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Deep Statistical Model Checking?
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Abstract. Neural networks (NN) are taking over ever more decisions thus
far taken by humans, even though verifiable system-level guarantees are far
out of reach. Neither is the verification technology available, nor is it even un-
derstood what a formal, meaningful, extensible, and scalable testbed might
look like for such a technology. The present paper is a modest attempt to
improve on both the above aspects. We present a family of formal models
that contain basic features of automated decision making contexts and which
can be extended with further orthogonal features, ultimately encompassing
the scope of autonomous driving. Due to the possibility to model random
noise in the decision actuation, each model instance induces a Markov deci-
sion process (MDP) as verification object. The NN in this context has the
duty to actuate (near-optimal) decisions. From the verification perspective,
the externally learnt NN serves as a determinizer of the MDP, the result be-
ing a Markov chain which as such is amenable to statistical model checking.
The combination of a MDP and a NN encoding the action policy is central
to what we call “deep statistical model checking” (DSMC). While being a
straightforward extension of statistical model checking, it enables to gain
deep insight into questions like “how high is the NN-induced safety risk?”,
“how good is the NN compared to the optimal policy?” (obtained by model
checking the MDP), or “does further training improve the NN?”. We report
on an implementation of DSMC inside The Modest Toolset in combina-
tion with externally learnt NNs, demonstrating the potential of DSMC on
various instances of the model family.

1 Introduction

Neural networks (NN), in particular deep neural networks, promise astounding ad-
vances across a manifold of computing applications across domains as diverse as
image classification [27], natural language processing [21], and game playing [40].
NNs are the technical core of ever more intelligent systems, created to assist or
replace humans in decision-making.

This development comes with the urgent need to devise methods to analyze, and
ideally verify, desirable behavioral properties of such systems. Unlike for traditional
programming methods, this endeavor is hampered by the nature of neural networks,
whose complex function representation is not suited to human inspection and is
highly resistant to mechanical analysis of important properties.

? Authors are listed alphabetically.
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Verification Challenge. As a matter of fact, remarkable progress is being made to-
wards automated NN analysis, be it through specialized reasoning methods of the
SAT-modulo-theories family [25,23,10], or through suitable variants of abstract in-
terpretation [13,31] or quantitative analysis [42,7]. All these works thus far focus
on the verification of individual NN decision episodes, i.e., the behavior of a single
input/output function call. In contrast, the verification of NNs being the decisive
(in the literal sense of the word) authorities inside larger systems placed in possibly
uncertain contexts, is wide-open scientific territory.

Very many real-world examples, where NNs are expected to become central de-
cision entities – from autonomous driving to medical care robotics – involve discrete
decision making in the presence of random phenomena. The former are to be taken
in the best possible manner, and it is the NN that decides which decisions to take
when and where. A very natural formal model for studying the principles, require-
ments, efficacy and robustness of such a NN, is the model family of Markov decision
processes [38] (MDP). MDPs are a very widely studied class of models in the AI
community, as well as in the verification community, where MDPs are the main
semantic object of probabilistic model checking [29].

Assume now we are facing a problem for which a NN decision entity has been
developed by a different party. If the problem statement can be formally cast as a
certain MDP, we may use this MDP as a context to study properties of the NN
delivered to us. Concretely, the NN will be put to use as a determinizer of the
otherwise non-deterministic choices in the MDP, so that altogether a Markov chain
results, which in turn can be evaluated by standard probabilistic model checking
techniques. This is the simple idea this paper proposes. The idea can be further
extended by making the technology available to a certification authority responsible
for NN system approval, or to the party designing the NN, as a valuable feedback
mechanism in the design process.

Deep statistical model checking. However, this style of verification is challenged by
the complexity of analyzing the participating NN and that of analyzing the induced
system behaviors and interactions. Already the latter is a notorious practical im-
pediment to successful verification rooted in state space explosion problems. Indeed,
standard probabilistic model checking will suffer quickly from this. However, for
Markov chains there is a scalable alternative to standard model checking at hand,
nowadays referred to as statistical model checking [43,20]. The latter method employs
efficient sampling techniques to statistically check the validity of a certain formal
property. If applicable, it does not suffer from the state space explosion problem, in
contrast to standard probabilistic model checking.

The scalable verification method we propose is called deep statistical model check-
ing (DSMC) by us. At its core is a straightforward variation of statistical model
checking, applied to a MDP, together with a NN that has to take the decisions. For
this, DSMC expects a NN that can be queried as a black-box oracle to resolve the
non-determinism in the MDP given: The NN receives the state descriptor as input,
and it returns as output a decision determining the next step. The DSMC method
integrates the pair of NN and MDP, and analyzes the resulting Markov chain sta-
tistically. In this way, it is possible to statistically verify properties of the NN itself,
as we will discuss.
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Deep Statistical Model Checking 3

Racetrack. To study the potential of DSMC, we perform practical experiments with
a case study family that remotely resembles the autonomous driving challenge, albeit
with some drastic restrictions relative to the grand vision. These restrictions are: (i)
We consider a single vehicle, there is no traffic otherwise. (ii) No object or position
sensing is in use, instead the vehicle is aware of its exact position and speed. (iii) No
speed limits or other traffic regulations are in place. (iv) Fuel consumption is not op-
timized for. (vi) Weather and road conditions are constant. (vii) The entire problem
is discretized in a coarse manner. What remains after all these restrictions (apart
from inducing a roadmap of further works beyond what we study) is the problem of
navigating a vehicle from start to goal on a discrete map, with actions allowing to
accelerate/decelerate in discrete directions, subject to a probabilistic risk of action
failing to take effect in each step. The objective is to reach the goal in a minimal
number of steps without bumping into a boundary wall. This problem is known as
the Racetrack, a benchmark originating in AI autonomous decision making [1,37].
In formal terms, each map and parameter combination induces a MDP.

Racetrack is a simple problem, simple enough to put a neural network in the
driver seat: This NN is then the central authority in the vehicle control loop. It needs
to take action decisions with the objective to navigate the vehicle safely towards the
goal. There are a good number of scientific proposals on how to construct and train
a NN for mastering such tasks, and the present paper is not trying at all to innovate
in this respect. Instead, the central contribution of this paper is a scalable method to
verify the effectiveness of a NN trained externally for its task. This technique, DSMC,
is by no means bound to the Racetrack problem domain, instead it is generally
applicable. We evaluate it in the context of Racetrack because we do think that this
is a crisp formal model family, which is of value in ongoing activities to systematize
our understanding of NNs that are supposed to take over important decisions from
humans.

Our concrete modelling context are MDPs represented in Jani [6], a language
interfacing with the leading probabilistic model checkers out there. For the sake
of experimentation and for use by third parties, we have implemented a generic
connection between NNs and the state-of-the-art statistical model checker modes
[2,5], part of The Modest Toolset [18]. This extension gives the possibility to use
a NN oracle, and to analyze the resulting Markov chain by SMC. We thus establish
an initial DSMC tool infrastructure, which we apply on Racetrack benchmarks.

It will become evident by our empirical evaluation that there are a variety of use
cases for DSMC, pertaining to end users and domain engineers alike:

– Quality assurance. DSMC can be a tool for end users, or engineers, in system
approval or certification, regarding safety, robustness, absence of deadlocks, or
performance metrics. The generic connection to model checking furthermore
enables the comparison of NN oracles to provably optimal choices, on moderate-
size models: taking out the NN, the original MDP results, and can be submitted
to standard probabilistic model checking. In our implementation, we use mcsta
[18] for this purpose.

– Learning pipeline assessment. DSMC can serve as a tool for the NN engineers
designing the NN learning pipeline in the first place. This is because the DSMC
analysis can reveal specific deficiencies in that pipeline. For example, we show
that simple heat maps can highlight where the oracles are unsafe. And we exhibit
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4

cases where NN oracles turn out highly unsafe despite this phenomenon not being
derivable from standard measures of learning performance. Such problems would
likely have remained undetected without DSMC.

In summary, our contributions are as follows:

1. We present deep statistical model checking, which statistically evaluated the
connection of a NN oracle and a MDP formalizing the problem context.

2. We establish tool infrastructure for DSMC within modes to connect to NN
oracles.

3. We establish infrastructure for Racetrack benchmarking, including parsing, sim-
ulation, Jani model export, comparison with optimal behavior, and also for NN
learning.

4. We illustrate the use and feasibility of DSMC in Racetrack case studies.

The benchmark and all infrastructure including our modification of modes as
well as our Jani model is archived and publicly available at DOI 10.5281/zenodo.
3760098 [14].
The paper is organized as follows. Section 2 briefly covers the necessary background
in model checking, neural networks, and the Racetrack benchmark. Section 3 in-
troduces the DSMC connection and discusses our implementation. Section 4 briefly
introduces our Racetrack infrastructure, specifically the Jani model and the NN
learning machinery. Section 5 describes the case studies, and Section 6 closes the
paper.

2 Background

Markov Decision Processes. The models we consider are discrete-state Markov De-
cision Processes (MDP). For any nonempty set S we let D(S) denote the set of
probability distribution over S. We write δ(s) for the Dirac distribution that assigns
probability 1 to s ∈ S.

Definition 1 (Markov Decision Process). A Markov Decision Process (MDP)
is a tuple M = 〈S,A, T , s0〉 consisting of a finite set of states S, a finite set of
actions A, a partial transition probability function T : S × A 9 D(S), and an
initial state s0 ∈ S. We say that action a ∈ A is applicable in state s ∈ S if T (s, a)
is defined. We denote by A(s) ⊆ A the set of actions applicable in s. We assume
that A(s) is nonempty for each s (which is no restriction).

MDPs are often associated with a reward structure, specifying numerical rewards
to be accumulated when moving along states sequences. Here we are interested
instead in the probability of property satisfaction. Rewards, however, appear in our
case study as part of the NN training which aims at optimizing reward expectations
during reinforcement learning.

The behavior of a MDP is usually considered together with an entity resolving
the otherwise non-deterministic choices in a state. This is effectuated by an action
policy (or scheduler, or adversary) that determines which applicable action to apply
when and where. In full generality this policy may use randomization (picking a

http://doi.org/10.5281/zenodo.3760098
http://doi.org/10.5281/zenodo.3760098
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Deep Statistical Model Checking 5

distribution over applicable actions), and it may use the past history when picking.
The former is of no importance for the setting considered here, while the latter is.
Histories are represented as finite sequences of states (i.e. words over S), thus they
are drawn from S+. We use last(w) to denote the last state in w ∈ S+.

Definition 2 (Action Policy). A (deterministic, history-dependent) action policy
is a function σ : S+ → A such that ∀w ∈ S+ : σ(w) ∈ A(last(w)). An action policy
is memoryless if it satisfies σ(w) = σ(w′) whenever last(w) = last(w′).

Memoryless policies can equally be represented as σ : S → A such that ∀s ∈
S : σ(s) ∈ A(s).

Definition 3 (Markov Chain). A Markov Chain is a tuple C = 〈S, T , s0〉 con-
sisting of a set of states S, a transition probability function T : S → D(S) and an
initial state s0 ∈ S.

An MDP 〈S,A, T , s0〉 together with an action policy σ : S+ → A induces a countable-
state Markov chain 〈S+, T ′, s0〉 over state histories in the obvious way: For any
w ∈ S+ with T (last(w), σ(w)) = µ, set T ′(w) = d where d(ws) = µ(s). For mem-
oryless σ the original state space S can be recovered by setting T ′(last(w)) = µ in
the above, since both are lumping equivalent [4].

Probabilistic and Statistical Model Checking. Model checking of probabilistic mod-
els (such as MDPs) nowadays comes in two flavors. Probabilistic model checking
(PMC) [29] is an algorithmic technique to determine the extremal (maximal or min-
imal) probability (or expectation) with which an MDP satisfies a certain (temporal
logic) property when ranging over all imaginable action policies. For some types of
properties (step-bounded reachability, expected number of steps to reach) it does
not suffice to restrict to memoryless policies, while for others (inevitability, step-
unbounded reachability) it does. At the core of PMC are numerical algorithms that
require the full state space to be available upfront (in some way or another) [35,17].

If fixing a particular policy, the MDP turns into a Markov chain. In this setting,
statistical model checking (SMC [43,20]) is a popular alternative to probabilistic
model checking. This is because PMC, requiring the full state space, is limited by
the state space explosion problem. SMC is not, even if the underlying model is infi-
nite in size. Furthermore, SMC can extend to non-Markovian formalisms or complex
continuous dynamics effectively. At its core, SMC harvests classical Monte Carlo sim-
ulation and hypothesis testing techniques. In a nutshell, n finite samples of model
executions are generated and evaluated to determine the fraction of executions sat-
isfying a property under study. This yields an estimate q′ of the actual value q of
the property, together with a statistical statement on the potential error. A typical
guarantee is that P(|q′ − q| < ε) > δ, where 1 − δ is the confidence that the result
is ε-correct. To decrease ε and δ, n must be increased. SMC is attractive as it only
requires constant memory independent of the size of the state space. When facing
rare events, however, the number of samples needed to achieve sufficient confidence
may explode.

In the MDP setting (or more complicated settings), SMC analysis is always
bound to a particular action policy turning an otherwise non-deterministic model
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6

into a stochastic process. Nevertheless, many SMC tools support non-deterministic
models, e.g. Prism [28] and UPPAAL SMC [8]. They use an implicitly defined
uniform random action policy to resolve choices. The statistical model checker modes
[5], which is part of The Modest Toolset [18] instead lets the user choose out
of a small set of predefined policies, or provides light-weight support for iterating
over policies [30,5] to statistically approximate an optimal policy. In any case, results
obtained by SMC are to be interpreted relative to the implicitly or explicitly defined
action policy.

Neural Networks. NNs consist of neurons: atomic computational units that typically
apply a non-linear function, their activation function, to a weighted sum of their
inputs [39]. For example, rectified linear units (ReLu) use the activation function
f(x) = max(0, x). Here we consider feed-forward NNs, a classical architecture where
neurons are arranged in a sequence of layers. Inputs are provided to the first (input)
layer, and the computation results are propagated through the layers in sequence
until reaching the final (output) layer. In every layer, every neuron receives as inputs
the outputs of all neurons in the previous layer. For a given set of possible inputs I
and (final layer) outputs O, a neural network can be considered as an efficient-to-
query total function π : I → O.

So-called “deep” neural networks consist of many layers. In tasks such as image
recognition, successful NN architectures have become quite sophisticated, involving
e.g. convolution and max-pooling layers [27]. Feed-forward NNs are comparatively
simple, yet they are in wide-spread use [12], and are in principle able to approximate
any function to any desired degree of accuracy [22].

Such NNs can be trained in a multitude of ways. Here we use deep Q-learning
[33], a successful and nowadays widespread form of reinforcement learning, where
the NN is trained by iterative execution and refinement steps. Each step executes the
current NN from some state, and updates the NN weights using gradient descent.
Deep Q-learning has been shown to learn high-quality NN action policies in a variety
of challenging decision-making problems [33].

Racetrack. Originally Racetrack is a pen and paper game [11]. A track is drawn
with a start line and a goal line. A vehicle starts with velocity 0 from some positions
on the start line, with the objective to reach the goal as fast as possible without
crashing into a wall. Nine possible actions modify the current velocity vector by
one unit (up, down, left, right, four diagonals, keep current velocity). This simple
game lends itself naturally as a benchmark for sequential decision making in risky
scenarios. In particular, extending the problem with noise, we obtain MDPs that do
not necessarily allow the vehicle to reach the goal with certainty. In a variety of such
noisy forms, Racetrack was adopted as a benchmark for MDP algorithms in the AI
community [1,3,32,36,37].

Like in previous work, we consider the single-agent version of the game. We use
some of the benchmarks, i.e., track shapes, that are readily available. Specifically,
we use the three Racetrack maps illustrated in Figure 1, originally introduced by
Barto et al. [1]. The track itself is defined as a two-dimensional grid, where each cell
of the grid can represent a possible starting position “s” (indicated in green), a goal
position “g” (red), or can contain a wall “x” (white, crossed). Like Barto et al. [1],



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
8

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

O
R

T
E

20
20

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Deep Statistical Model Checking 7

Fig. 1. The maps of our Racetrack benchmarks: Barto-small (left top), Barto-big (left
bottom), Ring (right).

we consider a noisy version of Racetrack that emulates slippery road conditions:
actions may fail with a given probability, in which case the action does not change
the velocity and the vehicle instead continues driving with unchanged velocity vector.

3 Neural Networks as MDP Action Policies

Connecting MDP and Action Oracle. Racetrack is a simple instance of many further
examples representing real-world phenomena that involve randomness and decision
making. This is the natural scenario where NNs are taking over ever more duties. In
essence, their role is very close to that of an action policy: Decide in each situation
what options to pick next. If we consider the “situations” (the inputs I) as the
states S of a given MDP, and the “options” (outputs O) as actions A, then the NN
is a function π : S → A. We call such a function an action oracle. Indeed this is
what the reinforcement learning process in Q-learning and other approaches delivers
naturally.

Observe that an action oracle can be cast into an action policy except for a
subtle problem. Action policies only pick actions (from A(s), thus) applicable at
the current state s, while action oracles may not. A better fitting definition would
constrain oracles to always return an applicable action. Yet it is not clear how to
guarantee this for NNs – it is easy to see that, even for linear multi-classification,
the hard constraints required to guarantee action applicability lead to non-convex
optimization problems. An easy fix would use the highest-ranked applicable action
instead of the NN classifier output itself. For our purposes however, where we want
to analyze the quality of the NN oracle, it makes sense to explicitly distinguish
inapplicable actions as a form of low quality.

If an oracle returns an inapplicable action, then no valid behavior is prescribed
and in that sense the system can be considered stalled.

Definition 4 (Action Oracle Stalling). Let M = 〈S,A, T , s0〉 be an MDP, and
π : S 7→ A be an action oracle. We say that s ∈ S is stalled under π if π(s) /∈ A(s).
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To accommodate for stalling, we augment the MDP upfront with a fresh action
† available at every state, this action is chosen upon stalling, leading to a fresh
state ‡ with only that action to continue. So M = 〈S,A, T , s0〉 is transformed into
M‡ = 〈S ∪ {‡},A∪{†}, T ′, s0〉 where for each state s, T ′(s, †) = δ(‡) and otherwise
T ′(s, a) = T (s, a) wherever the latter is defined.

Definition 5 (Oracle induced Markov chain). Let M = 〈S,A, T , s0〉 be an
MDP, and let π be an action oracle for M. Then the Markov chain Cπ induced by
π is the one induced in M‡ by the memoryless action policy σ defined by σ(w) = †
whenever last(w) is ‡ or stalled under π, and otherwise by σ(w) = π(last(w)).

In words, the oracle induced policy fixes the probability distribution over transitions
in each state to that of the chosen action. If that action is inapplicable, then the
chain transitions to the fresh state ‡ which represents stalled situations.

Deep Statistical Model Checking. Overall, Cπ is a Markov chain that uses π as an
oracle to determinize the MDP M whenever possible, and stalls otherwise. With π
implemented by a neural network, we can use statistical model checking on Cπ to an-
alyze the NN behavior in the context ofM. This analysis has the potential to deliver
deep insights into the effectiveness of the NN applied, allowing for comparisons with
other policies and also with optimal policies, the latter obtained from exhaustive
model checking. From a practical perspective, an important remark is that in the
definitions above and in our implementation of DSMC described below, the inputs
to the NN are assumed to be the MDP states S. This captures the scenario where
the NN takes the role of a classical system controller, whose inputs are system state
attributes, such as program variables. More generally, the connection from the MDP
model to the NN input may require an intermediate function f mapping S to the
input domain of the NN. This is in particular the case for NNs processing image se-
quences, like in vision systems in autonomous driving. In such a scenario, the MDP
model states have to represent the relevant aspects of the NN input (e.g. objects and
their properties in an image). This advanced form of connection remains a topic for
future work. It lacks the crisp nature of the problem considered here.

DSMC Implementation. Deep statistical model checking is based on a pair of NN and
MDP operating on the same state space. The NN is assumed to be trained externally
prior to the analysis, in which it is combined with the MDP. To experiment with this
concept in a real environment, we have developed a DSMC implementation inside
The Modest Toolset [18], which includes the explicit-state model checker mcsta,
and in particular the statistical model checker modes [5]. modes thus far offers the
options Uniform and Strict to resolve non-determinism. We implemented a novel
option called Oracle, which calls an external procedure to resolve non-determinism.
With that option in place, every time the next action has to be chosen, modes
provides the current model state s to the Oracle, which then calls the external
procedure and returns the chosen action to modes. In this way, the Oracle can
connect to an external NN serving as an action oracle from modes’s perspective.

At the implementation level, connecting to standard NN tools is non-trivial due
to the programming languages used. The Modest Toolset is implemented in
C#, whereas standard NN tools are bound to languages like Python or Java. Our
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Deep Statistical Model Checking 9

key observation to overcome this issue is that a seamless integration is not actually
required. Standard NN tools are primarily required for NN training, which is com-
putationally intensive and requires highly optimized code. In contrast, implementing
our NN Oracle requires only NN evaluation (calling the NN on a given input) which
is easy – it merely requires to propagate the input values through the network. We
thus implemented NN evaluation directly in The Modest Toolset’s code base, as
part of our extension. The NNs are learned using standard NN tools. From there,
we export a file containing the NN weights and biases. Our extension of modes
reads that file, and uses it to reconstruct the same NN, for use with our evaluation
procedure. When the Oracle is called, it connects to that procedure.

modes contains simulation algorithms specifically tailored to MDP and more ad-
vanced models. The tool is implemented in C#. It offers multiple statistical methods
including confidence intervals, Okamoto bound [34], and SPRT [41]. As simulation
is easily and efficiently parallelizable, modes can exploit multi-core architectures.

4 Getting Concrete: The Racetrack Case Study

As previously outlined, we consider Racetrack as a simple and discrete, yet highly
extensible approximation of real-world phenomena that involve randomness and de-
cision making. In this section we spell out how these benchmarks are made concrete
use of.

The Jani framework. Central to our practical work is the Jani-model format [6,24].
It can express models of distributed and concurrent systems in the form of networks
of automata, and supports property specification based on probabilistic computation
tree logic (PCTL) [16]. In full generality, Jani models are networks of stochastic
timed automata, but we concentrate on MDPs here. Automatic translations from
and into other modeling languages are available, connecting among others to the
planning language PPDDL [26] and to the Prism language, and thus to the model
checker Prism [28]. A large set of quantitative verification benchmarks (QVBS) [19]
is available in Jani, and many tools offer direct support, among them ePMC, Storm
and The Modest Toolset [15,18,9].

Racetrack Model. For lack of space, the details of the Racetrack encoding in Jani
are relegated to Appendix ?? (included for reviewing purposes). The track itself is
represented as a (constant) two-dimensional array whose size equals that of the grid.
The Jani files of different Racetrack instances differ only in this array. Vehicle move-
ments and collision checks are represented by separate automata that synchronize
using shared actions.

The vehicle automaton keeps track of the current vehicle state via four bounded
integer variables (position and directional velocity), and two Boolean variables (in-
dicating whether the vehicle has crashed or reached a goal). The initial automaton
location has edges for each of the 9 different acceleration vectors. Each of them
updates the velocity accordingly, and sends the current source and next target coor-
dinates to the collision check automaton. It then awaits that automaton to respond
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with one of three answers: “valid”, “crash”, or “goal”. For the latter two, the automa-
ton moves to a terminal location. For “valid”, the vehicle automaton sets the target
coordinates as its new source coordinates and moves back to its initial location.

The collision check automaton checks whether the vehicle’s next target coordi-
nates lie within the grid. If so, it iterates over the cells on the discretized trajectory
from current source to next target, and looks up for each such cell whether it rep-
resents a wall or goal cell. Such a result is sent to the vehicle automaton as soon as
available. If the entire trajectory is found free of such events, the vehicle automaton’s
request is answered with “valid”, and the automaton location is reset, waiting for
the next trajectory to check.

Learning Neural Networks for Racetrack. For the sake of realistic empirical studies,
we have drawn on established NN learning techniques to obtain NN oracles for
the Racetrack case studies. Here we briefly summarize the main design decisions.
Notably, DSMC is entirely independent of the concrete learning process, depth, and
shape of the NN employed.

– NNs are learnt for a specific map (cf. Figure 1), with the inputs being 15 integer
values, encoding the two-dimensional position, the two-dimensional velocity, the
distance to the nearest wall in eight directions, the x and y differences to the
goal coordinates, and Manhattan goal distance (absolute x- and y-difference,
summed up). Actions are encoded as classification outputs.

– A crucial design decision is the learning objective, i.e., the rewards used in deep
Q-learning. We set the reward for reaching the goal line to 100, and for crashing
into a wall to −50. We used a discount factor of 0.99 to encourage short trajecto-
ries to the goal. This arrangement was chosen because, empirically, it resulted in
an effective learning process. With higher negative rewards for crashing, the poli-
cies learn to prefer not to move or to move in circles. Similarly, smaller negative
rewards make the learnt policies prefer to crash quickly. Using a discount factor
yields better learning performance, but does not match the overall Racetrack
setup. This exemplifies that the choice of objectives for learning is governed by
learning performance. Both meta-parameters and numeric parameters such as
rewards typically require fine-tuning orthogonal to, or at least below the level of
abstraction of, the qualities of interest in the application.

– We experimented with a range of NN architectures and hyperparameter settings,
the objective being to keep the NNs simple while still able to learn useful oracles
in our Racetrack benchmarks. The NNs we settled on have the above described
input and output layers, and two hidden layers each of size 64. All neurons use
the ReLU activation function.

– NNs are learnt in two variants: (a) starting on the starting line vs. (b) starting
from a random point anywhere on the map, each with initial velocity 0. Variant
(b) turned out to yield much more effective and robust learning. Intuitively, with
(a) it takes the policy a long time to reach the goal at all, while with (b) this
happens more quickly yielding earlier and more robust learning also farther away
from the goal.
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< 0.002

< 0.01

< 0.03

< 0.1

< 0.25

< 0.5

< 0.75

≥ 0.75

1

Fig. 2. Heat maps of NN induced crash probabilities for all Racetrack benchmarks.

5 Getting Practical: DSMC Case Studies in Racetrack

We now demonstrate the statistical model checking approach to NN policy verifi-
cation through case studies in Racetrack. Section 5.1 illustrates the use of DSMC
for quality assurance by human analysts (end users, engineers) in system approval.
Section 5.2 illustrates the use of DSMC as a tool for the engineers designing the NN
learning pipeline. Section 5.3 evaluates the computational effort incurred by DSMC
compared to a conventional SMC setting where the MDP policy is coded in the
model itself.

Throughout, we use modes with an error bound P (error > ε) < κ, where ε =
0.01 and κ = 0.05, i.e., a confidence of 95%. We set the maximal run length to
10000 steps. Unless otherwise stated, we set the slippery-noise level in Racetrack,
i.e. the probability of action failure, to 20%. The NN oracles are learnt by training
runs starting anywhere on the map; we will illustrate how DSMC can highlight
the deficiencies of the alternate approach (starting on the starting line only). All
experiments were run on an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (4 cores,
8 threads) with 32 GB RAM and a 450 GB HDD.

5.1 Quality Assurance in System Approval

The variety in abstract property specification gives versatility to the quality as-
surance process. This is important in particular because, as previously argued, the
relevant quality properties will typically not be identical to the objectives used for
NN learning. In the Racetrack example, NN learning optimizes expected reward
subject to fine-tuned reward and discount values. For the quality assurance, we con-
sider crash probability and goal probability, expressed as CTL path formulas in Jani,
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> 0.998

> 0.99

> 0.97

> 0.9

> 0.75

> 0.5

> 0.25

≤ 0.25

1

Fig. 3. Goal probability of NN oracle on the Barto-big benchmark trained and executed
with 20% noise vs. stress-test executed with 50% noise using the same NN (middle) vs.
optimal policies obtained by probabilistic model checking with 50% noise (right).

namely ♦ crashed (“eventually crashed”) for the former and ¬crashed U goal (“not
crashed until reaching goal”) for the latter.1

We highlight that the DSMC analysis can not only point out that a NN oracle
has deficiencies, but also where: in which regions of the MDP state space S. Namely,
in cyber-physical systems, it is natural to use the spatial dimension underlying S
for systematizing the analysis and visualizing its result. This delivers not only a
yes/no answer, but an actual quality report. We illustrate this here through the use
of simple heat maps over the Racetrack road map.

Figure 2 shows quality assurance results for crash probability in all the Racetrack
benchmarks, using for each the best NN oracle from reinforcement learning (i.e. those
yielding highest rewards). The heat maps use a simple color scheme as an illustration
how the analysis results can be visualized for the human analysts. Similar color
schemes will be used in all plots below.

From the displayed DSMC results, quality assurance analysts can directly con-
clude that the NN oracles are fairly safe in Barto-small (left top), with crash proba-
bilities mostly below 0.1; but not on Barto-large (left bottom) and Ring (right) where
crash probabilities are above 0.5 on significant parts of the map. Generally, crash
probability increases with distance to the goal line. Some interesting subtleties are
also visible, for example that crash probabilities are relatively high in the left-turn
before the goal in Barto-small.

Our next results, in Figure 3, illustrate the quality-assurance versatility afforded
by DSMC, through an analysis quite different from the previous one. The human
analysts here decide to evaluate goal probability (a quality stronger than not crashing
because the latter may be achieved by idling). Apart from the original setting, they
consider a stress-test scenario where the road is significantly more slippery than
during NN training, namely 50% instead of 20%. They finally decide to compare with
optimal goal probabilities, computable via the probabilistic model checker mcsta,
so that they can see whether any deficiencies are due to the NN, or are unavoidable
given the high amount of noise.

1 Further properties of interest could be, e.g., bounded goal probability (how likely is it
that we will reach the goal within a given number of steps?), expected number of steps
to goal, or risk of stalling.
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Fig. 4. Goal probabilities on the Barto-big benchmark (color coding as in Fig. 3), for NN
oracles learnt over n = 70000 (left) and n = 90000 (middle) training episodes, together
with Q-learning curve (right).

The figure shows the outcome for Barto-large. One of the deficiencies is imme-
diately apparent, the NN policy does not pass the stress test. Its goal probability
matches the optimal values only near the goal line, and exhibits significant deficien-
cies elsewhere. Based on these insights, the quality analysts can now decide whether
to relax the stress-test (after all, even optimal behavior here does not reach the goal
with certainty), or whether to reject these NN polices and request re-training.

5.2 Learning Pipeline Analysis and Revision

More generally, DSMC can yield important insights not only for quality assurance,
but also for the engineers designing the NN learning pipeline in the first place. There
are two distinct scenarios:

(i) The engineers run the same success tests as in quality assurance, and re-train
if a test is not passed.

(ii) The engineers assess different properties of interest to the learning process
itself (e.g. expected length of policy runs), or assess the impact of different
hyperparameter settings.

In both scenarios, the DSMC analysis results point to specific state-space regions
that require improvement. This can be directly operationalized to revise the learning
pipeline, by starting more training runs from states in the critical regions.

Figures 2 and 3 above have already demonstrated (i). Next we demonstrate (ii)
through two case studies analyzing different hyperparameter settings.

Our first case study, in Figure 4, analyzes the number n of training episodes, as
a central hyperparameter of the learning pipeline. The only information available
in deep Q-learning for the choice of this hyperparameter is the learning curve, i.e.,
the expected reward as a function of n, depicted on the right. Yet, as our DSMC
analysis here shows, this information is insufficient to obtain reliable policies. In
Barto-big, the highest reward is obtained after n = 90000 episodes. From n = 70000
to n = 90000, the reward slightly increases. Yet we see in Figure 4 that the additional
20000 training episodes, while increasing overall goal probability, lead to highly
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> 0.75
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> 0.25

≤ 0.25

1

Fig. 5. Goal probabilities in Ring for NN oracles where training was carried out with
reinforcing runs from the start line only (left) vs. from anywhere on the map (right).

deficient behavior in an area near the start of the map, where goal probability drops
below 0.25. If provided with that information, the engineers can focus additional
training on that area, for instance.

In our next case study, we assume that the NN engineers decide to analyze
the impact of starting training runs on (a) the starting line vs. (b) random points
anywhere on the map. Figure 5 shows the results for the Ring map, where they are
most striking. In variant (a), the top part of the Racetrack was completely ignored by
the learning process. Looking into this issue, one finds that, during training, the first
solution happens to be found via the bottom route. From there on, the reinforcement
learning process has a strong bias to that route, preventing any further exploration
of other routes.

Phenomena like this are highly detrimental if the learnt policy needs to be broadly
robust, across most of the environment. The deficiency is obvious given the DSMC
analysis results, and these results make it obvious how the problem can be fixed.
But neither can be seen in the learning curves.

5.3 Computational Effort for the Analysis

As discussed, it can be highly demanding or infeasible to verify the input/output
behavior of even a single NN decision episode, and that complexity is potentially
compounded by the state space explosion problem when endeavoring to verify the
behavior induced by an NN oracle. Deep statistical model checking carries promise
as a “light-weight” approach to this formidable problem, as no state space needs to
be stored and on the NN side it merely requires to call the NN on sample inputs. In
addition, it is efficiently parallelizable, just like SMC. Yet (1) the approach might
suffer from an excessive number of sample runs needed to obtain sufficient confidence,
and/or (2) the overhead of NN calls might severely hamper its runtime feasibility.

Figure 6 shows data regarding (1). We compare the effort for analyzing our NN
policies to that required for analyzing a conventional hand-made policy that we



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-0
8

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

O
R

T
E

20
20

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Deep Statistical Model Checking 15

blog2(#runs)c = 14

blog2(#runs)c = 13

blog2(#runs)c = 12

blog2(#runs)c = 11

blog2(#runs)c = 10

blog2(#runs)c = 9

blog2(#runs)c < 9

1

NN-induced

Hand-coded

Fig. 6. Heat maps showing computational effort needed by DSMC, measured by the num-
ber of sample runs performed by modes to analyze goal probability for each map location.
Results shown for the policies induced by our learnt NN in the top row, vs. a simple
hand-coded policy (see text) at the bottom. Each point on the map shows blog2(#runs)c.

incorporated into our Jani models.2 As the heat maps show, the latter effort is
higher. This is due to a tendency to more risky behavior in the hand-made policy,
resulting in higher variance. Regarding (2), the runtime overhead for NN calls is
actually negligible in our study. Each call takes between 1 and 4 ms. There is an
added overhead for constructing the NN once at the beginning of the analysis, but
that takes at most 6 ms.

These results should of course not be over-interpreted, given the limitations of
this initial study. But they do provide evidence that the computational overhead
may be manageable in practice at least for moderate-size neural networks.

6 Conclusion

This paper has described the cornerstones of an effective methodology to apply sta-
tistical model checking as a light-weight approach to checking the behavior of systems
incorporating neural networks. The most important aspects of the DSMC approach
are its (i) genericity – in that it provides a generic and scalable basis for analyzing

2 The policy implements a simple reactive controller that brakes if a wall is near and
otherwise accelerates towards the goal. Its goal probability is moderately worse than
that of the best NN policies.
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learnt action policies; its (ii) openness – since the approach is put into practice us-
ing the Jani format, supported by many tools for probabilistic or statistical model
checking; and its (iii) focus – on an abstract fragment of the “autonomous driving”
challenge. We consider these contributions as a conceptual nucleus of broader activ-
ities to foster the scientific understanding of neural network efficacy, by providing
the formal and technological framework for precise, yet scalable problem analysis.

We have contributed an initial case study suggesting that this may indeed be
useful and feasible. We hope that the study provides a compelling basis for further
research on deep statistical model checking. Racetrack forms a viable starting point
for this endeavor in that can be made more realistic in a manifold of dimensions: finer
discretizations, different surface conditions, appearing/disappearing obstacles, other
traffic participants, speed limits and other traffic regulations, different probabilistic
perturbances, fuel efficiency, change from map perspective to ego-perspective of an
autonomous vehicle, mediated by vision and other sensor systems. We are actually
embarking on an exploration of these dimensions, focussing first on speed limits and
random obstacles.

From a general perspective, DSMC provides a refined form of SMC for MDPs
where thus far only implicitly defined random action policies have been available.
If those were applied to Racetrack, goal probabilities < 0.1 would result – except
directly at the goal line. DSMC instead can harvest available data for a far better
suited action policy, in the form of a NN oracle trained on the data at hand. Of
course, other forms of oracles (based on, say, random forests) can be considered
with DSMC rightaway, too.
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