uninterruptible” we use the concept of mobility:

Definition 4 (Mobility). Let i, j ∈ [1 : N ] with i 6= j and t1 ∈ Ei(l1), t2 ∈
Ej(l2) with b1 ∈ Br(t1), b2 ∈ Br(t2). We say that t1 · b1 is forward-commutative

with t2 ·b2 iff for all states s and all step sequences s
~g1,~α1,~p1,~u1−−−−−−−→ s′1

~g2,~α2,~p2,~u2−−−−−−−→ s′′

that involve t1 · b1 followed by t2 · b2 (i.e. projecting the first step on process i
gives t1 · b1 and projecting the second step on process j gives t2 · b2) we also have

s
~g2,~α2,~p2,~u2−−−−−−−→ s′2

~g1,~α1,~p1,~u1−−−−−−−→ s′′ for some s′2 and

P
(
s
~g1,~α1,~p1,~u1−−−−−−−→ s′1

~g2,~α2,~p2,~u2−−−−−−−→ s′′
)

= P
(
s
~g2,~α2,~p2,~u2−−−−−−−→ s′2

~g1,~α1,~p1,~u1−−−−−−−→ s′′
)
.

If s 2 ϕ ∧ s′1 � ϕ ∧ s′′ 2 ϕ we also require s′2 � ϕ. Backward-commutativity
is defined by swapping 1 and 2 above. t1 · b1 is called mobile iff it is forward-
commutative and backward-commutative with all links from other processes.

Mobility of links is what allows us to reorder paths such that the links of a chain
appear as one contiguous sub-path in the proofs of Section 4. Since it ensures
that we neither lose behavior, nor miss states that satisfy ϕ, we can be sure to
preserve maximal reachability probabilities.

Remark 2. Definition 4 is related to the notion of independence usually found in
POR literature [1,3,17]: Intuitively, two transitions t1, t2 are independent if for
any state where they are both enabled, both executions t1 · t2 and t2 · t1 can be
performed and lead to the same state distribution. The difference is that while
mobility is defined on the syntactic level of links, independence talks about steps
between concrete states (i.e. vectors of locations, paired with valuations).

3 Algorithm

Our syntactic partial order compression approach comprises three steps: In Step
A we identify a set of candidate chains that are sufficient for spanning the rel-
evant behavior. Since some of these chains are redundant, Step B is then con-
cerned with selecting a subset of chains that eliminates a maximal number of
interleavings. Finally Step C compiles the remaining chains into a new VMDP
network. We assume a given input VMDP network N to start with.

Step A: Chain Generation

The objective of this step is to collect a finite set C of chains that can be turned
into atomic transitions without altering probabilistic reachability. C should sat-
isfy the following requirements:

Definition 5 (Chain set validity). Given a property of the form Pmax(♦ϕ),
a chain set C is called valid iff it satisfies the following conditions:

1. For each chain c = t1 · b1 · · · tn · bn ∈ C we have:
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Syntactic Partial Order Compression 9

(a) c does not contain any link more than once.
(b) If n > 1, c comprises τ -actions only and all its links are mobile.
(c) There is k ∈ [1 : n], s.t. b1, . . . , bk−1 are Dirac and lk, . . . , ln ∈ Locp.
(d) For each state s with s 2 ϕ and every path segment

s
~g0, ~α0,~p0,~u0−−−−−−−→ s1

~g1,~α1,~p1,~u1−−−−−−−→ s2 . . .
~gn−1,~αn−1,~pn−1,~u|c|−1−−−−−−−−−−−−−−−→ s|c|

that involves c as a sequence of steps in one of the processes of N , we
have s|c| 2 ϕ→ ∀i ∈ [1 : |c| − 1] : si 2 ϕ.

2. For each process Ci and each sequence λ of consecutive links originating in
liniti , there is γ ∈ C∗, s.t. λ v γ.

3. For each chain t1 ·b1 · · · tk ·bk ·tk+1 ·bk+1 · · · tn ·bn ∈ C and b′k ∈ Br(tk)\{bk},
there is t1 · b1 · · · tk · b′k · t′1 · b′1 · · · t′m · b′m ∈ C for some t′1, b

′
1, . . . t

′
m, b

′
m.

Condition 1a ensures acyclicity of chains. Condition 1b allows us to reorder
paths of N such that chain c emerges as one contiguous path segment, see Sec-
tion 4. Condition 1c rules out chains that contain a probabilistic choice before a
nondeterministic one. This is necessary because chains will eventually be turned
into atomic transitions again, that according to Definition 2 need to be picked
nondeterministically before their probabilistic choices are made, thus not allow-
ing schedulers to base their nondeterministic decision on the outcome of the
probabilistic choice, which is not yet available. This condition echoes the need
to add additional conditions to Peled’s ample set approach [18] to preserve all
relevant schedulers in probabilistic partial order reduction [2,3,7]. Condition 1d
rules out chains during the execution of which ϕ is briefly satisfied in some in-
termediate state, without being also satisfied upon entering or leaving the chain.
This prevents such intermediate states from being lost when chains are converted
to atomic links. Condition 2 makes sure that control flow inside components is
preserved, i.e. all paths through the locations of a component can still be re-
alized by sequences of chains. Together with Condition 3, that preserves the
probabilistic branching structure of components, it ensures that we can pro-
duce a syntactically well-formed result in Step C. Notice that all links bearing
a nonsilent label will only be represented in C as chains of length 1.

Example 4. In Fig. 1 the only link in the clock process, as well as the links from
l1 to l2 and from l7 to l1 in the worker constitute chains of length 1. The 9 paths
from l2 to l4 constitute chains of length 2. The 4 paths from l4 to l7 are chains
of length 3. This chain set satisfies the conditions of Definition 5. Condition 1c
rules out chains running through l4.

We give one possibility of generating a set C according to the above conditions in
Algorithm 1: It basically performs a depth-first search through every component,
extending chain prefixes as long as possible and starting new empty prefixes at
locations where a chain ended. The latter already ensures condition 2.

The predicate valid(c, t · b) is implemented such that the concatenation c · t · b
satisfies conditions 1b, 1c, 1d and does not contain more than one link with the
same source location, to satisfy 1a and ensure termination. Conditions 1a and 1c
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10 G. Fox et al.

Algorithm 1 Chain generation

function CollectChains(component Ci)
C ← ∅ . Collected chains
T ← {linit} ; V ← ∅ . Locations to visit, locations visited
function Continue(prefix ,l)

terminal ← tt . Is |E(l)| = 0 ?
total ← tt . Was prefix continued for all outgoing links of l?
for all t ∈ E(l), b = (u, l′, p) ∈ Br(t) do

terminal ← ff
if valid(prefix , t, b) then Continue(prefix · t · b, l′)
else total ← ff

if prefix 6= ε ∧ (terminal ∨ ¬total) then . Yield prefix as chain?
C ← C ∪ {prefix}
T ← T ∪ ({l} \ V )

while T 6= ∅ do
l← pop(T ); T ← T \ {l}
V ← V ∪ {l}
Continue(ε, l)

return C

are local syntactic checks. Condition 1b can be conservatively overapproximated
in many ways. Our implementation considers both orders in which two links can
be combined and performs syntactic checks that imply the necessary conditions
in Definition 4. Similarly, we overapproximate Condition 1d, by ensuring that
chains contain at most one link that writes to variables occuring in ϕ.

A careful look at Condition 3 reveals that it is actually not ensured by Al-
gorithm 1: For example, there might be a chain c covering a sequence of transi-
tions, as depicted in Fig. 2. Since c contains the link t ·b, the condition requires a
counterpart c′ that agrees with c up to l and then contains the probabilistic al-
ternative t · b′. This counterpart is missing in Fig. 2. However, since Algorithm 1
starts new chains at exactly those locations where previously generated chains
end and because it satisfies Condition 2, we know that chains c1 and c2 as in the
figure must have been generated, which also entails the generation of c3. Thus
there is at least a subset of C that does preserve all conditions including 3, which
is sufficient as an input for the next step.

Step B: Chain Filtering

The output of Step A is a chain set C that satisfies Definition 5, except for
Condition 3. To enforce the latter we need to select a subset of C that satisfies
it, a problem that can always be solved as we have argued in the previous
section. Since we strive for the selection of a subset that reduces the number
of interleavings as far as possible, we are dealing with an optimization problem
that we cast as a {0, 1}-weighted MAX-SAT instance.

However, Condition 3 is not the only reason for optimizing a subset of C:
A simple iteration over the syntax as in Algorithm 1 will generate redundant
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Syntactic Partial Order Compression 11

l l l
t

b
b′

c

c3

c1 c2

Fig. 2. c violates Condition 3, because ¬ valid(c1, t · b′). Algorithm 1 thus generated c1

as a chain, which put l into its agenda T and caused generation of c2 and c3.

chains in C, because it has to start new chains in all directions at the end
of every chain generated so far, unless sophisticated bookkeeping keeps track
of the path-segments already covered, complicating step A significantly. As an
example see Fig. 2, where c is subsumed by c1 · c3. Experiments have shown
that not eliminating these redundancies by optimization can not only prevent
reduction of the number of interleavings but even increase it, because there are
more nondeterministic choices to enumerate.

Constraints. We need to preserve the conditions of Definition 5. Condition 1
is trivially satisfied for all subsets of C and thus does not need to be encoded.
Condition 3 can be encoded easily, because for every chain c the number of
chains c′ that need to be selected as a consequence of selecting c according to
the condition is usually rather small.

Condition 2 does need to be encoded, because discarding chains in C might
make certain control flow paths unrealizable. For this purpose we propose Algo-
rithm 2. This algorithm attaches so-called bundles to the links of each process.
A bundle B attached to a link t · b represents a set of finite paths that all start
in the initial location and end with t · b. A solution to the optimization problem
must select a set S of chains that all contain t · b. The chains selected in this way
are the ones remaining at the end of step B.

The algorithm starts by attaching bundles to the initial links. For every newly
created bundle attached to a link, successor bundles for all successor links are
created, which is why branches and loops lead to links being attached more tha
none bundle. The constraints generated for bundles make sure that the sets S for
subsequent bundles “fit together”: A chain c can be selected for a bundle attached
to t · b only if c is select for the predecessor bundle as well (“continuation”), or if
t·b is the very first link in c and the predecessor bundle selected a chain ending in
the link that it is attached to (“initiation”). Termination is guaranteed because
for every link there is only a finite number of chains that contain it, bounding
the number of bundles attached to it. Correctness of Algorithm 2 can be proven
by structural induction over paths.

Objective. Intuitively, the goal of Step B is to minimize the number of times a
process can be “interrupted” by the scheduler, giving other processes opportu-
nity to interfere and thus burdening the model checker with a great number of
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12 G. Fox et al.

Algorithm 2 Generation of constraints that encode chain set invariant 2

for all t ∈ T, b ∈ Br(t) do bundles(t · b)← ∅
for all t ∈ E(linit), b ∈ Br(t) do

B ← {c ∈ C | ∃c′ : c = t · b · c′}
bundles(t · b)← bundles(t · b) ∪ {B}
AddConstraint(

∨
c∈B uB,c) . At least one chain must be used to cover t · b

k ← 0
repeat

for all consecutive links ti · bi, t · b and B ∈ bundles(ti · bi) do
BT ← {c ∈ B | ∃c′ : c = c′ · ti · bi} . Chains terminated with ti · bi
B′C ← {c ∈ B | ∃π, σ : c = π · ti · bi · t · b · σ} . Chains continued from ti · bi
B′I ← {c ∈ C | ∃c′ : c = t · b · c′} . Chains initiated with t · b
B′ ← B′C ∪B′I
bundles(t · b)← bundles(t · b) ∪ {B′}
AddConstraint(Ik ∨ Ck) . Initiate new chain, or Continue previous one
AddConstraint(Ik ↔

∨
c∈B′

I
uB′,c)

AddConstraint(Ck ↔
∨

c∈B′
C
uB′,c)

AddConstraint(Ik →
∨

c∈BT
uB,c)

AddConstraint(∀c ∈ B′C : uB′,c → uB,c)
k + +

until fixpoint . Exists because there can be only finitely many B

interleavings. More technically this means that when given the choice of how to
“emulate” a path λ ∈ L∗ by a concatenation γ ∈ C∗ of chains, we should at-
tempt to pick γ such that it contains a minimal number of positions in which one
chain ends and another begins, because these are exactly the positions where a
scheduler might choose to interrupt a process. To encode this intuition, we chose
the summation over all variables Ik generated by Algorithm 2 as the primary ob-
jective to be minimized. This choice is justified by the fact that setting a variable
Ik to true basically means that there is a set of path prefixes that can only be
continued by leaving one chain and entering into a new one. Of course counting
interruptions with this heuristic is biased by being performed on the syntactic
representation of the model, but we expect it to lead to reasonable results as
long as the control flow of processes is not too unusual. As a secondary objective
we minimize the total number of selected chains, hoping to obtain a compact
syntactic representation of the transformation result.

Step C: Chain Fusion

Having obtained a chain set C that satisfies Definition 5, all that remains is
to compile chains to a proper VMDP network again, for which we give Algo-
rithm 3. Starting at the initial location, the algorithm follows chains to reachable
locations, building up the transformed network along the way.

ndchoices(l) contains subsets of the chains starting in location l. It reflects
the possible control flow choices a scheduler can make inside a component: A
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Syntactic Partial Order Compression 13

Algorithm 3 Compilation of a set of chains to a VMDP network

function Compile(component (Loc, A,E, linit), chain set C)
T ← ∅ . Locations to visit
L← ∅ ; E′ ← ∅ . New locations, New transitions
function map(location l)

l′ ← L[l]
if l′ = ⊥ then

l′ = new Location()
T ← T ∪ {l′}

return l′

l′init ← map(linit)
while T 6= ∅ do

l← pop(T ); T ← T \ {l}
l′ ← map(l)
E(l′)← { fuse(map, cs) | cs ∈ ndchoices(l)}

return ({L[l] | l ∈ Loc}, A,E, l′init)

subset cs is in ndchoices(l) iff there is a mapping of locations to transitions, such
that cs is precisely the set of all chains starting in l that contain only selected
transitions:

cs(S) := {t0 · b0 · . . . tn · bn ∈ C | t0 ∈ E(l) ∧ ∀i ∈ [0 : n] : ti ∈ S}
ndchoices(l) := {cs(S) | S ⊆ T ∧ ∀l ∈ Loc : |S ∩ E(l)| = min(|E(l)|, 1)}

fuse(map, cs) converts each such subset cs into a transition of the new
model: Every c ∈ cs is traversed, maintaining a record of the updates seen so
far, in order to substitute variables in guards, weight expressions and subsequent
updates. In the case of guards, the results of the substitutions are then conjoined,
while in the case of weight expressions they are multiplied. After all chains have
been traversed in this fasion, for each chain there is thus one guard g, one
combined update u and one weight expression p. The guard of the resulting
transition is the conjunction of all g. Weight expressions need to be normalized
before they can be combined with updates and target locations to form the
branches of the new transition. Since all nonatomic chains contain only τ -labels
synchronization does not complicate fuse.

Remark 3. Instead of compiling a new model in this fashion, we could as well
resort to the textual representation of the original model (if any), in order to
declare instruction sequences along chains atomic. This, however, can turn out to
be even more cumbersome than the very technical computation in Algorithm 3,
depending on the generated chains and the syntactic structure of the modelling
language. As an example, consider a piece of code like

a; b; if (c) then d else e; f; g;

If the sequence a b d f g can safely be made atomic, but a b e f g cannot,
it is not clear what parts of the code to enclose in an atomic block. Chains that
span across loops can be even harder to represent in syntax.
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14 G. Fox et al.

4 Correctness

In this section, we prove that the transformation given in the previous section
is sound, i.e. that maximal reachability probabilities are preserved.

In the following, mathematical objects indexed by r will refer to the reduced
network. Our goal in this section is to relate PS(♦ϕ) and PSr (♦ϕ), respectively
for S ∈ Sched and Sr ∈ Schedr. Note that despite its similar notation, ♦ϕ
refers to different sets of paths Paths(♦ϕ) and Pathsr(♦ϕ). The reduced system
is composed of transitions built from the filtered chain set Cf ⊆ C.

For a transition t ∈ Ti, we set ↓t := (⊥, . . . ,⊥, t,⊥ . . .⊥) ∈ (T⊥1 × . . .×T⊥N )T

and define ↓b equivalently for branches b. We extend the notation to links and sets
or sequences thereof. For any path π we denote similarly by ↓π the underlying
sequence of vectors of transitions and branches.

Finally, we extend this translation to the whole set Cf :

⇓Cf = {↓c | c ∈ Cf with τ -actions}]
{(t1, . . .) · (b1, . . .) | α ∈ A, (ti, bi) ∈ Cf if α ∈ Ai, (ti, bi) = ⊥ otherwise}

Note that special care has to be taken for chains of length 1 that represent
non-silent actions, that have to be “synchronized” with each other in ⇓Cf .

Without loss of generality, and for the sake of clarity, we assume in this
section that all schedulers are history-dependent. This means, that a scheduler
S is defined for a whole path π instead of only its last state. This assumption
does not interfere with the optimal value of the reachability property, while at
the same time allows us to reason and manipulate the sub-tree of a set of paths,
without interfering with previous transitions taken by the scheduler.

Soundness. In order to establish correctness of the transformation, we want to
simulate any run of the reduced network in the original one, which basically
means that the transformation introduced no new behavior. However, we can
already notice that our reduction may introduce new deadlock situations, that
are fortunately harmless for the reachability properties we are considering:

Example 5. Composing the process on the left of Fig. 3 with itself (under syn-
chronization over actions a and b) yields a system that is free of deadlocks.
Reducing the depicted chain in both components results in a composition of
the process on the right with itself. Here, deadlock is possible. Fortunately, be-
cause we are interested in reachability properties, this newly introduced deadlock
doesn’t influence the value of Pmax(♦(x = 1)).

Lemma 1 (Simulation of the reduced system). Let Sr ∈ Schedr a sched-
uler of the reduced system. We can construct S ∈ Sched for the original system
such that PS(♦ϕ) = PSr (♦ϕ).

Proof. Basically, S has to follow the moves made by Sr. For this purpose, we
define S(π) for any π ∈ Paths by induction on |π|. The following invariant will
hold during the induction:
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l2

l3

l1 l4

τ

τ

a x := 1

b x := 1

l2

l3

l1 l4

τ

τ

a x := 1

b x := 1

Fig. 3. Reducing the chain over l1l2l3 turns the process on the left into the process on
the right.

Invariant 1 If PS(π) > 0 then π = π′ · ρ for some π′,ρ and there are πr ∈
Pathsr, cs returned from ndchoices and c ∈ cs ⊆ Cf , s.t.

↓π′ ∈ ⇓Cf ∗ ∧ ↓ρ v ↓c ∧ |ρ| < |c| ∧ state(πr) = state(π′)

∧ S(πr) = tcs ∧ PS(π′) = PSr (πr)

where tcs denotes the transition resulting from fuse(map, cs).

Intuitively, π′ represents the already chain-reconstructed path in N matched
by πr in Nr, while ρ is the next prefix of a valid chain to be added to π. The
empty path starting in the initial state satisfies the invariant. Let us consider π
satisfying the invariant.

– If PS(π) = 0, we define S(π) arbitrarily, and easily check that any successor
of π still satisfies the invariant, since it is also not reachable.
From now on, we assume that PS(π) > 0 and define π′, ρ, πr as above.

– If |ρ| = 0 and Sr(πr) is a transition of the original system, we simply define
S(π) = Sr(πr) and check that the invariant is still satisfied by all successors
(we can add the same branch to π,π′ and πr).

– Otherwise, ↓ρ v ↓c which means a chain has to be continued. We define
S(π) = (↓c)[|↓ρ|+ 2] = ~t as the next transition vector to be played. For any
branch b ∈ Br(t), there exists c′ ∈ cs such that ↓ρ · ↓(t, b) v ↓c′. Moreover
if the equality holds, the chain is over. In this case, in order to preserve the
invariant, we define ρ′ = ε, and due to the way c′ is compiled into a simple
link in Nr by Algorithm 3, the probability stays equal to probability of the
sequence of individual links in c′ from state(π) in N .

Completeness. We now establish that our transformation is complete, i.e. that
any run in the initial network can still be reproduced in the reduced system, up
to interleavings that do not contribute to the reachability property in question.
This direction is more challenging, and essentially relies on the conditions in
Definition 5. Most of all, the key ingredient is the ability for a scheduler to
postpone any Dirac transition after a probabilistic one:

Lemma 2. Let S ∈ Sched, t · b Dirac and mobile and π ∈ Paths. Let s ∈ S
such that π

↓t,↓b−−−→ s and ~t′ := S(π
↓t,↓b−−−→ s). We can rewrite S into S′ such that:

– For all π′ ∈ Paths with π 6v π′, S(π′) = S′(π′) and PS(π′) = PS′(π′)
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– For all π′, and for all ~b′, s′, S′(π
~t′,~b′−−→ s′

↓t,↓b−−−→ π′) = S(π
↓t,↓b−−−→ s

~t′,~b′−−→ π′)

and PS(π
↓t,↓b−−−→ s

~t′,~b′−−→ π′) =
∑
s′′∈S PS′(π

~t′,~b′−−→ s′′
↓t,↓b−−−→ π′).

Proof. Intuitively, the state is already determined to be s after ↓t, so the sched-
uler can postpone this transition and play the (possibly) probabilistic one first,
thanks to mobility.

Lemma 3. Let S ∈ Sched. We can build S̃ ∈ Sched such that PS(♦ϕ) ≤
PS̃(♦ϕ) and such that ∀π : PS̃(π) > 0 ⇒ ↓π ∈ ⇓Cf ∗.

l0 l1 l2 l3
0.5

0.5

Fig. 4. Example of an increasing reachability probability after applying Lemma 3:
Consider the scheduler running the second component once, then the first component
forever. Probability of eventually reaching l3 is 0.5 as the second component may remain
in l2 forever. After transformation, the scheduler has to follow each chain entirely which
yields possible reachability probabilities 0 and 1.

Proof. We define S̃(π) by induction on |π|. See Fig. 5 for illustration.

– If S(π) = ~t is a transition of the original system that was kept in the reduced
one, we immediately define S̃(π) = ~t which satisfies the property.

– Otherwise, S(π) is a transition that has now been subsumed by a set of
chains. More precisely, for each i ∈ [1 : N ], the next transition run on
component Ci will represent the beginning of a fixed given chain ci. Let us
consider the maximal extension ππ′ such that π′ contains only Dirac links
from one of the ci. (not necessarily from the same component). Two cases
can occur:
• Either the system is deadlocked: ππ′ has no successor. We swap the Dirac

transitions, which are assumed to be mobile, in order to write ↓π′ =
↓c′1 · · · ↓c′N with for each i, c′i a prefix of ci. We then apply Condition 1d
to show that if ϕ doesn’t hold at state(π), it cannot hold anywhere in π′

either, so that for any scheduler S̃ already defined up to π and arbitrarily

defined later, PS(♦ϕ) ≤ PS̃(♦ϕ).
• Otherwise, we consider i ∈ [1 : N ] such that Ci is the first process to have

fired the last Dirac transition of its current chain. Let us consider the
set of chains cs ⊆ Cf corresponding to the sequence of non-deterministic
choice made by Ci. The rest of the run for Ci is indeed determined: It
consists in a finite sequence of probabilistic transitions according to the
chains of cs. We apply Lemma 2 recursively on each link of cs to move
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it towards the beginning of the trace. This is possible because each link
is assumed to be mobile and has to be swapped only with probabilistic
transitions of other components. Thus, we have defined a scheduler S̃

such that PS̃(ππ′) implies that there exists c ∈ cs such that ↓c v ↓π′.

Remark 4. The transformation as stated in Lemma 3 may strictly increase the
reachability probability. As an example consider Fig. 4. We note however that
this can only happen for non-optimal schedulers, as pointed out by Lemma 1 so
maximal reachability probability is still preserved.

C1

C2

Cn

..
.

1

1

1

1

1

1

1 1

1

1 1

1

Fig. 5. Illustration of the proof strategy for Lemma 3. Here, the first component to
terminate a chain is C2, represented by the first non-Dirac transition. All links of the
chain are then “pulled” to the beginning of the run. This transformation is achieved by
permuting links in C2 with links of the other components. The latter links are indeed
assumed by minimality to be Dirac and so can always be postponed with Lemma 2.

Remark 5. The reduced model may lack deadlocks exhibited by the original
system: Consider the network comprising only the process on the left of Fig. 6,
with only one non-trivial chain going through l1l2l3. Clearly, the system can
deadlock in location l2, which is why Pmin(♦(x = 2)) = 0. After transformation
(depicted on the right), the guard becomes ff which leads to Pmin(♦(x = 2)) = 1.
This is why we restrict ourselves to maximal reachability probabilities, where
a scheduler has no incentive to trigger a deadlock as it will only reduce the
reachability probability.

We conclude this section by establishing the correctness of our transformation:

Theorem 1. The following equality holds for reachability objectives ♦ϕ:

Pmax,Nr
(♦ϕ) = Pmax,N (♦ϕ)

Proof. Lemma 1 ensures that our transformation does not introduce new be-
havior and thus Pmax,Nr

(♦ϕ) ≤ Pmax,N (♦ϕ). Equality follows with Lemma 3,
allowing us to convert any N -scheduler into an Nr-scheduler with a reachability
probability at least as high as the one in the original system.
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l1 l3

l2

τ x := 2

τ
x := 1

τ [x = 0]x := 2
l1 l3

τ x := 2

τ [1 = 0]x := 1

Fig. 6. A network comprising only a single process, with one nontrivial chain, before
and after transformation

5 Case Studies

We have implemented our approach in the model-checking framework Mod-
est [5,13]. Experiments were conducted on an OpenSUSE Linux machine with
an Intel Core i7-6700 CPU (3.40GHz) and 32GB of working memory. We consid-
ered two different exemplary cases: On the one hand, we looked at the Factory
example, depicted in Fig. 1. This is a genuine VMDP network and it is not man-
ually hand-optimized for model-checking, contrary to essentially all existing case
studies around. In addition, we looked at an example on flow control, from the
context of the SPIN model checker. This is a non-probabilistic case study, and we
use it to demonstrate in how far our approach can place atomics mechanically.

Factory. To illustrate the nature of our transformation and its ability to reduce
state space size, we applied it to instances of the network in Fig. 1. The algo-
rithm generated the chain set described in Example 4 . We had Modest answer
the query Pmax(♦(processed = 4 ∧ broken = 0)) on both the original and the
transformed model. Table 1 shows our results for different numbers of workers:
While the exponential growth in both state space size as well as model-checking
runtime caused by the additional interleavings that each new worker introduces
can in principle not be avoided by our transformation, the reduction ratio in-
creases with the number of workers. For more than 4 workers, Modest gives up
for lack of memory on the original system, while it still succeeds to answer the
query on the transformed system for 5 and for 6 workers.

For 6 workers our algorithm took only about one second of runtime, including
the optimization problem in step B, and used only negligible amounts of working
memory. Even more encouraging, the performance of our algorithm would not
be affected at all by changes to constants such as the total number of work items
in the factory, that have a dramatic impact on the state space size.

Flow Control. The model checker Spin comes, among others, with a Promela
example file pftp.pml. In this model, a sender and a receiver communicate over
a lossy channel, supported by a flow control layer that prevents message loss
and reordering. Holzmann discusses the model in the original Spin book [16]
and notes that whenever possible, one should surround parts of the code by
atomic blocks, to “reduce the complexity of the validation”. Our goal in this
case study was to omit the atomic keyword and have our algorithm infer the
corresponding chains automatically.
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Table 1. Resource usage for model checking the network from Fig. 1 before and after
our transformation

# Workers 1 2 3 4 5 6

Original
# States 1 558 164 264 5 207 980 59 873 864 ? ?

MC time < 1s 1.2s 48s 10m50s ? ?

Transformed
# States 719 56 291 1 187 248 9 994 337 38 657 750 104 937 279

MC time < 1s 0.7s 16s 2m19s 9m07s 25m25s

Reduced by
# States 54% 66% 77% 83% ? ?

MC time 0% 42% 67% 79% ? ?

We slightly modified the model: Spin’s special timeout predicate (that is
used to resend messages when no other transition in the system is enabled) was
replaced by a constant true, because its non-compositional semantics is difficult
to capture in Modest. Furthermore, we changed the model by disabling white

messages, so as to have the MDP-focussed model-checking engine of Modest
scale better in the absence of (nontrivial) probabilities. We then translated the
Spin model to an isomorphic VMDP network, ignoring all the atomic keywords.

Applying our algorithm to the translated model had the expected effects:
Most of the atomic blocks of the original could be recovered in the form of
chains, with one restriction: Chains stop at channel accesses, because we had
to model those by reads and writes to global variables. Notably, Holzmann’s
atomics can span across channel accesses, but lose atomicity (only) in case a
channel access blocks (which again is a non-compositional feature). A small
number of the chains we generate are hard to translate into Promela atomics,
e.g. because they start in front of a loop and end inside it.

Despite not recovering the original atomics precisely, we achieve a dramatic
reduction in state space size: Checking whether any assertions in the model
are violated Modest explored 15 922 533 states of the original model, but only
4 588 039 on the transformed one, a reduction by 70%. In total the algorithm
generated 99 chains, all of which remained after filtering, which used 72 056
MAXSAT variables and 147 176 clauses. Again, steps A, B and C together took
about one second of runtime and negligible amounts of memory.

For comparison we applied Spin to our variants of pftp.pml. Table 2 shows
that the atomic keywords we manually derived from the generated chains re-
duce state space considerably (about 24%), though not as much as the original
atomic’s in [16]. The first column shows that, surprisingly, Spin benefits from
atomic keywords far less than Modest benefits from our transformation. This
may again be rooted in the fact that Modest is optimized for probabilistic
model checking. The second column reveals that even under partial order reduc-
tion the usage of atomic keywords can reduce state space size considerably. This
suggests that one should use our technique in addition to POR.
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Table 2. Spin state space sizes for our variants of pftp.pml, with and without POR

Without POR With POR

No atomics 97 652 15 062

Chain atomics 74 442 12 088

Holzmann’s atomics 46 773 11 248

6 Conclusion

We have presented an automated approach to fusing transition executions prior
to model checking, within models of concurrent probabilistic processes, so as to
alleviate the state space explosion problem. The probabilistic setting makes this
task particularly challenging, owed to the tree-shaped structure of probabilistic
executions. However, our approach is readily applicable to the nonprobabilistic
setting, too, where it effectively yet mechanically detects instruction sequences
that can be made atomic without altering reachability properties, as demon-
strated on Holzmann’s flow control example. Furthermore, the Factory case
study demonstrates that on concurrent probabilistic examples the state-space
compression factor achieved becomes more drastic the larger the models get.

A comparison to Spin’s implementation of partial order reduction demon-
strated that while our approach achieves less state space reduction than POR,
using it in addition to existing POR implementations can still increase the re-
duction ratio considerably. Notably, we were unable to report successes of our
techniques on established examples, mainly because those have been highly op-
timised by hand, leaving no room for detecting further transitions to fuse.

There are several avenues extending this first work on syntactic partial order
compression. Condition 1b constraining chains in Definition 5 could for instance
be relaxed by replacing it by a more precise analysis. As a matter of fact, some
transitions may never happen concurrently so that less independence require-
ments have to be met in order to establish a chain. We are working on an abstract
interpretation-based approach to collect state information statically and exploit
it for justifying chains even across synchronizing actions and accesses to global
variables. Furthermore, we plan to investigate how to extend beyond reacha-
bility properties. Our approach does at this point add deadlocks to the model
(see Remark 5), which implies that minimum probabilities are not preserved.
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(see perspicuous-computing.science) and by the ERC Advanced Investigators
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