
POWER TO THE PEOPLE
VERIFIED

This report contains an author-generated version of a publication in IEEE Trans. CAD.

Please cite this publication as follows:

Gregory Stock, Juan A. Fraire, Tobias Mömke, Holger Hermanns, Fakhri Babayev, Eduardo Cruz.
Managing Fleets of LEO Satellites: Nonlinear, Optimal, Efficient, Scalable, Usable, and Robust.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Volume 39, 3762-
3773.

POWVER
Technical Report 2020-06

Title: Managing Fleets of LEO Satellites: Nonlinear, Optimal, Efficient,
Scalable, Usable, and Robust

Authors: Gregory Stock, Juan A. Fraire, Tobias Mömke, Holger Hermanns,
Fakhri Babayev, Eduardo Cruz

Report Number: 2020-06

ERC Project: Power to the People. Verified.

ERC Project ID: 695614

Funded Under: H2020-EU.1.1. – EXCELLENT SCIENCE

Host Institution: Universität des Saarlandes, Dependable Systems and Software
Saarland Informatics Campus

Published In: IEEE Trans. CAD

http://www.powver.org/publications/TechRepRep/ERC-POWVER-TechRep-2020-06.pdf
http://www.powver.org/
http://cordis.europa.eu/project/rcn/203431_en.html
http://cordis.europa.eu/programme/rcn/664099_en.html
http://www.uni-saarland.de/nc/startseite.html
http://depend.cs.uni-saarland.de/
http://sic.saarland/
http://dx.doi.org/10.1109/TCAD.2020.3012751


P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
6

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IE

E
E

T
R

A
N

S
.C

A
D

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

1

Managing Fleets of LEO Satellites: Non-Linear,
Optimal, Efficient, Scalable, Usable, Robust

Gregory Stock∗, Juan A. Fraire∗†, Tobias Mömke∗, Holger Hermanns∗‡, Fakhri Babayev§, Eduardo Cruz§
∗Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
†CONICET - Universidad Nacional de Córdoba, Córdoba, Argentina

‡Institute of Intelligent Software, Guangzhou, China
§GomSpace A/S, Aalborg, Denmark

Abstract—Size and weight limitations of Low-Earth Orbit
(LEO) small satellites make their operation rest on a fine
balance between solar power infeed and power demands of
communication technologies on board, buffered by on-board
battery storage. As a result, the problem of planning battery-
powered payload utilization together with inter-satellite commu-
nication is extremely intricate. Nevertheless, there is a growing
trend towards constellations and mega-constellations that are
to be managed using sophisticated software support. Earlier
work has leveraged cost-optimal reachability in priced timed
automata for deriving near-optimal finite-horizon schedules to
operate a single LEO satellite in orbit. This paper harvests
that work and improves it in several dimensions, all needed
for true in-orbit applicability. (1) The battery representation
is no longer bound to be linear, but can be kinetic, which
means that the optimization problem includes non-linearities.
(2) The management is perpetuated by a receding horizon
scheduling strategy. (3) The model is continuously improved with
the latest telemetry received from orbit. (4) A tandem of satellites
equipped with state-of-the-art inter-satellite link transponders is
considered. (5) The core optimization problem is now solved using
dynamic programming with antichain-based pruning, which is
proven to be optimal and despite all the additional features
outperforms the earlier approach by orders of magnitude. (6) The
entire approach is grounded in the concrete requirements of the
GOMX–4 LEO mission. (7) Care is taken to make the approach
usable by the space engineers, and robust against failures of
parts of the tool chain. (8) An extensive test campaign validates
accuracy, efficiency, scalability, and robustness with respect to the
operational requirements and constraints of LEO constellations.

Index Terms—LEO Satellite Constellations, Energy Manage-
ment, Mission Planning, Satellite Operations.

I. INTRODUCTION

THERE is an increasing interest of the space community
in Low-Earth Orbit (LEO) satellites for Earth observa-

tion, as well as in deploying large-scale LEO networks with
the purpose of providing timely access to information [1].
LEO satellites orbit the Earth at a height between 400 and
2000 km. They have the advantage of being close enough for
high-resolution Earth observation and for good signal quality
reception from communication devices on ground. However,
orbital periods in between 90 and 130 minutes render short
visibility episodes from ground sites, where a LEO satellite

Manuscript received April 17, 2020; revised June 17, 2020; accepted July 6,
2020. This article was presented in the International Conference on Embedded
Software 2020 and appears as part of the ESWEEK-TCAD special issue.

appears on the horizon and disappears on the opposite side
in about 6 to 12 minutes. Depending on the latitude of
the location, a LEO satellite will appear over a spot 2 to
4 times a day. In these systems, on-board communication
and observation technologies induce notoriously high power
demands that are generally difficult to counterbalance by solar
infeed and on-board battery storage, due to size and weight
limitations. Furthermore, the position of LEO objects relative
to each other, to the Sun, and to points of interest on Earth
is the result of the superposition of an excessive number of
(approximately) periodic rotations. It takes several decades for
all these elements to repeat the same relative position, and
interim gravitational perturbations, station-keeping maneuvers,
or mission parameter changes prevent the use of scheduling
or planning mechanisms based on periodicity. All this makes
the algorithmic problem of dynamic battery-powered satellite
operation and inter-satellite communication a very difficult,
yet an important one.

While around 2000 active satellites are currently in orbit,
recent studies show that constellations totalling more than
50 000 are on the launch schedule for the next 10 years [2]. Es-
pecially in the presence of communication interdependencies,
the management of such constellations will require profound
models as well as effective algorithmic techniques for admin-
istering their operation, based on a proper extrapolation of the
electric power budget as part of the inter-satellite and satellite-
to-ground communication design [3]. This is to be embedded
into a domain-specific software infrastructure that seamlessly
plugs into the usage context of satellite operators.

For single LEO satellite missions with multiple modes of
operation, the default approach to master the challenge is thus
far a manual one: a human operator takes ad-hoc decisions
about what task the satellite is to effectuate next. Previous in-
orbit experiments with the GOMX–3 satellite [4], [5] have
shown that already in this context there is massive room
for improvement by properly modeling and analyzing the
satellite’s battery, together with the operational constraints and
orbital environment of the satellite. At the core of that work is
a representation of the problem as a network of priced timed
automata and an engine [6] to solve cost-optimal reachability
over a limited time horizon. This has resulted in an automated
and resource-optimal day-ahead one-shot scheduling over a
time horizon of 36 hours, effectuated in orbit in March 2016.

That approach, however, fell short in a number of di-



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
6

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IE

E
E

T
R

A
N

S
.C

A
D

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

2

mensions. On the one hand, the timed automata formulation
is bound to linear dynamics (to assure decidability of the
underlying problem class). Therefore, a non-linear battery
model was not a constituent part of the scheduling approach.
Moreover, there was no mechanism in place to extend the
scheduling beyond the 36 hour boundary, nor to utilize up-
to-date in-orbit data regarding the battery state. In addition,
the overall solution was not prepared to support challenging
inter-satellite linking constraints, as mandated for modern
networked satellite constellations. All of these shortcomings
are attacked in the present paper, together with an efficiency
gain in the order of 10 000 % – with respect to the maximum
horizon limit sustainable with our tool support.

We present the crucial components of software infras-
tructure for safe, fully automated, energy-effective, dynamic,
and reward-optimal operation of LEO satellites and satellite
constellations. The distinguishing features are:
• The battery abstraction can be either linear or kinetic.
• The scheduling is perpetuated by a receding horizon

strategy where the underlying model is continuously
improved with the latest telemetry received from orbit.

• Data transfer between different satellites in orbit is ac-
counted for by providing support for scheduling of inter-
satellite links.

• The core algorithmic problem is now framed as dynamic
programming with antichain-based pruning.

• The resulting software framework is directly applied
for the automated management and operation of the
GOMX–4 LEO mission.

• The approach is carefully crafted to take into account the
usability by the space engineers, and robustness against
failures of parts of the tool chain.

• An extensive test campaign validates accuracy, efficiency,
scalability, and robustness with respect to the operational
requirements and constraints of LEO constellations.

Organization of the paper. Section II presents the algorithmic
core challenge in abstract terms and develops the dynamic
programming approach to its solution. That is placed in the
LEO specific context in Section III, where it is embedded
into a tool chain. Section IV presents the empirical evaluation
of the tool chain on concrete problem instances. Section V
concludes the paper.

II. ABSTRACTION: FROM SPACE TO ALGORITHMICS

This section introduces the core ingredients that make
up the abstract algorithmic problem faced, together with a
presentation of the details of our solution to it.

A. Battery Models

There are two battery models that are often used as faithful
formal representations of energy storage in satellites. A thor-
ough comparison of state-of-the-art formal battery models can
be found in [7].
• The Linear Battery Model (LiBaM) is arguably the most

used and simple model of energy storage. It can be
thought of as a well holding fluid which represents the

available charge and is drained (or replenished) propor-
tional to a (time-varying) load `(t) on the battery.

• The Kinetic Battery Model (KiBaM) can be thought
of as two interconnected wells holding fluid, namely
the available charge a(t) that is directly affected by a
load `(t) on the battery, and the bound charge b(t), that is
not directly influenced, as such representing chemically
bound energy inside the battery. Bound charge is con-
verted into available charge over time (or vice-versa) via
diffusion from one well to the other, proportional to the
difference in height in both wells. The diffusion speed
is regulated by a non-negative diffusion rate v. Math-
ematically, the (two-dimensional) state of charge (SoC)
evolves according to two coupled differential equations
ȧ(t) = −`(t)+v ·

(
b(t)−a(t)

)
and ḃ(t) = v ·

(
a(t)−b(t)

)
,

assuming that both wells have the same capacity. The
non-linear dynamics (with respect to the system dynam-
ics, not the differential equations) of the KiBaM can
faithfully account for a number of non-linear effects of
in-orbit batteries, like the recovery effect and the rate-
capacity effect [7].

B. The Algorithmic Core of the Problem

The algorithmic core of the problem is as follows. We
are given a start time t0, an end time th, and a set of
tasks T which we want to schedule on the satellite within
the contiguous time interval I = [t0, th]. Each task i ∈ T
has a start times(i) and an end time t(i) which both lie
in the given time interval I , defining a fixed time window
[s(i), t(i)) in which i can be scheduled. The task windows
reflect observation tasks or communication opportunities of
the satellite. If task i is scheduled, it implies a load d(i)
along the entirety of the time window. This load affects the
battery state of charge, it drains the battery. Tasks can be either
scheduled entirely or not at all, i.e., a task cannot be stopped
in the middle of its operation. The battery is replenished by
sunlight exposure at known (but practically aperiodic) intervals
representing insolation episodes. The aim is to identify a set
T ′ ⊆ T of selected tasks that form a feasible schedule in
the sense that the battery (i) starts off from a given initial
state of charge cinit, (ii) never during interval I drops below a
given minimum SoC cmin, and (iii) respects a given maximum
SoC cmax (meaning that the battery cannot be overcharged).
Scheduling a task i causes the SoC to drop within its time
window, as a function of the current SoC, the load d(i), and the
choice of battery model. Choosing LiBaM makes cinit, cmin,
cmax one-dimensional, while these boundaries and the SoC
itself at any time point are two-dimensional in KiBaM. Some
tasks may be mutually exclusive because they require distinct
attitudes of the satellite. Some further optional constraints
come in handy, including the requirement that the SoC at the
end of I is above a prespecified threshold, so as to be able to
continue with a new schedule computed under this assumption.

With all this in mind, the empty set is a feasible solution,
but of course not an intended one. Instead, we strive for a
feasible set T ′ of tasks that is optimal with respect to a given
objective. The obvious and natural way forward is to ask the



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
6

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IE

E
E

T
R

A
N

S
.C

A
D

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

3

space engineers for the reward r(i) accrued by each task i,
and for optimality to select a set T ′ that maximizes the total
reward r(T ′) :=

∑
i∈T ′ r(i).

C. Dynamic Programming with Pruning

We now solve the optimization problem above using ad-
vanced dynamic programming techniques. The essence of dy-
namic programming is to store partial solutions that potentially
lead to optimal solutions in a data structure called the DP
table and to explore further based on the entries. Both the
running time and the memory consumption of the dynamic
program are determined by the number of entries in the DP
table. It is, therefore, crucial to keep this table as small
as possible. As stated, tasks may require distinct attitudes.
Since attitude-conflicts reduce the number of possibilities to
be considered simultaneously, the problem only becomes more
difficult without these. When the DP table is constructed,
entries with conflicting attitudes are simply not added. For the
formal exposition of the algorithm we do not consider them,
while they are treated properly in the implementation and in
the experimental analysis. Furthermore, there are the following
additional properties which are important for the model.
• There is a given constant background load (needed to

keep the satellite operational at any point in time).
• Some tasks are enforced to be scheduled.
• The satellite battery is charged via solar panels (thus

increasing the SoC) during insolation episodes.
• Scheduling a task i may require additional actions right

before or after, for instance, to preheat a device or to
slew the satellite into a certain attitude. We can add the
required time to the time window of i, taking into account
that the load d(i) now changes over time (in a piecewise
constant manner).

The first three of these properties determine a load profile
within the interval I . Since the load profile is deterministic
and known a priori, it only influences the operation of the
DP by altering the SoC-change within a time interval. Thus
its effect can be encapsulated in a function called by the DP
without contributing to state space to be considered. Enforced
tasks are not considered in the sequel when referring to tasks.

The DP for the core problem computes an optimal schedule
subject to the given parameters and battery model. In the
following, we assume the KiBaM model which is more general
than the LiBaM model. The functionality of the DP is inspired
by algorithms for resource allocation problems with similar
objectives (cf. [8]). To compute the schedule, we generate a
table of solutions depending on the point in time t, the SoC
(ca, cb), and the set of active tasks S, i.e., the tasks running at
the given point in time. Formally, the entries of the DP table
are tuples of the form (t, ca, cb, S) that arise as projections of
timed system traces at the relevant discrete time instants.

In particular, we are only interested in those points in time
where a change happens, for example, the start and end of
a task (and its preheating/slewing) and changes in the load
profile. Thereof, the DP only has to consider the time points
t where a task can start its processing, preheating, or slewing
(whichever is first), because this is where a decision is to be

taken. The remaining time points mentioned above are needed
to track the SoC change between time steps considered by
the DP. If we know the set of tasks running at a point in
time and the solar infeed, we can compute the total load of
the system. Given the load, the state of battery charge, and
the battery model, we can compute the parameters valid at
the subsequent point in time by querying the solution of the
KiBaM equations [9] (which itself needs constant time).

If E is the set of all possible table entries, then a DP table
is a subset of E×R+. If for entry e we find (e, w) in the table,
we call the pair (e, w) a DP cell. For a DP cell C = (e, w), we
write DP(e) to denote the value w of the cell. We will construct
the DP table so that DP(t, ca, cb, S) is the total reward the DP
can collect until time t (including S) if the SoC is (ca, cb)
at time t. For an increasing sequence of time points, a DP
cell C at time ti+1 is compatible with a cell C ′ at time ti
if each task that spans both ti and ti+1 either is contained
in the task sets of both cells C and C ′ or in none, the SoC
has changed exactly as computed (using the battery model and
loads within the time interval [ti, ti+1)), and in the entire time
interval [ti, ti+1], the SoC stays within the given bounds. (It
is here where conflicting attitudes will force the cell to be
dropped.) A DP cell C is reachable if there is a sequence of
compatible DP cells starting from the initial configuration and
reaching C.

We use the above insights to fill the DP table as follows.
We start from a well-defined initial state of the schedule at
time t0 (e.g., 90 % of maximum battery charge and no running
tasks). For the initial state, we store a reward of zero. Let t1
be the next point in time that we have to consider. There is
only one state at t0. We compute the state of charge (ca, cb)
at t1 based on the background load, the solar infeed, and the
(possibly zero) elapsed time. We then consider the subsets of
tasks available at time t1. From each scheduled task i, we
obtain a reward r(i). For each feasible set of tasks S starting
at time t1, we create a cell ((t1, ca, cb, S), r(S)) in the DP
table.

For the subsequent steps, we proceed analogously. At a
point in time ti+1, we compute the DP table entries for ti+1

for each entry of the DP table for ti. Among the obtained
entries for ti+1, we only store those that are compatible with
entries for ti. (Note that these conditions are satisfied at t1
since there are no tasks at t0.) The rewards stored at ti+1 are
the sum of the reward at ti and the reward from the newly
scheduled tasks at ti+1; if an entry for the given parameters
exists already, we keep the one with maximum reward. (This
forces the DP to represent a functional relation invariantly.)
Given the entries of the DP table for the last time step, we
can recursively determine the corresponding schedule. The
computed schedule is feasible by construction, based on the
following inductive argument: We only fill the DP table with
cells such that the chosen task-sets are available. At each point
in time t, the DP cells for t can only be filled if the SoC
stays within the determined boundaries until t. Since the final
results are chosen at the last possible point in time within
the schedule, this property is true for all computed solutions
within the entire instance.



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
6

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IE

E
E

T
R

A
N

S
.C

A
D

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

4

a) Optimality: Optimality hinges on a specific mono-
tonicity property (enjoyed by KiBaM and hence LiBaM).

Lemma 1 (Monotonicity). Suppose there is a schedule com-
puted using the DP with task set U and overall value r(U)
which can be reached by the DP from a cell ((ti, ca, cb, S), w).
For arbitrary α, β ≥ 0 and an arbitrary S′ ⊆ S, if the
DP cell C ′ = (ti, ca + α, cb + β, S′) is reachable and
DP(ti, ca + α, cb + β, S′) ≥ w, then there is a schedule
of value at least r(U) obtained by a sequence of DP cells
containing C ′.

Proof. The lemma follows from: (i) Charging or discharg-
ing two identical batteries with SoC (ca, cb), respectively
(ca + α, cb + β) may induce a change in difference in SoC,
but the state of charge of the first battery will never surpass
(with respect to the two-dimensional product order, a partial
order) the state of charge of the second battery (which can
be proven based on the result [9]). (ii) Since each task has
a non-negative load, the total load of S′ is at most the total
load of S. Decreasing the load leads to an increased state of
charge, which is covered by (i). (iii) Independent of the battery
model, if we can obtain a value w′ ≥ w for an intermediate
result, the same remaining schedule leads to a reward of at
least r(U) + (w′ − w) ≥ r(U).

We will now show that monotonicity implies optimality of
the DP computation.

Lemma 2 (Optimality). The DP algorithm computes a fea-
sible set of tasks Alg such that for all feasible task sets τ ,
r(Alg) ≥ r(τ).

Proof. Given an arbitrary feasible solution τ , we show that
the DP computes a solution Alg with r(Alg) ≥ r(τ). We
encourage the reader to imagine τ to be an optimal feasible
solution such that in the end r(Alg) = r(τ); the reasoning,
however, is generic. For a point in time t, let T (t) be the set
of tasks starting before or at t and ending after t. Let τt be
τ restricted to all tasks i ∈ τ with s(i) ≤ t. We inductively
maintain the following invariants. At each point in time tj ,
the DP may select a DP cell C for tj−1 and a set of tasks S
compatible with C in such a way that (i’) at tj , the SoC is
at least that of τ (in both parameters ca and cb), (ii’) S ⊆
τ ∩T (tj), and (iii’) the total profit of already scheduled tasks
(including S) is at least r(τtj ).

Initially, at time t0, there are no tasks that can be scheduled
and the invariant is satisfied vacuously. Let tj be a point
in time such that the invariants are satisfied for tj−1. Let
S := τ ∩ T (tj) and S′ := S \ τtj−1

(the tasks from τ starting
at tj). Let (tj−1, c′′a, c

′′
b , S

′′) be an entry of the DP table which
satisfies the invariants. Then, when choosing S at time tj , the
monotonicity property implies (i’). Invariant (ii’) is satisfied
by construction. For invariant (iii’), note that at time tj , we
increase the reward by the same amount as τ , starting from
at least r(τtj−1

). We conclude that at the last point in time
tlast where a task from τ starts, invariant (iii’) implies that the
weight of the computed solution is at least r(τ). Since τ is
feasible, the invariants imply that in all subsequent steps after
tlast, choosing the set ∅ is feasible. As a result, also at the last

point in time, we obtain a feasible solution of reward at least
r(τ).

b) Efficiency: The running time and memory consump-
tion of the DP depends on the number of tasks, the precision of
the battery model, and the maximum number of tasks that can
be chosen at a single point in time. In our setup, the number
of tasks is limited by the number task types. A task type is a
type operation that can be performed by the satellite like for
example sending data or recording videos. For each task type,
we only have the choice to use it at a given point in time or
not to use it.

Lemma 3 (Efficiency). Let n be the total number of tasks,
cmax the range of capacities in the battery model (for a single
parameter ca in the LiBaM model and for two parameters
(ca, cb) in the KiBaM model), and k be the number of different
task types. Then both the memory consumption and running
time of the DP is bounded from above by O(n) · c2max · 2k in
the KiBaM model and by O(n) ·cmax ·2k in the LiBaM model.

Proof. The running time of the dynamic program is dominated
by the size of the DP table. It is therefore sufficient to analyze
the number of entries, which asymptotically implies both a
matching memory consumption and running time. Recall that
the number of considered time steps is O(n), since each task
only contributes a constant number of changes. There are c2max

possible states of charge. Finally, the number of subsets of
tasks is limited to 2k since at each point in time, at most
one task of each type is available. The size of the DP table
is therefore bounded from above by O(n) · c2max · 2k entries
using the KiBaM model and O(n) ·cmax ·2k using the LiBaM
model.

In our setup, the parameters ca and cb have the precision
of mJ, which together with the upper and lower bounds on
the SoC determines the range of capacities. In the application
of the DP which we will consider later, there will be k = 4
different types of tasks and therefore at most 24 = 16 different
subsets of active tasks to be considered at each point in
time. Thus if cmax is polynomial and k is a constant (both
being natural assumptions), the size and the running time
are polynomial. In practical terms, however, the number of
possible entries is prohibitively large. In order to control the
size, we use the following two insights.

(i) In realistic scenarios, we can expect the DP table to be
sparse: most of the potential entries stay empty. Instead of a
multi-dimensional array, we therefore use nested hash tables.1

Since writing and reading from a hash table can be done in
amortized constant time, the asymptotic performance of the
algorithm stays the same. We use, however, only the space
needed for the computation.

(ii) An entry in the DP table can be dominated by another
entry. For example, if all parameters are the same except for
the first parameter of the battery capacity, the entry with higher
capacity cannot be worse than the other one. More generally,
the entries of the DP table form a partial order and we only

1In the implementation of the algorithm, we use Python dictionaries, which
are implemented using hash tables.



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
6

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IE

E
E

T
R

A
N

S
.C

A
D

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

5

have to keep the antichain formed by the top elements of the
separate chains. The algorithm includes a pruning step which
repeatedly removes the unnecessary entries. More precisely,
given a time point t, after computing all DP cells for t, we
remove those cells that are strictly worse than other existing
cells. We describe the pruning in more detail in the following.

c) Pruning: Let us consider a point in time ti and all
DP cells (ti, ca, cb, S) at time ti, where (ca, cb) is the KiBaM
SoC and S is the set of selected tasks. For each such cell, we
have stored a value w := DP(ti, ca, cb, S). In order to lower
the number of considered DP cells, we have a closer look at
the values ca, cb, S, and w.

The insights from the monotonicity properties discussed
in the optimality proof (Lemma 1) lead to the following
partial order of tuples (ca, cb, S, w). We have (ca, cb, S, w) ≤
(c′a, c

′
b, S
′, w′) if simultaneously c′a ≥ ca, c′b ≥ cb, S′ ⊆ S,

and w′ ≥ w holds. If neither (ca, cb, S, w) ≤ (c′a, c
′
b, S
′, w′)

nor (c′a, c
′
b, S
′, w′) ≤ (ca, cb, S, w), these tuples are incompa-

rable. We note that this order is closely related to a product
order. In a product order, however, we compare tuples of
linearly ordered sets. While in our case, the entries for the
state of charge and the reward are linear orders, the subset
relation of the task sets is a partial order itself.

Our pruning applies the partial order defined above as
follows. For each pair of DP table entries (ti, ca, cb, S) and
(ti, c

′
a, c
′
b, S
′) of the DP table with DP(ti, ca, cb, S) = w and

DP(ti, c′a, c
′
b, S
′) = w′, if (ca, cb, S, w) ≤ (c′a, c

′
b, S
′, w′), we

remove (ti, ca, cb, S); if (ca, cb, S, w) > (c′a, c
′
b, S
′, w′), we

remove (ti, c
′
a, c
′
b, S
′); if (ca, cb, S, w) and (c′a, c

′
b, S
′, w′) are

incomparable, we keep both entries.
For each chain of the partial order, we only have to keep the

top-most element. The set of the top-most entries of all chains
forms an antichain. We, therefore, obtain an upper bound on
the number of DP table entries if we analyze the width of the
largest antichain in the partial order. To this end, we consider S
separately. In our concrete setting, we will need to distinguish
only a small number k of task types. For our concrete use
case (discussed below), k = 4 which has the implication that
at each point in time, there are less than 24 = 16 choices of
sets S.

Only considering the remaining tuple, we are left with a
product order. Let cmax be the number of different possible
states of charge of ca, cb, and let rmax be the total num-
ber of possible different rewards. In our setting, we have
cmax � rmax. De Bruijn et al. [10] and Griggs [11] provide
mathematical results that allow us to upper bound the width
of antichains in product orders. The number of incomparable
tuples is bounded from above by cmax · rmax if we use the
KiBaM model and by rmax if we use the LiBaM model.
Together with the subsets of S with k = 4, after the pruning
there are at most 16 ·cmax ·rmax and 16 ·rmax DP table entries
per time step, respectively. The pruning, therefore, reduces the
worst-case time and space demand by a factor of rmax/cmax.

III. CONCRETIZATION: COMPUTATIONS DRIVING SPACE

There are a number of software tools and software libraries
for mission planning, analysis, and operations in daily use in

the LEO domain worldwide, among them STK [12] (commer-
cial, most powerful, most expensive), GMAT [13] (developed
by NASA, open-source), Orekit [14] (platform-independent
library, open-source), and FreeFlyer [15] (commercial). All
of them are orbit-proof by a multitude of successful space
missions, yet none of them supports battery-aware scheduling.
Still, they have other important functionalities, especially with
respect to predicting orbital dynamics and planning spatial
trajectories, accessible through programming interfaces. We
now describe how we leverage their proven reliability as part
of a workflow that seamlessly integrates our core innovation,
and applies this to a satellite configuration currently in orbit.

A. The GomX–4 Mission

Since early 2018, the twin satellites GOMX–4A and
GOMX–4B (6 liters each) are on a research and development
mission in orbit. They together are demonstrators of key en-
abling technologies for future nano satellite constellations. The
overall GOMX–4 mission focuses on demonstrating minia-
turized technologies, namely orbit maintenance, inter-satellite
communication, high speed downlinking, and advanced remote
sensing. These are considered key building blocks for a
controlled deployment, operation, and maintenance of a future
CubeSat-based Arctic surveillance constellation. The concrete
application context of the mission is that of collecting obser-
vation and remote sensing data over the Greenland territory
to deliver it to a ground station located in Aalborg, Denmark.
Payloads. The payload of the GOMX–4B satellite is com-
posed of the battery and a number of sensors and therefore
determines the possible tasks which the management software
can schedule.
UHF Link The UHF Link enables communication between

GOMX–4B and the ground station at Aalborg. Telemetry and
telecommands (i.e., flight plans) are transferred via this link.

Hyper-Scout Camera The Hyper-Scout Camera (HSC) is
an imaging device that is used to observe the Greenland
territory.

High Speed Link High Speed Link (HSL) serves as a fast
connection to the ground station at Aalborg, used to transfer
acquired data to ground.

Inter-Satellite Link The Inter-Satellite Link (ISL) enables
data transfer between the GOMX–4 twins and other satellites
close enough and able to communicate in S-Band.

Global Positioning System The Global Positioning System
(GPS) payload enables GOMX–4B to receive GPS satellite
location signals to determine its precise local position.
UHF is enabled whenever Aalborg is in line-of-sight, so

it can be considered as a recurring background load on
the battery, similar to sunlight exposure (but with opposite
effects on the battery). ISL transceivers are installed on board
for gaining experience with data transfer between satellites,
whenever possible over the poles. The restriction to over-
the-pole episodes is rooted in the neccessity to comply with
international radio frequency regulations regarding the use of
S-Band over inhabited regions.
Scenario. The concrete scenario we consider consists of the
GOMX–4B satellite and an imaginary satellite GOMX–4C



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
6

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IE

E
E

T
R

A
N

S
.C

A
D

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

6

d)c)b)a)

GomX-4CGomX-4B

Greenland

Aalborg

ISL

HSC HSL

Visibility
tracks

Fig. 1: GomSpace mission scenario situations: (a) GOMX–4B can establish an ISL contact with GOMX–4C and also use HSC
to capture images from Greenland territory; (b) Aalborg communication range does not allow to establish an UHF or HSL
link with GOMX–4B at this moment; (c) GOMX–4B trajectory indicating a contact with Aalborg in the next seconds; and d)
ISL opportunities highlighted over the North and South Poles.

acting as a receiver/transmitter of data in the constellation.
The latter is placed in orbit in such a way that the resulting
communication opportunities are non-trivial to plan for. For
this, the GOMX–4C satellite is shifted in RAAN angle and
mean anomaly by 10° each, with respect to GOMX–4B. The
RAAN angle indicates the angle of the orbital plane in the
equator, while the mean anomaly stands for the position of
the satellite along the trajectory in the orbit. As illustrated in
Fig. 1, the resulting configuration renders two satellites that
separate maximally at the equator and become aligned in an
along-track configuration as they come close in the poles. It is
in this condition that the inter-satellite distance is minimal, and
the inter-satellite link antennas become aligned. As a result,
ISL transmission between GOMX–4B and GOMX–4C is
only possible during over-the-pole episodes. Thereby, potential
interference with ground radio-frequency services operating on
S-Band in populated regions is avoided. The scenario can be
chained up to arrive at larger satellite constellations with non-
trivial communication opportunities. Since future GomSpace
missions will exploit ISLs for continuous networked operation,
interdependency in data flow models are appealing extensions
of the present work, where scalability is to be considered in
terms of satellite fleet and orbital parameter diversity.

B. Architecture of the Tool Chain

The tool chain we developed is tailored to the very stringent
requirements of the LEO domain, where efficiency, ease-of-
use, reliability, and robustness are of prime importance. The
overall architecture is presented in Fig. 2.

The tool chain is controlled by a simple push of a button that
triggers the planning procedure to deliver an optimal schedule
for time t0 if pushed at a preceding current time. Pushing
the button triggers a telemetry fetch and the computation of
the flight plan with a horizon th covering well beyond the
next satellite pass. While it would be very straightforward
to mechanise the button-pushing events, the push-button ap-
proach enforces the presence of a human operator to oversee
and safeguard the entire chain. Indeed, we have invested
in visualization support to enable the operator to grasp the
various outcomes. While the operator is the external authority

overseeing the approach, the Orchestrator acts as the central
coordinator of the automatized process within the tool chain.
Orchestrator. The Orchestrator takes care of coordinating the
availability of up-to-date information within the tool chain.
In particular, it interfaces with the satellite operator’s API
in order to receive the latest telemetry of the satellite. The
telemetry (logs of voltage and current measurements of the
satellite’s battery) is fed to the Kalman filter, and the flight
plans provided by the DP module are transferred into the
required format and delivered to the satellite operators’ API,
after being checked by the Safeguard module.
Dynamic Programming. The Dynamic Programming module
receives the access windows regarding HSL, HSC, ISL, and
GPS (so k = 4, as previously mentioned), together with the
background load and state of charge estimates regarding the
battery at t0 (the beginning of the scheduling interval I). As
discussed in Section II-C, it delivers an optimal set of tasks
to schedule, assuring that the battery stays above a minimum
SoC. It can be configured to recover a higher charge by the
end of the scheduling horizon th.
Kalman Filter & Propagator. Receding-horizon scheduling
is a well-known approach [16] to perpetuate finite-horizon
scheduling. Our instantiation of the receding-horizon principle
is visualized in Fig. 3. In a nutshell, we work with schedules
of 24 hours in length, that are replaced whenever the satellite
passes over the ground station. The time span between any
two consecutive passes lies somewhere between 90 minutes
and 15 hours. Computing a flight plan takes about 2 minutes
on average.

This process is combined with the incorporation of in-orbit
measurements into the battery model [5], displayed in the
upper left of Fig. 2. The SoC of the battery at the beginning of
the scheduling period is obtained by means of a Kalman filter
combined with a propagator. The Kalman filter exploits the
available telemetry of the satellite to properly estimate the real
load the battery was feeding energy to, and the battery voltage
that is used to correct (filter) the estimated SoC during the
period. Both battery voltage and current telemetry are sampled
on the satellite, which together can be used to determine the
output and input load of the battery at least once every two
minutes (apart from gaps in the downlinked data due to storage



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
6

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IE

E
E

T
R

A
N

S
.C

A
D

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

7

TLE
Database

SafeguardOrchestrator

Scenario (.czml)

Flight Plan
API

Telemetry
API

Aalborg GS

NTK
plugin

STK

Scheduled
accesses

(.csv)

Accesses

(.csv)

Telemetry
(.json)

Flight plan
(.json)

propagator
filter &
Kalman

scheduler

DP

H
S C

am
era

H
SL (A

alborg G
S)

GomX-4C
satellite

GomX-4B
satellite

Voltage (t)
Current (t)GomX-4B

TLE

SoC
at t0

t0 t

Pred.
load

Real
load

Telemetry available

[J]

[V]

[W]

SoC

dcharge

charge

Real
battery

SoC
at t0

current
time

PropagatorKalman filter
next
pass

prev.
pass

(over the poles)

ISL

GPS

Real-time debug

Cesium 3D view

Schedule time line

Telemetry summary

Project information

GPS visibility

ISL visibility

Greenland visibility

Aalborg visibility

Sunlight exposure

from t0

to th

from t0

HSL - HSC - ISL - GPS

Web
App

generation
Window

Fig. 2: The tool chain integrated into the GomSpace mission operations API.

and transmission problems). By means of current integration
(a.k.a. Coulomb counting), the evolution of the stored energy
can be properly approximated and the actual SoC at the end of
the telemetry period be determined while learning adjustments
to the battery model parameters via Kalman filtering [5]. Next,
the propagator operates for the period when no telemetry is
available and propagates the battery SoC using the predicted
(scheduled) load and the battery model. At the end of the
process, the SoC at time t0 is made available to the DP
scheduler.

Window Generation. The STK module interfaces with
STK [12] to leverage state-of-the-art orbital propagators. The
module extends the Network Toolkit Plugin (NTK) [17] to
interface with a database to obtain the latest orbital param-
eters of the twin satellites. In this, the Two-Line Element
(TLE) format [18], which encodes in two lines of text all
the necessary Keplerian parameters defining the orbit of the
satellites is leveraged. Furthermore, the plugin computes the
corresponding TLE of the imaginary GOMX–4C satellite,
based on the actual data for GOMX–4B with RAAN angle
and mean anomaly shifted by 10°. Afterwards, STK’s built-in
Simplified General Perturbations 4 (SGP4) algorithm is used
to propagate the trajectories of both satellites into the future.
SGP4 is based on accurate analytical and numerical methods
considering perturbations caused by the Earth’s shape, drag,
radiation, and gravitation effects from other bodies such as the
sun and moon [19].

The resulting trajectories are enriched by sensors mimicking
the antenna and camera coverage of each payload in GOMX–
4B. According to GOMX–4B specifications, a conic HSL
sensor is configured with 2000 km maximum range and 65°
of half-angle pointing in the nadir direction (to ground), a
conic ISL sensor with 1300 km of range and auto-tracking to

the GOMX–4C satellite is placed in the along-flight direction,
and a rectangular HyperScout sensor mimicking the camera
is placed also in the nadir direction with 16° and 23° of
across and along angles respectively. Finally, we model the
Greenland territory by a polygon composed of 15 latitude and
longitude points and set the ground station location in Aalborg
to the actual site of the GomSpace station at 49.23° and 6.98°
latitude and longitude coordinates. The Aalborg ground station
considered with a sensor of 70° of half-angle and 2000 km of
maximum range standing for the HSL downlink antenna.

Based on the aforementioned STK scenario, the plugin is
able to compute relevant accesses. We care about sunlight
access for GOMX–4B satellite, to model the time episodes
in which the on-board batteries are charged. Sunlight expo-
sure is computed internally in STK using accurate planetary
dynamics and exported to the DP model in the form of simple
tables indicating the start and end time of each exposure
episode. Also, we capture the contact windows between the
two HSL sensors on the flight segment (GOMX–4B) and
the ground segment (Aalborg ground station), standing for
high-speed downlink tasks. Next, visibility conditions between
the HyperScout camera and Greenland territory are stored as
potential camera tasks. Finally, ISL tasks can occur only when
the ISL sensor on GOMX–4B can point to GOMX–4C on
a distance no larger than 1300 km. Depending on the small
orbital variations, these episodes last around 20 minutes as
both satellites orbit over the North and South poles. Since the
power demand of the ISL payload is considerable, we allow
for intermittent utilization of the resource. To account for this,
the ISL windows are partitioned into 8 smaller chunks of 160
seconds each.

The STK script also generates a .czml file containing the
resulting scenario which is then fed to the Web App which



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
6

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IE

E
E

T
R

A
N

S
.C

A
D

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

8

upload flight plan 1
backup plan

flight plan 1 starts

24 hrs. horizon
flight plan with

Pass 4Pass 3Pass 2Pass 1
~15 hrs.

to
~90 min

upload flight plan 2

(~2 min)
compute

filter
predict &

download
telemetry backup plan

flight plan 2 starts
ready

flight plan 2

t0

tht0

transition period
flight plan

upload flight plan 3
download
telemetry

flight plan 3 starts
t0

(replaces flight plan 1)

Fig. 3: Receding-horizon scheduling along different passes over the ground station. The computed flight plan extends well
beyond the needed time horizon as a backup plan in case the next update fails.

includes a Cesium plugin to visualize a 3D interactive view
accessible via any web browser. Finally, a socket interface was
put in place on STK to deliver the resulting set of window files
containing the accesses to the DP scheduler in .csv format.
All the described process is fully automatic and requires no
human intervention whatsoever.
Safeguarding. The Safeguard module takes care of a number
of plausibility checks and safeguarding mechanisms. This is
important because a satellite in orbit is a very precious asset,
and any risk of damage or loss needs to be avoided. The
safeguarding pertains to two dimensions, namely the contents
of the flight plan itself, and the time at which it is ready for
upload.

With respect to the former, each flight plan is checked with
respect to the following four questions before uploading it to
the satellite:
• Are tasks being scheduled only at time intervals in which

they are indeed possible?
• Are background loads, including sunlight exposures, ac-

counted for only at time intervals in which they are indeed
present?

• Are the mutual exclusion constraints, preheating, and
slewing actions respected?

• Is the predicted battery behavior indeed safe?
The former two checks are very simple to implement by
referring to the original access windows. We check the first
three altogether by running the flight plan through a timed
automata representation (in UPPAAL [20]) of the GOMX–4
scenario, parametrised with the access windows. This harvests
the excellent readability of the automaton representations, and
can be performed in simulation mode, thus without running
into memory exhaustion issues.

The last item of the above list is tackled by a stand-alone
implementation of the KiBaM, on which we simulate the load
induced along the flight plan while ensuring the SoC does not
drop below the configured threshold. By its nature, the KiBaM
is more accurate and more pessimistic than the corresponding
LiBaM, therefore this check is meaningful and valuable even
if the schedule has been computed on LiBaM.

The other dimension of safeguarding relates to the time
sensitivity of the tool chain. In essence, we expect the com-
putation to finish swiftly so that the new flight plan is ready

for upload before the subsequent pass of the satellite. Indeed
this takes (cf. Section IV) about 2 minutes on average, but this
is not at all guaranteed. We want to compute a schedule for
one day with n potential tasks. In our setting, each task i has
a reward r(i) in the order 300 on average. There are at most
k = 4 simultaneously available tasks per time step, and cmax

different possible values of each of the two KiBaM parameters.
Using our analysis from Section II-C, we conclude that the DP
module has an upper bound of O(n2) · cmax on the number of
entries. We even have the concrete guarantee that the constant
factor in the Oh-notation is at most in the order of 10 000.
However, already for a one day schedule, this is a prohibitive
number since n is roughly 500 and cmax is in the order of
140 000 000; even when using the LiBaM model where we
save a factor of cmax, we cannot exclude reaching the limit of
available memory – and worse: time.

To account for this problem, we consider any push-button
event as failed if the resulting flight plan is not available ten
minutes before the pass. We keep an empty flight plan as fall-
back on the satellite. However, we do revert to that only if
we are approaching the end of the planning horizon th, which
means that we must have witnessed consecutive failures of the
chain. In light of the fact that each flight plan computed covers
24 hours, this is truly meant as a safe fall back for exceptional
cases. Section IV will explore this strategy in practice.
Web App. In order to visually inspect the status and decision
taken by the tool chain, a Web App is leveraged. During
the planning process, the Orchestrator acts as a back-end by
updating (a) the scenario file obtained from STK, (b) the
schedule produced by the DP, and (c) the latest telemetry
obtained from the satellite. The Web App integrates a 3D
scenario visualizer based on Cesium [21] to easily grasp the
dynamics behind the schedule computed by the tool. The
schedule is presented in a timeline view and the telemetry
is plotted using ApexCharts [22].
Telemetry and Flight Plans API. The tool chain interfaces
with the satellite constellation operation center by means of
standard API formats. Although GomSpace made available
a specific .json format both for telemetry and flight plan
commands, the tool chain can be easily adapted to other struc-
tures. In particular, the telemetry reports the battery voltage
and input/output current, while the flight plan is an array of



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
6

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IE

E
E

T
R

A
N

S
.C

A
D

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

9

HSLB

HyperScoutB

ISLB

GPSB

SunB

0.6

0.7

0.8

0.9

1.0

0

5000

10000

HSLB

HyperScoutB

ISLB

GPSB

SunB

0.6

0.7

0.8

0.9

1.0

01.
01.

00:
00

01.
01.

06:
00

01.
01.

12:
00

01.
01.

18:
00

02.
01.

00:
00

02.
01.

06:
00

02.
01.

12:
00

02.
01.

18:
00

03.
01.

00:
00

0

5000

10000

Different ISL 

chunks scheduled

GPS task not

scheduled in KiBaM

HSLB

yperScoutB

ISLB

GPSB

SunB

0.6

0.7

0.8

0.9

1.0

Battery Load [mA]

Battery Load [mA]

Available Charge [%]

Available Charge [%]

Bound Charge [%]

SkippedScheduledSunlight exposure

Fig. 4: Accuracy evaluation: example schedules for the LiBaM (top) and KiBaM (bottom) models.

time intervals on which each of the satellite payloads should
be enabled. In any case, this interfacing happens through a
secured VPN connection.

IV. EVALUATION

In this section, we present the evaluation results of a thor-
ough test campaign designed to assess the accuracy, efficiency,
scalability, and robustness of the tool chain. The presented
outcomes are framed in the context of the scenario comprising
GOMX–4B and GOMX–4C illustrated in Fig. 1. All measure-
ments have been performed on a Linux machine, equipped
with an Intel Core™ i7-4790 CPU running at 3.60GHz and
32GB of main memory. Telemetry data from the 2018-
2019 time-frame is used in our studies, because real orbital
data from TLEs is already publicly available, enabling the
computation of the true access windows of the satellite.

A. Accuracy

Compared to the LiBaM, the KiBaM is known to be a
more accurate representation of battery dynamics. Thus far it
was not possible to perform battery-aware satellite scheduling
using the KiBaM. To shed light on this, we present here the
results of an (in retrospect) challenging instance. We run our
case study in a 2 day horizon (1 Jan 2019 00:00–3 Jan 2019
00:00) with v = 0.0015 with an initial SoC of 90 % and a
minimal SoC of 55 %, and no need to recover a higher charge
by the end of the scheduling horizon. We obtain the results
presented in Fig. 4 for both battery models. The top rows of
the two charts each indicate the sunlight exposure episodes
and payload utilization windows. Payload windows chosen by
the DP to be executed in orbit are highlighted in blue, or gray
if skipped. Notably, ISL opportunities are actually 8 equal-
sized, independent, and consecutive chunks. The second rows

of the two charts display the evolution of the battery SoC. In
the case of LiBaM this is just a single plot, while the SoC
in KiBaM consists of available (blue) and bound (red shaded)
charge values, as discussed in Section II-A. In the bottom of
each chart, the battery loads in terms of the electric current
flow at each point in time are depicted. As expected, the more
tasks are scheduled, the more the battery is stressed.

The computed schedules differ in some places, but if one
looks at the total task counts being scheduled, the quantitative
difference is that the LiBaM model can sustain 48 GPS tasks,
one more than the KiBaM can sustain. Since both problems
are solved optimally, and the respective profits differ, this
means that the LiBaM-induced solution will violate the battery
constraints if run on the KiBaM, and indeed this violation
is confirmed by running the LiBaM solution on our stand-
alone KiBaM. The case is challenging mainly because it is
beneficial to operate close to the minimum SoC for some time,
and it is here where the bound charge in the KiBaM prevents
certain options that are possible in LiBaM. This phenomenon
obviously depends on the rate v. Furthermore, it turns out that
in many other circumstances, the LiBaM-optimal schedule is
KiBaM-optimal, too, especially if it is enforced to end up
with a higher charge by the end of the scheduling horizon.
Concretely, for the scenario we shall fly in space (stay above
55 %, return to 80 %), the optimal values in our experiments
so far did always agree. Note that prior to our tool chain, it
was impossible to study this question.

B. Efficiency

We first study the efficiency of the DP approaches (DP-
KiBaM and DP-LiBaM) in comparison with the battery-
aware scheduling approach based on cost-optimal reachability
analysis in priced timed automata [4], [5] and LiBaM. The



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
6

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IE

E
E

T
R

A
N

S
.C

A
D

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

10

0 h 1 h 2 h 3 h 4 h 5 h 6 h

0:00 m

1:00 m

2:00 m

3:00 m

4:00 m

0 GB

1 GB

2 GB

3 GB

4 GBTime (DP-LiBaM)
Time (DP-KiBaM)
Time (TA-LiBaM)
Memory (DP-LiBaM)
Memory (DP-KiBaM)
Memory (TA-LiBaM)

Fig. 5: Efficiency evaluation: running time and memory utiliza-
tion of the TA and DP approaches with a scheduling horizon
of up to 6 hours.

latter (TA-LiBaM) has been applied in the GOMX–3 context
and can be viewed as the state-of-the-art baseline. We here
consider it adapted to fit precisely the GOMX–4 scenario, and
solve it using the UPPAAL CORA tool [23], [24].

Results for running time and memory utilization of TA-
LiBaM, DP-LiBaM, and DP-KiBaM, are presented in Fig. 5.
For increasing scheduling horizon th, the timed automata
approach quickly exhausts the available 4 GB of memory
(limited by the 32-bit code architecture of UPPAAL CORA).
For shorter horizons, the solution time of TA-LiBaM in-
creases notably w.r.t. the DP executions, reaching more than
4:20 minutes when the same instance is completed in less than
5 seconds by the DP. Thus, the DP not only outperforms the
state-of-the-art methods in accuracy, but also by several orders
of magnitude in terms of processing performance.

Next, we look closer into the efficiency spectrum of the DP
when using LiBaM and KiBaM models. The measured running
time for computing the LiBaM solution for the scenario in
Fig. 4 is 2 minutes, while for KiBaM it is 13 minutes. To
get a deeper understanding of the difference, we study the
accuracy and computation time trade-off between the two
battery models supported. In other words, we care about the
practical implications of a more accurate (and computationally
more demanding) model, and compare the measurements of
calculation time and memory utilization of the DP module
when executed on each of the models.

The results in Fig. 6 compare the running time and memory
consumption of the DP module when calculating a flight plan
for the same 24 hour time period using the linear and kinetic
battery model with v = 0.005. In this case, we start and end
at 80 % SoC. The minimum threshold is set to 55 %. While
the LiBaM schedule is delivered in 36 seconds, the KiBaM
processing terminates in 1:10 minutes, so 100 % slower. The
graph represents the internal behavior of the DP with respect
to resource consumption, focussing on one of the dimensions
of the DP table, namely the time progression within the
considered time window. The x-axis of the graph reflects

0 h 4 h 8 h 12 h 16 h 20 h 24 h

0:00 m

0:20 m

0:40 m

1:00 m

0 MB

16 MB

32 MB

48 MBTime (DP-LiBaM)
Time (DP-KiBaM)
Memory (DP-LiBaM)
Memory (DP-KiBaM)

Fig. 6: Efficiency evaluation: running time and memory uti-
lization of the DP scheduler up to a 24 hour horizon with
LiBaM and KiBaM models.

these values. The y-axis depicts the amount of resources
(time/space) used for filling all relevant cells of the DP table
until the point in time of the x-axis. Therefore, an increase
in the gradient reflects an increased number of DP-cells filled
per scheduled time step. The DP table size enables an indirect
estimation of the search space of the DP which in turn is
strictly related to the actual system memory consumption of
the algorithm. We find that the latter is almost twice the size
consumed by the DP table data structure.

Notably, the profit obtained with KiBaM and LiBaM turns
out to be identical here, and this is a phenomenon that we
observed often in cases where it does not appear profitable to
operate close to the minimum charge.

C. Scalability

In order to understand the practical limits of the tool, we
stretch the scheduling horizon way beyond one day and mea-
sure the required time and memory resources. This experiment
allows us to determine up to which extent longer time frames
can be spanned by a schedule, and thus can be considered for
cases where future flight plan update opportunities are sparse
or cannot be used.

The results in Fig. 7 show the development of the running
time and memory consumption within a run of the DP for a
time horizon of 100 days for both LiBaM and KiBaM, starting
on 1 Jan 2019. The setup is the same as in Section IV-B.
The graph confirms our previous conclusion, namely that the
KiBaM scheduling is slower by factor two and more memory
intensive. The memory consumption coincides with the num-
ber of entries in the DP table. In particular, the DP cannot
remove entries from previous time steps, since they are needed
to compute the actual schedule after reaching the last time
step. The graph reflects, for both battery models, the expected
monotonous increase of the memory consumption over time
where the interesting aspect is the rate of increase. There
is a first phase where the increase resembles an exponential



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
6

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IE

E
E

T
R

A
N

S
.C

A
D

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

11

0 d 20 d 40 d 60 d 80 d 100 d

0:00 h

2:00 h

4:00 h

6:00 h

8:00 h

10:00 h

12:00 h

0 GB

2 GB

4 GB

6 GB

8 GB

10 GB

12 GB

14 GB
Time (DP-LiBaM)
Time (DP-KiBaM)
Memory (DP-LiBaM)
Memory (DP-KiBaM)

Fig. 7: Scalability evaluation: running time and memory uti-
lization of the DP scheduler up to a 100 day horizon with
LiBaM and KiBaM models.

function (quite short, see Fig. 6). The reason for that is that
in the almost empty DP table, almost all choices at a given
time step lead to new entries at the subsequent time step.
Afterwards, the function resembles a piecewise linear function.
We conclude that eventually, the number of new choices gets
saturated in the sense that there is a large number of choices
that have matching parameters within the table or that are
sorted out in the pruning phase. A roughly identical number
of new entries per time unit gives a linear function in the graph.
There is a sudden increase in the rate of memory-consumption
at day 45 and another one at day 66. While the reason for
the sudden increase is unclear, it is consistent with our other
measurements where at certain intervals of the input data, the
running time and memory consumption of the DP spike (see
Fig. 8, first spike in 2019). Such a spike would have exactly
the observed effect: the additional options lead to an increased
set of incomparable DP table entries. For each of these entries,
the DP has to compute follow-up results, since it will be clear
only later whether the entry is needed or not. Therefore, after
an increase of DP-states at one point in time, also the number
of new entries per time unit increases.

Notably, applying the approach from earlier work using the
LiBaM and priced timed automata [5] to this scenario struggles
to schedule more than 6 hours of our scenario, due to memory
exhaustion. The tool therefore gives us at least a 400-fold
improvement over that work.

D. Robustness

For the particular receding horizon case of the GomSpace
mission, the quantitative difference between the LiBaM and
KiBaM turns out to be negligible. This is rooted in the safety-
margin condition imposed by GomSpace for the battery SoC:
start at 80 %, end at 80 %, and never drop below 55 %. This
does not stress the battery to the point where the KiBaM
accuracy actually pays off during scheduling. (Note that the
KiBaM is used during safeguarding anyhow.)

The objective of the robustness evaluation is to validate that
the receding horizon approach is indeed suitable for the fully
automated operation of the GomSpace mission. To this end, we
run an extended and accelerated analysis of the tool as if it had
been operating the GOMX–4B and GOMX–4C satellites over
a two year period spanning 2018 and 2019. In this context,
we compute the sequence of contact plans pass-after-pass of
the satellite over the ground station.

During the experiment, we measure the running time of
each DP run. This is the core computation step of the tool
chain. The approximately 90 minutes orbital period – minus
10 minutes safeguarding – must not be exceeded, such that a
schedule is always computed before the next flight plan upload
opportunity. Again, we track the memory utilization by means
of the number of entries in the DP table.

The results of the test campaign are plotted in Fig. 8. A
total of 1125 schedules are computed throughout a year. The
tool is able to consistently deliver schedules within less than
22 minutes, however with some perceivable variance at places.
The spikes in resource consumption are rooted in peculiarities
of the exact time alignment of the different schedulable tasks.
Such alignments are correlated for consecutive days.

On average, the schedule is ready to upload in less than
two minutes. The memory consumption of the DP table is
always below 700 MB, and in the order of 200 MB on average.
These results confirm that the tool chain can be safely used
to manage the GOMX–4 mission. Indeed the safeguarding
mechanisms never kicked in, meaning that neither was a flight
plan delivered that violated any of the constraints, nor was the
minimum time window of 80 minutes ever close to getting too
short.

V. CONCLUSION

The commercial exploitation of near-Earth space is on the
spot with thousands of satellites being prepared for launch.
While immediate practical and technical challenges are con-
centrating most of the attention of the space community, this
paper has focussed on a unique opportunity to support this
development by advanced computing techniques.

We have presented the nucleus of a fully automated satellite
constellation management framework with highly accurate and
scalable power-aware scheduling at its core. The approach is
highly flexible in the way that it can transparently express
components and related tasks of any modern networked mis-
sion, with a configurable optimization goal. Always-safe and
best-to-follow receding-horizon schedules are delivered by it.

At the time of writing, the tool chain is being integrated
into the mission operations and control center at GomSpace.
An experiment is planned for a two-week period in which the
GOMX–4B satellite will be autonomously operated following
the details discussed in this paper. A successful validation will
be a crucial step in making this unique technology available
to the space sector.

While the space domain is particular in the sense that power
infeed is (short- and medium-term) foreseeable, the underlying
algorithmic technology is not restricted to the space context
in any way. Indeed, there is an ample spectrum of future



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
6

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IE

E
E

T
R

A
N

S
.C

A
D

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

12

2018 Apr Jul Oct 2019 Apr Jul Oct 2020

2 min

4 min

6 min

8 min LiBaM

2018 Apr Jul Oct 2019 Apr Jul Oct 2020

32 MB

64 MB

96 MB

128 MB LiBaM

Fig. 8: Robustness evaluation: running time (top) and estimated memory consumption (bottom) measured during a 2-year
operation period, using DP-LiBaM.

applications for battery-aware scheduling in heterogeneous
situations found for instance in light electric mobility, cleaning
robots, drones, and so forth.

ACKNOWLEDGMENTS

This research has received support by the ERC Advanced
Grant 695614 (POWVER) and by the DFG Grant 389792660,
as part of TRR 248 (https://perspicuous-computing.science).

REFERENCES

[1] J. Alvarez and B. Walls, “Constellations, clusters, and communication
technology: Expanding small satellite access to space,” in 2016 IEEE
Aerospace Conference, Mar. 2016, pp. 1–11. [Online]. Available:
https://doi.org/10.1109/AERO.2016.7500896

[2] J. R. Kopacz, R. Herschitz, and J. Roney, “Small satellites an overview
and assessment,” Acta Astronautica, vol. 170, pp. 93 – 105, 2020.
[Online]. Available: https://doi.org/10.1016/j.actaastro.2020.01.034

[3] J. A. Fraire, G. Nies, H. Hermanns, K. Bay, and M. Bisgaard,
“Battery-aware contact plan design for LEO satellite constellations:
The Ulloriaq case study,” in IEEE Global Communications Conference,
GLOBECOM 2018, Abu Dhabi, United Arab Emirates, December
9-13, 2018, 2018, pp. 1–7. [Online]. Available: https://doi.org/10.1109/
GLOCOM.2018.8647822

[4] G. Nies, M. Stenger, J. Krčál, H. Hermanns, M. Bisgaard, D. Gerhardt,
B. Haverkort, M. Jongerden, K. G. Larsen, and E. R. Wognsen,
“Mastering operational limitations of LEO satellites – The GomX-3
approach,” Acta Astronautica, vol. 151, pp. 726 – 735, 2018. [Online].
Available: https://doi.org/10.1016/j.actaastro.2018.04.040

[5] M. Bisgaard, D. Gerhardt, H. Hermanns, J. Krčál, G. Nies, and
M. Stenger, “Battery-aware scheduling in low orbit: The GomX-3
case,” Formal Asp. Comput., vol. 31, no. 2, pp. 261–285, 2019.
[Online]. Available: https://doi.org/10.1007/s00165-018-0458-2

[6] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, “Optimal scheduling
using priced timed automata,” SIGMETRICS Performance Evaluation
Review, vol. 32, no. 4, pp. 34–40, 2005. [Online]. Available:
https://doi.org/10.1145/1059816.1059823

[7] M. R. Jongerden and B. R. Haverkort, “Which battery model to use?”
IET Software, vol. 3, no. 6, pp. 445–457, 2009. [Online]. Available:
https://doi.org/10.1049/iet-sen.2009.0001

[8] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber, “A
unified approach to approximating resource allocation and scheduling,”
J. ACM, vol. 48, no. 5, pp. 1069–1090, 2001.

[9] H. Hermanns, J. Krčál, and G. Nies, “How is your satellite
doing? Battery kinetics with recharging and uncertainty,” LITES,
vol. 4, no. 1, pp. 04:1–04:28, 2017. [Online]. Available: https:
//doi.org/10.4230/LITES-v004-i001-a004

[10] N. De Bruijn, C. van Ebbenhorst Tengbergen, and D. Kruyswijk, “On
the set of divisors of a number,” Nieuw Arch. Wiskunde (2), vol. 23, pp.
191–193, 1951.

[11] J. R. Griggs, “Maximum antichains in the product of chains,” Order,
vol. 1, no. 1, pp. 21–28, 1984.

[12] “AGI Systems Tool Kit (STK) v11.7,” http://www.agi.com/products/stk/,
accessed: 2020-03-03.

[13] “NASA General Mission Analysis Tool (GMAT) (V. R2016a),” https:
//software.nasa.gov/software/GSC-17778-1, accessed: 2020-03-03.

[14] “Orekit v10.1,” https://www.orekit.org/, accessed: 2020-03-03.
[15] “FreeFlyer v7.5,” https://ai-solutions.com/freeflyer/, accessed: 2020-03-

03.
[16] S. Chand, V. N. Hsu, and S. P. Sethi, “Forecast, solution, and

rolling horizons in operations management problems: A classified
bibliography,” Manufacturing & Service Operations Management,
vol. 4, no. 1, pp. 25–43, 2002. [Online]. Available: https://doi.org/10.
1287/msom.4.1.25.287

[17] J. A. Fraire, “Introducing contact plan designer: A planning tool for
dtn based space terrestrial networks,” in 6th International Conference
on Space Mission Challenges for Information Technologies (SMC-IT),
Alcala de Henares, Spain, Sept. 2017.

[18] C. Levit and W. Marshall, “Improved orbit predictions using two-line
elements,” Advances in Space Research, vol. 47, no. 7, pp. 1107 – 1115,
2011. [Online]. Available: https://doi.org/10.1016/j.asr.2010.10.017

[19] D. Vallado, P. Crawford, R. Hujsak, and T. Kelso, “Revisiting spacetrack
report# 3,” in AIAA/AAS Astrodynamics Specialist Conference and
Exhibit, 2006, p. 6753.

[20] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” Int.
J. Softw. Tools Technol. Transf., vol. 1, no. 1-2, pp. 134–152, 1997.
[Online]. Available: https://doi.org/10.1007/s100090050010

[21] “Cesium,” https://cesium.com/, accessed: 2020-03-03.
[22] “ApexCharts,” https://apexcharts.com/, accessed: 2020-03-03.
[23] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, “Priced timed

automata: Algorithms and applications,” in Formal Methods for
Components and Objects, Third International Symposium, FMCO 2004,
Leiden, The Netherlands, November 2 - 5, 2004, Revised Lectures, ser.
Lecture Notes in Computer Science, F. S. de Boer, M. M. Bonsangue,
S. Graf, and W. P. de Roever, Eds., vol. 3657. Springer, 2004, pp.
162–182. [Online]. Available: https://doi.org/10.1007/11561163 8

[24] “Uppaal Cora,” http://people.cs.aau.dk/∼adavid/cora/, accessed: 2020-
06-17.

https://powver.org
https://perspicuous-computing.science
https://doi.org/10.1109/AERO.2016.7500896
https://doi.org/10.1016/j.actaastro.2020.01.034
https://doi.org/10.1109/GLOCOM.2018.8647822
https://doi.org/10.1109/GLOCOM.2018.8647822
https://doi.org/10.1016/j.actaastro.2018.04.040
https://doi.org/10.1007/s00165-018-0458-2
https://doi.org/10.1145/1059816.1059823
https://doi.org/10.1049/iet-sen.2009.0001
https://doi.org/10.4230/LITES-v004-i001-a004
https://doi.org/10.4230/LITES-v004-i001-a004
http://www.agi.com/products/stk/
https://software.nasa.gov/software/GSC-17778-1
https://software.nasa.gov/software/GSC-17778-1
https://www.orekit.org/
https://ai-solutions.com/freeflyer/
https://doi.org/10.1287/msom.4.1.25.287
https://doi.org/10.1287/msom.4.1.25.287
https://doi.org/10.1016/j.asr.2010.10.017
https://doi.org/10.1007/s100090050010
https://cesium.com/
https://apexcharts.com/
https://doi.org/10.1007/11561163_8
http://people.cs.aau.dk/~adavid/cora/

