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Component-aware Input-Output Conformance

Alexander Graf-Brill' and Holger Hermanns'?

! Saarland University, Saarland Informatics Campus, Saarbriicken, Germany
2 Institute of Intelligent Software, Guangzhou, China

Abstract Black-box conformance testing based on a compositional model
of the intended behaviour is a very attractive approach to validate the
correctness of an implementation. In this context, input-output conform-
ance is a scientifically well-established formalisation of the testing pro-
cess. This paper discusses peculiar problems arising in situations where
the implementation is a monolithic black box, for instance for reas-
ons of intellectual property restrictions, while the specification is com-
positional. In essence, tests need to be enabled to observe progress in
individual specification-level components. For that, we will reconsider
input-output conformance so that it can faithfully deal with such situ-
ations. Refined notions of quiescence play a central role in a proper
treatment of the problem. We focus on the scenario of parallel compon-
ents with fully asynchronous communication covering very many notori-
ous practical examples. We finally illustrate the practical implications
of component-aware conformance testing in the context of a prominent
example, namely networked embedded software.

Keywords: Model-based testing - Input-output conformance - Compos-
itionality.

1 Introduction

Component-based or modular systems are systems which are composed of several
components in order to provide a higher degree of functionality or just to offer the
ensemble of features offered by its components. From an implementation point
of view, component-based systems are very flexible since single components can
be updated or exchanged easily, or the system can be extended by additional
components, without having to touch the whole system.

When it comes to the verification of such systems, one usually tries to be-
nefit from the compositional structure. Correctness of the components is easier
to verify in isolation and under appropriate conditions, correctness of the whole
system is derived from the correctness of all components. This reduces the over-
all verification effort. In particular, when updating a single component of the
system, one only has to verify the new component without the need to verify
the other components again. However, this approach is only applicable if the
correctness properties are compositional [T2ITOT72ITSI2TIT].

Model-based testing is a validation technique where, based on a formal spe-
cification of a system, a suitable set of experiments (test suite) is generated in
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an automated manner and executed on the implementation of that system, so
as to assert some notion of conformance between the implementation and its
specification. In model-based testing, compositional testing is a research area of
its own. Given a specification and an implementation under test (IUT), each as
combinations of several components, a compositional conformance tester checks
conformance between the components of the specification and the respective IUT
components, so as to conclude conformance between the combined specification
and IUT. If this implication holds, there is no need for further integration test-
ing when combining the different TUT components [2ITUTTIGI3]. Otherwise this
is a costly and time-consuming step since the combined specification has to be
taken into account which is notorious in size relative to the sizes of the individual
components.

What all these approaches have obviously in common is the assumption that
the IUT is indeed a combination of several components which can be accessed
individually. Interestingly little attention has been payed to the situation where
only the specification is composed of clearly distinguished components, but the
IUT is a single black box, i.e. a monolithic object, or an object where components
are not accessible in isolation.

We consider this as a mismatch, since the previously described scenario is
pretty much the norm for black-box systems protected by intellectual property
rights. Especially if such systems need to undergo a certification according to
some well-structured component-based or scenario-based standard. This is the
concrete problem motivating our work. But beyond that there are several other
reasons for attacking this challenge.

Since there are no dedicated theoretical approaches targeting the testing
of such scenarios, the standard input-output conformance [23] is the natural
base methodology. Input-output conformance (ioco) is based on the idea that a
reasonable implementation of a formally specified system should assure that

the TUT progresses as foreseen by the specification, and this progress is
observable by the tester.

Since IUT progress corresponds to outputs of the IUT, this means that

1. any interaction sequence between tester and IUT possible according to the
specification is followed only by IUT outputs foreseen according to the spe-
cification;

2. only in situations where no IUT output is foreseen, the IUT is allowed to be
quiescent.

Quiescence, and especially the possibility to observe quiescence is a crucial in-
gredient to the theory of input-output conformance. It makes progress observable
by refining classical testing equivalences and preorders [9J8] with concepts of re-
fusal testing [22/19], thus enabling a more fine grained relation between systems
based on their state-based capabilities to produce any output at all. In practice,
quiescence is approximated by timeout mechanisms: If after some interaction
sequence no IUT output is witnessed before the timeout, the IUT is interpreted
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as now being quiescent. The concept of quiescence therefore provides an implicit
mechanism to test for absence as well as presence of progress, without an explicit
reference to real time.

This paper explores the simple question what needs to change in the the-
ory of input-output conformance in order to be able to test for the progress
of components of a component-based specification. So, we add the idea that a
reasonable implementation of a component-based system should assure that

the IUT progresses as foreseen by the component-based specification, and
this progress is observable by the tester.

This then translates concretely to (the first item being unchanged),

1. any interaction sequence between tester and IUT possible according to the
specification is followed only by IUT outputs foreseen according to the spe-
cification;

2. only in situations where no IUT output is foreseen by some component, the
IUT is allowed to be quiescent with respect to that component.

The first requirement is indeed the standard ioco criterion considering func-
tional correctness of an IUT. The second requirement is the core motivation for
this paper. This requirement harvests the available information about the inner
structure of a compositional specification. Since the specification is white-box,
any observable behaviour of the system can be associated to the components
possibly causing that behaviour. This provides the opportunity to deduce which
components are taking part in an interaction, and effectively enables a fine-
grained notion of quiescence. With this, we require an IUT to progress whenever
possible not only on the system-level, but instead for each component of a com-
posed system. Notably, we will apply this to monolithic black-box implement-
ations, but we nevertheless ask them to respect the compositional nature of
their specification. From a testing perspective this implies among others that we
would reject an implementation which only exhibits the behaviour of a single
component, in situations where other components can not stay quiescent i.e. they
potentially can progress by observable behaviour. We make all this deducible by
only looking at the compositional specification.

Organisation of the paper. After setting the stage, we first argue why precisely
standard input-output conformance is ill-suited for the problem at hand. We
then focus on specifications that are fully asynchronous, so they are merely col-
lections of behaviour descriptions where none of the behaviour emerges through
interaction across components. This is a very widespread scenario in practice.
We explain the details of a natural solution which comes with adaptations to the
quiescence definition. On the practical side we discuss in how far the resulting
notions can indeed be tested for, which leads to a well-motivated revision of
the theory. We finally illustrate the practical implications of component-aware
conformance testing in the context of networked embedded software.
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2 Preliminaries

The basis for model-based testing is a precise specification of the IUT which
unambiguously describes what an implementation may do, respectively not do.

Input-output transition systems. A common semantic model to describe the be-
haviour of a system are labeled transition systems (LTS). In the presence of
inputs and outputs, a suitable variation is provided by Input-Output Transition
Systems (I0TS).

Definition 1. An input-output transition system is a 5-tuple (Q, L+, L\, T, qo)
where

- @ is a finite, non-empty set of states;

- Ly and Ly are disjoint countable sets (L, N Ly = 0) of input labels and
output labels, respectively;

-TCQx(LU{r}) xQ, with 7 ¢ L, is the transition relation, where L =
Lo U Ly;

- qo 1s the initial state.

The class of input-output transition systems with inputs in L, and outputs in L,
is denoted by TOTS(L-, Ly).

As usual, 7 represents an unobservable internal action of the System. We
write ¢ —— ¢ if there is a transition labelled u from state ¢ to state ¢/,
(q, 11, q") € T. The composition of transitions ¢; e Bl expresses that
the system, when in state g1, may end in state g, after performing the sequence
of actions p1 - pig ...« pip—1, i.e. (g, i, ¢i+1) € T,i < n — 1. Due to non-

determinism, it may be the case, that after performing the same sequence, the

system may end in another state (or multiple such states): ¢; B R S N q,

with ¢, # q;,.

Traces and derived notions. Usually an IOTS can represent the entire behaviour
of a system, including concrete interactions between system and environment.
One such behaviour is represented by a so-called trace, of which we are only
interested in its observable part, obtained by abstracting from internal actions of
the system. Let p = (Q, L+, L, T, qo) be an IOTS with ¢,¢' € Q, L = L:ULy,a,a;
€ L,and o € L*. We write ¢ = ¢ toexpressthatq—q org 5. g==¢
denotes the fact that 3¢1,¢2 € Q : ¢ = ¢1 — g2 = ¢’. This can be extended
for a sequence of actions g :45 ¢ st.3q0,nqn €Q g = qo = ¢ =
e = g, = (. ¢ == and ¢ ;E} are then defined as 3¢’ : ¢ = ¢ and
A g = q' , respectively.

Furthermore, init(q) denotes the set of available transitions in a state g,
ie, {ue€ LU{r} | g 5} The set of traces starting in state g is defined as
traces(q) =qef {0 € L* | ¢ ==}. For a given trace o, the set of reachable states is
given by the definition g after 0 =4c {¢' | ¢ == ¢'}. The extension for starting in
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a set of states Q' is Q" after o =q40¢ |J {gaftero | ¢ € Q'}. With der(q) we denote
the set of all reachable states from ¢, i.e., {¢’ | 3o € L* : ¢ == ¢'}. Following the
standard literature, we restrict ourselves to strongly convergent I0TS i.e. there is
no state that can perform an infinite sequence of internal transitions. An IOTS p
is called input-enabled, if and only if all its reachable states ¢ are input-enabled
i.e. Vg € der(p),Ya € L;.q ==. So, inputs can never be blocked (or come as
surprises). It is common practice to work with specifications modelled as IOTS
without requiring input-enabledness while IUTs are required to be represented
as input-enabled IOTS. This is what we assume here, too.

Input-output conformance and quiescence. A specific conformance relation, input-
out conformance (ioco) [23] dominates theoretical as well as practical work on
model-based testing. It relates implementations with specifications with respect
to the possible output behaviour observed after executing traces of the specific-
ation. In ioco, the output behaviour includes a designated output quiescence,
abbreviated with the special label §. Quiescence represents the situation when
there is no output to observe at all. A state ¢ is said to be quiescent, denoted
by d(q), iff init(q) N (LU {7}) = 0.

Assuming 6 ¢ (L U {7}) it is technically convenient to encode quiescence
wherever present into the transition structure at hand. For this a suspension

automaton A(p) is constructed out of an IOTS p, where transitions ¢ LN q
are added to any quiescent state. The set of possible outputs of a state g is
then defined as out(q) =qet {a € Ly | ¢ —=} U {6 | 6(¢)}, and this is lifted
to sets of states P by out(P) =ger U{out(q) | ¢ € P}. Since quiescence is
now interpreted as an additional observable output, we extend the definition for
traces to suspension traces.

Definition 2. Let p = (Q, L+, L, T, qo) € ZOTS(L~, Ly). The suspension traces
of p are given by Straces(p) =get{o € (LU{6})* | go ==}.

The definition of ioco then looks as follows:

Definition 3. Given a set of input labels L, and a set of output labels Ly, the
relation ioco C ZOTS(Le, L)) X ZOTS(L+, Ly) is defined for a specification s
and an input-enabled implementation i as

110€0 s S qef Vo € Straces(s) : out(iafter o) C out(s after o)

Partial specifications. Since ioco is defined based on the suspension traces of the
specification on the one hand, and only requires inclusion of the output beha-
viour of the IUT w.r.t. the specified outputs on the other hand, it is possible to
have partial specifications. This means that an IUT does not have to implement
all specified output transitions of a certain state, but these can be seen as output
alternatives. Furthermore, there are no restrictions on the behaviour of an imple-
mentation once its execution left the suspension traces of the specifications i.e.
it performs an underspecified trace. Since an underspecified trace always starts
with an unspecified input action for a state input-enabled specifications do not
have any underspecified trace.



6 A. Graf-Brill and H. Hermanns

Test generation and execution. Theoretically, a test case is a variant of an IOTS
with two special trap states labeled pass and fail, whereby each other state
represents all states of the specification which are reachable by the suspension
trace corresponding to the trace that leads to this particular state of the test
case. In order to detect quiescence, the special transition label € is used in order
to synchronise with §. A test case is then generated based on the definition of
ioco in an iterative manner. In each iteration step there are three options. 1) For
all outputs in Ly and quiescence a correspondingly labelled transition is added. If
the output is not foreseen by the specification, the successor state is the special
state fail and for all valid successor states the test case generation algorithm
continues in the next iteration step. 2) An input action which is enabled in one
of the encoded states of the specification is chosen and a correspondingly labeled
transition is added to the test case. In order to handle interrupting outputs of the
IUT, corresponding transitions are added as described in 1). 3) At any iteration
step, the algorithm can be stopped by placing the special state pass.

An execution of a test case is then the parallel composition of the test case
and the IUT. A test run is any trace of the parallel composition which ends in
a state which is labeled with pass or fail. An IUT passes a test case if and only
if all possible test runs lead to states labeled with pass. It fails the test case
otherwise. By assuming some kind of fairness, an IUT will reveal sooner or later
all its nondeterministic behaviour when repeatedly executed with a test case.

From a practical point of view, quiescence detection is realised by introducing
a timer. This timer is restarted after every interaction with the IUT and upon
its expiration, quiescence of the implementation is assumed and accordingly
processed.

Before we delve deeper into conformance testing of component-based systems,
we first give a formal definition of what we actually understand of a component-
based system.

Definition 4. A component-based input-output transition system (CIOTS) is
a 6-tuple (Q, Lo, Ly, T, qo, C) where

— the system is the composition of components in the non-empty vector C =
(S04 -+, 8n) with n € Ny

— each s, € Cis a finite input-output transition system (Qr, Lok, Lk, Tk, qo.x) €
ZOTS (Lo, Lik)

— all components are pairwise action-disjoint i.e. Vsg.Log N Usmeé Ly, =0A
LU, cgLom=10

— the sets of input labels and output labels are L, = Uskeé Lo and Ly =
Usk 65 L!k

— the set of states Q is the cross product of the set of states of the components
m C, i.e. Q = ®Sk€5 Qk

— the _z;nitial state qq is the cross product of the initial states of the components
in C, i.e q = ®skeC‘ qk.0
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!

o o=
sig, ! stp? strt? stp? strt?
e sig,! sig, ! sig,!
(a) Component A(b) (b) Component A(g) (c) Composition A((b,g))

Figure 1: A simple component-based sensor node example.

— the transition relation T is the combination of the transition relations of the
components s.t.

T={(Gor--»Gks- - Gn) == (G0, > G- Gn) | Gk = G € Ti}

The class of component-based input-output transition systems with inputs in Lo
and outputs in Ly is denoted by CZOTS(L+,L1). We say that a system s is
component-based, if and only if, s € CZOTS(L~, L)) for some Ly and L.

Notably, (Q, L, Ly, T, qo) is itself a finite input-output transition system
in ZOTS(L, Ly). Since a CIOTS is already completely defined by its com-
ponents, we may use the abbreviation (sg,...,s,) in order to refer to s =
(Q, Lo, Ly, T, qo, (S0, - -5 Sn))-

Ezample 1. In Figure[I]a very simple component-based specification is displayed.
Figure[lajand Figure[lb|show the suspension automata of the IOTSs of compon-
ents b and g, each specifying some kind of sensor. Sensor b can be thought of as
continuously gathering some measurement data (not modelled) which it passes
on to the environment via the action sig; /. Sensor g works similarly using action
sige!, but can be started (strt?) and stopped (stp?) from remote. Initially it is
stopped — and hence quiescent.

Each I0TS s = (Q, L+, L, T, qo) can be represented as a single-component
CIOTS 8§ =(Q, L2, L1, T, qo, (s)) and vice versa.

3 Conformance and component behaviour

This section provides a motivation why the well-established general ioco testing
procedure falls short when facing a component-based specification w.r.t. the
conditions we postulated in Section [T}
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strt? stp?

Ezxample 2. A potential candidate implementation 4 of

the composed specification from Figure[l]is displayed on )

the right. It is input-enabled (w.r.t. the set {strt?,stp?}). sig, !
Indeed, this implementation does conform to the spe-

cification, i.e. iioco(b,g), since Vo € Straces(i)

out(iy after o) = {sig,!} and Vo' € Straces((b, g)) : out(s1 afterc’) is either
{sig,!} or {sig,!, sigy!}.

Notably, implementation i does never offer the output action sigs/, so the
core behaviour of sensor g is effectively not present in the implementation. While
this omission of behaviour is perfectly legal for the theory of ioco, we feel that
such an implementation does not exhibit the intended behaviour of two sensor
nodes being combined as specified above. According to our initial reasoning,
after providing the input strt? it is not foreseen by component g to produce no
output, thus implementation ¢ is not allowed to be quiescent w.r.t. component g.

One may object that, of course, a good compositional testing procedure
should preferably be based on tests of individual components in case they do
not interact with each other. Therefore one would a priori require that iioco b
as well as iiocog. Indeed, it turns out that iiotog (due to the presence of
the output action sig; /, which is not foreseen by ¢) while iiocob. So, from this
perspective, the implementation 4 is not entirely convincing as a witness for the
shortcoming of the classical ioco theory.

Example 8. Another implementation candidate j is
displayed on the right. It correctly outputs sig;! in
the initial state and starts and stops producing the
output sigo! as intended by the inputs strt? and stp?.
However, the output sig;! is turned off in state jo stp? strt?
where the output sigo! is produced only. Again it holds

that jioco(b, g).

stp? | sig;!

The essence of the problem of implementation j is strt? sig,!
similar to the one of ¢ appearing in Example 2. Con-
trary to what we assume reasonable, some valuable output behaviour of the
specification of component b is not implemented, but here this is in a fragment
of the state space reachable by transitions belonging to specification of compon-
ent g. In this example, jioco b as well as jioco g provided we assume a suitable
projection mechanism to filter the observable behaviour corresponding to the
component under test.

As it stands, focusing on the behaviour of a single component, is no solution
in a quest for a compositional testing theory. Instead one has to foresee arbitrary
input actions of other components, in order to examine the full behaviour of an
IUT. Unfortunately, “the full behaviour of an IUT” might include underspecified
behaviour in case of specifications that are not input-enabled (which is not un-
common). This in turn might lead to outputs interfering with our current test
run, thus, rendering such a testing approach useless, again. Hence, one has to
adjust the provided inputs to the behaviour of the composed specification.
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For now, we can conclude that the standard ioco approach is not well suited
for testing scenarios involving compositional specifications. The problem is two-
fold. On the one hand, ioco is not aware of the underlying topology of the
specification model. On the other hand, the relation is based on excluding un-
specified output behaviour, rather than enforcing a certain output (set). We shall
see that the concept of quiescence is the central leverage point regarding both
aspects of the problem.

4 A component-aware theory

The lesson learned in the previous section is that the ioco approach fails at con-
sidering simultaneously the specific output behaviour of the individual compon-
ents embedded in the overall behaviour of a composed specification. Especially
the absence of any output from a particular component can not be detected. This
is however the only indicator at hand whether or not a specified component does
take part in the interactions of the IUT, or not. Thus, a quiescence definition
based on the output capabilities of single components is needed.

The composition setting has similarities to the multi-ioco (mioco) relation
as presented in [16] where communication with a system is assumed to occur on
multiple distinct interaction interfaces and quiescence is then redefined s.t. each
interface is associated with a dedicated quiescence action. No component struc-
ture is considered, implying that this approach is not applicable rightaway to the
problem we consider. However, it serves as a strong inspriation for our approach,
in which we will indeed customise the definition of mioco to our component-
based setting. To get started, we assume an indexed family of quiescence labels
of the form d; for k € N. These will serve as means to signify quiescence per
individual component.

Definition 5. Let p = (po,...,pn) be a state and P be a set of states of a
CIOTS s = (Q, L7, Ly, T, qo, C) € CZOTS (L2, Ly), where C = (sq,...,8,) is the
finite, non-empty set of component IOTS sy = (Qr, Lok, Lk, Tk, qo.x). We define

a vector & (of dimension n) of quiescence labels by setting

0k (p) =det (p1) for 0 <k <n (1)

and we propagate this into the other elements of the theory by redefining

— out(p) =aet {z € L | p ==} U {0k | 6(p)},
— A(s) = (Q, Ly, LU {6, | 0< k <n}, TU{p 25 p | peQdp)} a0, C),
— Straces(s) =qet {0 € (LU{6x |0 <k <n})* | A(s) ==}.

Definition [5] provides a component-specific version of quiescence and redefines
out() and Straces() w.r.t. this quiescence definition, where the latter one is based
on the corresponding redefinition for the suspension automaton A(s) of a CI-
OTS s.
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. .
sig, ! sig, !
strt? ! stp? stp? ! stp? !
02 d2
sigy! 02 stp? strt? stp? strt?
01 sig, !
strt? ) strt?
Slg2! Sig2!
(a) implementation ¢ (b) implementation j (¢) implementation K

Figure 2: Component-based testing with mioco

The behaviour of an IUT is to be interpreted relative to a given specification
CIOTS, which in essence means that the output alphabets of that CIOTS induce
vectors of quiescence labels for the IOTS representing the IUT, too. But since

IUTs are no CIOTSs themselves, the quiescence notion § from Definition |5| can
not be applied directly. Thus, we need a quiescence definition and a correspond-
ing definition of the suspension automaton for input-enabled IOTSs, given the
output alphabets of interest.

Definition 6. Let p be a state and P_. be a set of states of an I0TS s =
(Q, L+, Ly, T,q0) € ZOTS(Ls,Ly), and L = (L, ..., L) be a finite vector of

sets of output labels. We define a vector oL (of dimension n) of quiescence labels
by setting, for 0 < k <mn,

61%(17) —def init(p) N (le U {T}) =0 (2)
and we propagate this into the definition of the suspension automaton by
setting A (s) = (Q, Lo, LU {8, | 0< k < n}, TU{p "5 p|p e Q,0E 1)} a0).

Ezxample 4. We revisit Figure [T from Example[I] In the presence of Definition

the loop g1 LN g1 from component g translates to a loop in s1,; labeled d in
Figure[Id This is the only difference. Corresponding to Definition [f] implement-
ation ¢ from Example 2 is quiescent for component ¢ in its initial state and so
is implementation j appearing in Example 3. In addition, the latter is quiescent
for component b in state jo. Thus, their corresponding suspension automata for
the vector of output label sets L = ({sig;!}, {sigy!}) have loops labeled 8 at the

initial states and §; at jo of AL (j). These suspension automata are depicted in
Figure [2a] and Figure 25

For a pair (CIOTS,IOTS) of specification and implementation, Definition |§|
will be used on the implementation side and Definition [5| will be used on the
specification side. Both are, of course, linked by the vector of output sets L. We
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assume the component quiescence labels to be uniquely identifiable and consist-
ently chosen throughout the definitions, s.t. indeed the label d; for a particular
output set Ly, is identical in each case and matches the quiescence label for
the corresponding component sy of the considered CIOTS. This enables us to
drop the superscript ©. For the remainder of this paper, we are (unless otherwise
stated) working with the suspension automata without explicit reference, i.e. we
use s and 7 instead of A(s) and A(7).

Based on the presented definitions and conventions, the definition for mioco
in the context of component-based systems is as follows.

Definition 7. Given a set of input labels L and a set of output labels Ly, the
relation mioco C ZOT S(L», Ly) x CZOT S (L7, L) for input-enabled implement-

—

ation i and specification s = (Q, L+, Ly, T, qo, C), is defined as follows:

imioco s S ger Vo € Straces(s) : out(i after o) C out(safter o)

Ezample 5. We check mioco-conformance of the implementation candidates
depicted in Figure [2] with respect to the specification displayed in Figure
Implementation 4 does not conform to (b, g) since out(i after strt?) = {sig,;!, d2}
which is not contained in out({b, g) after strt?) = {sig, !, sig,!}. Likewise, imple-
mentation j is rejected again, since state js is quiescent for component b i.e.
out(j after strt?) = {sig,!, 01 }. Contrarily, implementation k£ mioco(b, g}, since
it implements the missing sigo! transition of implementation j.

5 A practical theory

When it comes to the practical application of ioco-based testing approaches,
the concept of quiescence is implemented by clock timeouts and resets. In the
standard ioco setting, a single timer for the system is sufficient. Since mioco
is a refinement of ioco one can basically use the standard test generation and
execution algorithms [23], but with additional quiescence timers i.e. one timer
per component. The timer for a specific component is then started or reset after
each observable interaction with the IUT that belongs to this component, exactly
as before when considering a single global component in ioco. This renders ioco
testing as a special case of mioco testing. There are however some subtleties in
the definition of mioco rooted in the fact that the quiescence definition used for
the TUT is state-based.
L5

Ezample 6. In Figure|3] we have the specifications of two simple
components b and g, always producing the output a! and y!, re-
spectively. Their composition (shown in Figure is not quies-
cent for neither of the components. An implementation ¢ which ! x!
simply alternates between output x! and y! (shown on the right) 5
is quiescent for both components at opposite states, by defini-

tion. As a result, ¢ is not mioco-conformal to (b, g).
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!

1 !
;z;! y! x!C@Dy!

(a) component b (b) component g (c) composition (b, g)

Figure 3: Non-deterministic encoding of parallel component behaviour.

However, according to our initial motivation, there is no strong reason why
such a system should be rejected. After all it does not produce any unforeseen
output (w.r.t. L) and it implements the specified behaviour for both compon-
ents, by producing z! and y! indefinitely. And in addition, a real physical system
would pass any test case that can be generated, provided sufficiently large qui-
escence timeout values. So we are facing a testing practice that matches our
intuition very well, but it does not match the theory. This gap between theory
and practice is rooted in the different definition bases for quiescence. Theoret-
ically, conformance is determined by a state-based definition of quiescence. But
practical black-box testing does not have information about the internal state
of the IUT. As a result, quiescence detection needs to be based on the observed
behaviour of the system, i.e. be trace-based. So, what we are after is a fix of the
theory on the implementation side, albeit accepting the approximative nature of
quiescence being implemented by timers. At the same time we want to maintain
the property of our theory refining ioco.

The crux lies in a relaxation §7(p) defined in of Definition @ so that an
implementation that postpones outputs of component k for some finite time will
not be considered quiescent. Therefore, an IUT will be declared quiescent w.r.t.
component k£ whenever

— it is quiescent for all components, or
— it remains silent w.r.t. component k (unless triggered by an input).

This intuition is echoed in the following definition.

Definition 8. The relation cioco is defined precisely as the relation mioco
mn Deﬁm’tion@ but on the basis of @) of Deﬁm’tion@ replaced by

5,?(])) =def 0(p) V (Vo € traces(p) : 0 € (LiU{r})* =0 € ((Li\ Lix) U{7T})*
A T ¢ init(p) ) 5

The last conjunct, enforcing non-quiescence if the implementation can step in-
ternally is needed in order to ensure that cioco is a conservative extension of
ioco, as we will discuss rightaway. Standard input-output conformances con-
siders states non-quiescent in the presence of outgoing internal transitions on
both sides of the relation i.e. specification and implementation.
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Figure4: Single components considered with ioco vs. cioco.

Ezxample 7. Applying the quiescence notion to implementation ¢ from Example
6 results in a suspension automaton without any quiescent transitions i.e. both
states are neither quiescent for component b nor g. Thus, i cioco(b, g) as inten-
ded.

Theorem 1. For specification s € CZOTS(Le, L), and input-enabled imple-
mentation i € ZOTS (L, Ly), the following holds:

icloco s = 7ioco s

A converse result can be established, too:

Theorem 2. For action-disjoint specification components So, ..., S, and input-
enabled implementations iq, . .., i, with sg, i € ZOTS(Log, L) for 0 <k <n,
the following holds:

Vk. i ioco s, = ip ® ... ® iy, cioco(so, .. ., Sn)

Theorem [I] and Theorem [2| together imply that ioco and cioco are equivalent
for single-component specifications.

Ezample 8. We consider the single component specification (b) in Figure
According to ioco, state by is quiescent while by is not. Therefore the allowed
outputs after the traces a? and da? differ. The same difference applies to the
states i and i; of the input-enabled IOTS i (because the definition of § is the
same on both sides) and as a result iiocob holds. The above theorems ensure
that i cioco(b), too. But Theorem [2 were broken if the conjunct T ¢ init(p) were
dropped from in Definition |8 In the example, state i; would be considered
quiescent (for component b), as well, making it indistinguishable from is, while
the difference between states b; and by would remain, because in Definition
reduces to the classic ioco quiescence definition.

So, Theorem [2| hinges on the fact that internal steps are considered non-
quiescent in ioco. While this is a useful choice on the specification side [23],
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it could be considered a minor shortcoming on the implementation side, where
internal steps are simply unobservable. This is rooted in the fact that the same
quiescence definition is used on both sides in the standard ioco theory. As far
as we are aware, the present work is the first to break with this tradition. If one
would do the same for standard ioco, i.e. making internal steps quiescent on the
implementation side, the two theorems above could be resurrected on the basis
of the following definition replacing .

5,’;(])) =det 0(p) V Vo € traces(p) : 0 € (LiU{7r})* = o € (L1 \ Lixy) U{r})*
(4)
We do not work out the details due to space constraints. Indeed our practical
approach works independently of and since with blackbox testing in
practice no IOTS is given.

Application context EnergyBus. The ENERGYBUS is a case study [5] which drives
the concrete development of model-based testing theory and applications of us
and our coworkers [THT3IT420]. It aims at establishing a common basis for the
interchange and interoperation of electric devices in the context of energy man-
agement systems (EMS). The central and innovative role of ENERGYBUS is the
transmission and management of electrical power, in particular the safe access
to electricity and its distribution inside an ENERGYBUS network. Conceptually,
ENERGYBUS extends the CANopen architecture in terms of C'ANopen applic-
ation profiles endorsed by the CiA association [4]. Among these, the “Pedelec
Profile 17 (PP1) is very elaborate, targeting a predominant business context,
which is also at the centre of ongoing international standardisation efforts as
part of IEC/IS/TC69/JPT61851-3. Alongside with the standardisation, a cent-
ralised certification procedure is to be set up, according to some well-structured
component-based standard. The specifications themselves are provided as in-
formal combinations of text, protocol flow charts, data tables, and finite state
automata (FSA). The definitions include several data structures and various
services for e.g. initial configuration, data exchange, and basic communication
capability control. The ENERGYBUS introduces the notion of wirtual devices,
which encapsulate the functionality of a specific, dedicated role in an EMS, e.g.
of a battery pack, a motor, or a sensor unit. A real (physical) device can combine
several, not necessarily different, virtual devices. For example, a public charger
can be considered as being composed of a voltage converter, a secondary EBC,
and a load monitoring unit, each appearing as one virtual device to the protocol.

The specification of an ENERGYBUS-compliant system resembles a hierarch-
ical, tree-like structure as sketched in Figure |5l On top of this schematic struc-
ture, technically, a CANopen device might even consist of several ENERGYBUS
devices. A real physical device (field device) might incorporate several CAN-
open device. The ENERGYBUS specification is a compositional specification by
design. A generic CANopen and ENERGYBUS device has to deliver several ser-
vices and continuously transmit contemporary runtime data. Furthermore, de-
pending on the actually implemented virtual device(s), additional services have
to be provided. All these protocols are concurrently running and are loosely



Component-aware Input-Output Conformance 15

CANopen device

other comm. protocols
Sleep mode EB data exchange other EB protocols
1st EB virtual device nth EB VD
VD control VD specific VD specific
W protocols data exchange e %
N\ J

Figure 5: Schematic view on the specification of an ENERGYBUS (EB) device

coupled top-down and horizontally inside of a device. Depending on the chosen
degree of abstraction, the involved components are purely asynchronous which
holds especially for all device-level abstraction layers.

The theory developed in this paper improves the value of model-based testing
in the ENERGYBUS context to an enormous extent. At the cioco core is a ded-
icated management of individual timers per specification-level component. The
timer for a specific component is started or reset after each observable interac-
tion with the IUT that belongs to this component, just as discussed for mioco in
the beginning of Section [p| but now with the matching theoretical underpinning.
The concrete difference to the standard, component-unaware testing approach
is that the latter is unable to cope with problems as simple as some components
just stopping to work. Without our theory extension, these problems induce the
need for a careful manual inspection of each seemingly passing test run, in or-
der to double check for the absence of such unwanted behaviour. By using the
presented component-aware approach of this paper, all needed checks are done
mechanically, on the basis of timer mechanisms that are fully automated.

As an intermediate step, one can use the theory developed to justify a sound
transfer of the observation mechanism of the critical circumstances from the
tester to the adapter component, sitting between the actual IUT and the tester.
The adapter is then equipped with a series of observer processes which main-
tain dedicated timers for each specific transmission expected from the IUT. The
timers are started and stopped, according to the specification knowledge trans-
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ferred into the adapter component. In case a time-out occurs, the adapter sends
a special absenceOfX! output to the tester. Observing that output makes the
tester stop with a fail-verdict. Indeed we performed our empirical evaluation
succesfully using this approach, too. It however has the drawback that the ad-
apter component needs to be tailored to each case study variation manually.
This is not needed if instead implementing the cioco-testing mechanisation as
described.

6 Conclusion

This paper has developed a component-aware, yet conservative, extension of
model-based input-output conformance testing. Some effort has gone into mak-
ing this theory practical, which is linked to asymmetric definitions of component
quiescence for specification and implementation.

Our exclusive focus has been on components that do not communicate by
synchronisation. However, there are many real world examples where compon-
ents of a system are meant to exchange information, which is usually modelled
by synchronisation over shared or complementary actions. The theory we presen-
ted can be extended in this direction, subject to several design choices which for
space constraint reasons we can only briefly touch upon here: (1) Synchronisation
between components might be internally hidden and its effects may be observ-
able in the behaviour of another component. (2) Component-local progress via
synchronisation needs a synchronisation partner which may or may not be avail-
able or may preempt a possible synchronisation by alternative transitions. (3)
While the standard ioco theory prohibits internal transition cycles, these arise
rather natural when considering synchronising components. (4) From a practical
point of view, this extended scenario introduces several additional challenges be-
cause a timer reset does no longer directly correlate with observable behaviour
of a single component.
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