Title:

Authors:

Report Number:
ERC Project:
ERC Project ID:
Funded Under:

Host Institution:

Published In:

Routing in the Space Internet: A contact graph routing tutorial

Juan A.Fraireauthor, Scott C. Burleigh

2020-12

Power to the People. Verified.

695614

H2020-EU.1.1. — EXCELLENT SCIENCE

Universitat des Saarlandes, Dependable Systems and Software
Saarland Informatics Campus

J. Netw. Comput. Appl. 174

This report contains an author-generated version of a publication in J. Netw. Comput. Appl. 174.

Please cite this publication as follows:

Juan A.Fraireauthor, Scott C. Burleigh.
Routing in the Space Internet: A contact graph routing tutorial.
Journal of Network and Computer Applications, Volume 174, 2021, ISSN 1084-8045, Article 102884.

POWER TO THE PEQPLE. . -.......
VERIFIED‘_:'.'.' sees”

http://www.powver.org/publications/TechRepRep/ERC-POWVER-TechRep-2020-12.pdf
http://www.powver.org/
http://cordis.europa.eu/project/rcn/203431_en.html
http://cordis.europa.eu/programme/rcn/664099_en.html
http://www.uni-saarland.de/nc/startseite.html
http://depend.cs.uni-saarland.de/
http://sic.saarland/
https://doi.org/10.1016/j.jnca.2020.102884

Routing in the Space Internet:
A Contact Graph Routing Tutorial

Juan. A. Fraire*!, Olivier De Jonckere!, Scott C. Burleigh®
*CONICET - Univerisidad Nacional de Cérdoba, Cérdoba, Argentina
fSaarland University, Saarland Informatics Campus, Saarbriicken, Germany
{Technische Universitit Dresden, Dresden, Germany
$Jet Propulsion Laboratory (JPL), California Institute of Technology, USA

Abstract—A Space Internet is possible, as long as the delay
and disruption challenges imposed by the space environment are
properly tackled. Because these conditions are not well addressed
by terrestrial Internet, more capable Delay-Tolerant Networking
(DTN) protocols and algorithms are being developed. In partic-
ular, the principles and techniques for routing among ground
elements and spacecraft in near-Earth orbit and deep-space are
enacted in the Contact Graph Routing (CGR) framework. CGR
blends a set of non-trivial algorithm adaptations, space operations
concepts, time-dynamic scheduling, and specific graph models.
The complexity of that framework suggests a need for a focused
discussion to facilitate its direct and correct apprehension. To this
end, we present an in-depth tutorial that collects and organizes
first-hand experience on researching, developing, implementing,
and standardizing CGR. Content is laid out in a structure
that considers the planning, route search and management, and
forwarding phases bridging ground and space domains. We rely
on intuitive graphical examples, supporting code material, and
references to flight-grade CGR implementations details where
pertinent. We hope this tutorial will serve as a valuable resource
for engineers and that researchers can also apply the insights
presented here to topics in DTN research.

Index Terms—Contact Graph Routing; Schedule Aware Bun-
dle Routing; Delay-Tolerant Networks.

I. INTRODUCTION

The autonomous transmission of information through Inter-
net has changed life on Earth, and bringing these connectivity
advantages into space is essential in the context of a thriving
new space era [1]]. During the first decade of the 21 century,
the space community put forward enabling technologies such
as formation flying [2] and efficient inter-satellite communi-
cations [3]. Most of these efforts were supported by govern-
ment agencies, enabling significant reductions in components’
weight, size, price, and acquisition lead time [4]]. Since then,
many private investors and companies have begun leveraging
these advances by deploying networked constellations of small
and nano-satellites [|5]]. While around 2,000 active satellites are
currently in orbit, recent studies show that more than 50,000
are on the launch schedule for the next 10 years [6].

This revolution is also affecting missions beyond Earth-
orbit. Nano-satellites based on Commercial off-the-shelf
(COTS) components have been tested in interplanetary dis-
tances [7]] and have proven valuable in missions to Mars [{]],
and others are scheduled for launch to the Moon [9]. Indeed,
the new space trend is lowering the cost of access to deep-

Table 1
LIST OF ACRONYMS

BDT Best-case Delivery Time

BFS Breadth First Search

CBHE Compressed Bundle Header Encoding
CCSDS Consultative Committee for Space Data Systems
CG Contact Graph

CGR Contact Graph Routing

CLA Convergence Layer Adapter

CLEO Cisco Router in LEO

COTS Commercial off-the Shelf

CP Contact Plan

CRP Contact Review Procedure

CSp Contact Selection Procedure

DINET Deep Impact Network

DSN Deep Space Network

DTLSR Delay-Tolerant Link-State Routing
DTN Delay Tolerant Network

ESA European Space Agency

ETO Earliest Transmission Opportunity
EVC Estimated Volume Consumption
EVL Effective Volume Limit

FBTX First Byte Transmission time

GEO Geostationary Earth-Orbit

GSL Ground-to-Space Links

IETF Internet Engineering Task Force
Inter-RR Inter Region Routing

Intra-RR Intra Region Routing

ION Interplanetary Overlay Network

1P Internet Protocol

IRTF Internet Research Task Force

ISL Inter-Satellite Links

JAXA Japan Aerospace Exploration Agency
LBRX Last Byte Reception time

LBTX Last Byte Transmission time

LEO Low-Earth Orbit

LTP Licklider Transmission Protocol
MAV Maximum Available Volume

MCS Modulation and Coding Scheme
MDP Markov Decision Process

MEO Medium-Earth Orbit

OBC On-Board Computer

OCGR Opportunistic CGR

OWLT One-Way Light Time

PAT Projected Arrival Time

POSIX Portable Operating System Interface
SABR Schedule Aware Bundle Routing
TCP Transfer Control Protocol

TTL Time to Live

UDP User Datagram Protocol

UK-DMC | United Kindom Disaster Monitoring Constellation
uPCN Micro-Planetary Communication Network
USLP Unified Space Data Link Protocol
UTCG Gregorian Coordinated Universal Time

space, thus fostering the progress of larger scale missions such
as the Lunar gateway, from which several networked assets
will need to be managed [[10].

The realization of a Space Internet that bridges ground,
near-Earth and deep-space assets is imminent in this context,
offering the operational advantages of extended connecti-
vity times, enhanced reliability via multiple communication
paths, and in-orbit resource and service sharing. However,
fundamental environmental challenges need to be considered.
In space flight, the orbital dynamics, the varying and very
long-range communication distances, the effect of planet ro-
tation, and on-board power restrictions result in prolonged
episodes of disconnection. Furthermore, the propagation delay
of signals in deep-space and interplanetary environments is
generally in the order of minutes, hours or even days. The
resulting delay and disruption conditions prevent the optimal
operation of traditional Internet protocols, which are largely
based on an effectively instantaneous flow of information
between sending and receiver nodes. Instead, Delay Tolerant
Networking (DTN), which assumes no instantaneous feedback
but potentially lengthy storage of data in intermediate nodes,
has been proposed to overcome these issues [11].

One of the most critical aspects of DTN architecture is the
routing of data [12]]. In DTN it is not possible to use traditional
routing schemes based on stable connections. In particular, it is
not enough to simply determine the next hop (next neighbor
to send the traffic to) from an analysis of current network
topology; it is necessary to decide when to send data depending
on when it is expected to arrive via delayed and disrupted
links. The consideration of the time dimension is an aspect
that challenges any underlying routing algorithm. Fortunately,
in space networks it is possible to know the future connectivity
of the assets [13], which may be expressed in a contact
plan defining the expected resources that the space network
will have for transporting data. These conditions inspired the
creation of new graph models, time-evolving abstractions, and
algorithm adaptations of the Contact Graph Routing (CGR)
framework. CGR is unique in the sense that it is the sole
approach (of which the authors are aware) that integrates the
set of techniques capable of coping with these challenges from
a practical perspective. CGR is the most mature autonomous
routing fabric for the forthcoming Space Internet. But CGR is
complex. Its dynamics deserve particular attention and care.

This document provides an in-depth tutorial overview of
CGR principles and processes. This work differs from [14]]
inasmuch as we survey the modeling and algorithmic aspects
of CGR, rather than only the experimental and high-level
technological achievements. Moreover, the presented content
originates from authors’ first-hand experience with CGR in (i)
its implementation in flight-grade protocol stacks [15]], [16],
(i) its standardization efforts for Internet and space opera-
tions [17]-[19]], and (iii) extensive simulation and emulation
research [20]. However, much of the published research on
CGR assumes the reader is already knowledgeable on the
subject, while standardization recommendations only provide
high-level procedure descriptions and implementations are
hard to interpret. These facts motivate this tutorial, which
comprises consolidated support material for those interested

in learning the specifics of CGR, whether for a correct imple-
mentation or research purposes. To aid in understanding the
time dynamics, we rely on extensive graphical examples and
provide an easy-to-follow Python-based CGR library (pyCGR)
that realizes the algorithms presented her To the best of
the authors’ knowledge, this constitutes the most detailed
instructive material available to date regarding CGR.

This paper is organized as follows. In Section [lI] a space
networks overview is provided, establishing the basic concepts,
terminology and framework. A detailed formalization of the
abstractions and space network models assumed by CGR is
provided in Section |[II} Section [[V]describes the routine at the
core of CGR: the route search algorithm based on Dijkstra’s
shortest path algorithm. The route management procedure is
based on Yen’s algorithm and is discussed in Section
Section|[VI|analyzes the forwarding phase, where the best route
is selected for posterior data enqueuing. The current trends
outlook for CGR is discussed in Section Finally, closing
remarks and future research challenges are summarized in

Section [VIII

II. SPACE NETWORKS OVERVIEW

Space networking is one of the principal applications of
Delay-Tolerant Networking (DTN). The term “DTN” was
introduced by a team of researchers led by Vint Cerf in
2003 to designate time-evolving networks lacking continuous
and instantaneous end-to-end connectivity [[11f]. Since then,
DTNs have drawn much attention from many researchers
due to their applicability in a variety of domains including
airborne networks [21]], vehicular ad-hoc networks [22]], mo-
bile social networks [23]], Internet of things [24]], underwater
networks [25]], deep space [11]], and near-Earth communication
networks [26[]. The same concepts and mechanisms devised
to deal with the delays and disruptions of interplanetary
communications can readily be applied to other communica-
tion domains characterized by long signal propagation time,
frequent node occlusion, high node mobility, and/or reduced
communication range and resources.

The time-evolving and partitioned nature of DTNs favors
the representation of connectivity by means of contacts, a
contact being an episode of time during which a node is able
to transfer data to another node. The literature [27] classifies
contacts as: (i) opportunistic: no assumptions can be made
on future contacts, (if) probabilistic: contact patterns can be
inferred from history (e.g., social networks), and (iii) sched-
uled: contacts can be accurately predicted and documented in
a contact plan. Space networks are characterized by scheduled
contacts. In turn, we can distinguish between two classes of
space networks:

o Deep-space: Networks of assets in an interplanetary [[11]]

domain and beyond where links are disrupted by planet

I'The parameters listed in Tables as well as algorithms El
and 5] echo the naming and structure of the pyCGR library. Bundle, contact
and route concepts conform to the SABR specification [17], unless noted
otherwise. Because of the time dynamics of CGR, we strongly suggest the
use of pyCGR along with this document in order to experiment and observe
the debug traces and results. Example contact plans used in this paper and
others are available in the pyCGR repository: https://bitbucket.org/juanfraire/

pycgr.git.

https://bitbucket.org/juanfraire/pycgr.git
https://bitbucket.org/juanfraire/pycgr.git

occlusion and delayed because of signal propagation at
light speed (which might render delays on the order of
minutes, hours or days at planetary distances [28]]).

o Near-Earth: Networks of satellites in low, medium or
geostationary Earth orbits where communications are dis-
rupted due to orbital dynamics, highly directive antenna
orientation, or platform constraints (i.e., power limits).
Signal propagation delay is not a predominant constraint
in near-Earth scenarios [29]-[31]].

A. Protocols and Procedures

High-latency links and network disruptions are addressed by
the principles of store-carry-and-forward and minimal end-to-
end messaging exchange for control or feedback. As detailed
in the DTN architecture [27]], these principles are addressed in
a protocol at the bundle layer that sits above various stacks of
protocols (at what is termed the convergence layer) suitable for
transmission within the various communication environments
that data must traverse on the end-to-end path from source to
destination (e.g., deep-space protocols [32]], proximity inter-
satellite links [33], satellite-to-ground links [34]], or TCP/IP
on Internet). A key feature of the bundle layer protocol is the
availability of persistent storage resources that enable DTN
nodes to retain data locally while waiting for transmission
opportunities to become available, whether that takes seconds,
minutes, or days. This is in contrast to traditional Internet
switch and router buffering where data are expected to leave
the device immediately, on the order of milliseconds after
arrival.

The Bundle Protocol, as specified by the Internet Research
Task Force (IRTF) [35]] and the Consultative Committee for
Space Data Systems (CCSDS) [36]], implements these mech-
anisms. Besides the encoding and block format of bundles
(Bundle Protocol data units), the protocol addresses five
unique features that shall be considered when routing data
in space DTNs. The bundle data elements supporting these
features are listed in Table [lI| and are referenced throughout
this paper.

(1) Convergence layer adapters: A CLA is the component
that sends and receives bundles on behalf of the Bundle
Protocol agent utilizing the services of protocol stacks that
are well-suited to the local communication environment. When
applicable, CLA responsibilities include session establishment,
encoding adaptations, transfer of bundles using smaller max-
imum transmission unit (MTU) sizes, and others depending
on the native protocol. CLAs for TCP, UDP, Licklider Trans-
mission Protocol (LTP), Bluetooth, and raw Ethernet enable
the integration with existing Internet and space networking
infrastructures [14]]. To account for CLA overhead, the esti-
mated volume consumption (B.EV C) of a bundle B is defined
in [17] as the bundle size plus a 3% margin or 100 Bytes,
whichever the less.

(2) Custody transfers: In order to cope with unreliable
lower layer protocols and congestion situations (storage deple-
tion), an intermediate node can take custody of a bundle, i.e.,
assume responsibility for forwarding it. A custody acceptance
signal from a remote node relieves the current custodian of

Table II
BUNDLE DATA ELEMENTS (RELEVANT TO ROUTING)

[Bundle primary block parameters |

B.src & B.dst Source and destination nodes for the bundle
B.size Bundle size, including both header and payload
B.p or priority | Priority class of the bundle (1... p)
B.critical Bundle critical flag
B.custody Custody transfer requested flag
B.fragment Fragmentation authorized flag
B.deadline Expiration time of the bundle

[Computed parameters |
B.EVC Estimated volume consumption (size * 1.03) [17]
B.sender Previous sender of the bundle, informed by CLA |

the bundle from further responsibility for forwarding it. The
custodian thus can release storage resources and use them to
receive further data.

(3) Fragmentation: Since a bundle carries all necessary
data for a successful and complete information transfer to the
destination, its byte-length can be arbitrarily long. While the
largest UDP/IP protocol data unit is 64KB, there is virtually
no size limit for a bundle, which can carry MBs or GBs
of payload data. In this context, fragmentation can ensure a
correct fit to time-bounded contacts. Fragmentation can be
proactive (if it occurs prior to bundle transmission) and/or
reactive (if the need for fragmentation is identified during
bundle transmission).

(4) Priorities: The Bundle Protocol specification reserves
class of service flags in the bundle’s primary block (the first el-
ement of the bundle’s “header”) that can be mapped to unicast
traffic priority levels, (1...P), where P = 3 is recommended
in [17]. Also, an extended class of service mechanism has
been proposed that, separately, enables a bundle to be marked
as critical, indicating that copies of the data shall be forwarded
through as many interfaces as possible to maximize the chance
it will reach its destination.

(5) Deadlines: In order to prevent data from persisting
for long periods of time and thus congesting nodes’ storage
resources, each bundle is configured with a deadline or ex-
piration time. The deadline of a bundle is computed as its
creation time plus its lifetime (also called “Time To Live”
(TTL), but note that TTL in DTN is a time limit rather than
a hop limit as in the Internet architecture). In particular, when
the expiration time of a bundle is reached, the Bundle Protocol
agent is authorized to remove that bundle from the network.
The responsibility for setting a suitable deadline rests on the
application originating the data.

Fig. [1] illustrates an interplanetary network example using
Bundle Protocol as overlay for different protocol families via
CLAs. DTN node 1, a mission control center located on
Earth, sends data to a rover on Mars (DTN node 4). Since
there is no direct communication between the source and
destination nodes, data needs to go through the ground station
(DTN node 2) to an intermediate DTN node 3 relay satellite
orbiting the Moon. However, the visibility between nodes 3
and 4 does not allow establishing the link yet (e.g., rover is
on the opposite side of Mars). Thus, DTN node 3’s routing
routine autonomously decides to retain in-transit data in its

Ground

l]gl Mission
Control Stati

Satellite ® Rover
Temporal Temporal

Temporal
P —_ storage — storage storage
(Earth) @ (Earth) (Moon) _ _ @ (Mars)
DTN NodeM —@ DTN Node 2 —@ DTN Nede 3 DIrN Node 4
(C CLA 3) CLA CLA (@ (s CLA)
[TCPIIP‘ - TEP/IB :USL.E e - - USLP |\LTE--—"-" __--_--_--_--_-:-;____“_ : LTP]
— Permanent o Intermittent ===J == Intermittent e
New data Internet Feasible link Stored data awaiting Disrupted link
for node 4 link (1.3 light-second delay) for contact with node 4 (12 light-minutes delay)
Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune
Avg. Distance
to Sun (AU) 0,38 0.72 1.00 1.52 5.21 9.54 19.18 30.11
Latency 3 min 6 min 8 min 12 min 43 min 1h20 2h40 4h10

Figure 1. Store, carry and forward example in a space DTN. A node on Earth transmits data to a satellite orbiting the Moon, which stores the data until
a long-range contact with Mars becomes available. Because of a) delays and b) disruptions, reliance on immediate feedback messages must be reduced or
eliminated from DTNs. Since a light-second is defined as the distance that electromagnetic radiation travels through free space in one second, it is a unit of

distance that corresponds trivially to a unit of time.

local storage until the contact with DTN node 4 becomes
available, after the planet rotates. In such a case, DTN node 3
can become a custodian of the stored data in order to commit
towards its successful delivery, authorizing the bundle removal
from DTN node 2 storage. Also, if visibility episodes are insuf-
ficient for the transmission of a given bundle using a particular
convergence layer protocol, the bundle can be fragmented at
DTN node 3, node-2, or node 1. Urgent commands to the rover
can use higher priority classes, important telemetry alarms can
be reported to mission control via critical flagged bundles, and
TTL can be set to the period during which the observations
obtained from the rover instruments are relevant.

B. Implementations and Experiments

Several Bundle Protocol software stacks have been devel-
oped [37]. Interplanetary Overlay Network (ION) [15] and
Micro-Planetary Communication Network (uPCN) [16] are
two BP implementations that are specifically targeted for
the space environment. While yPCN is lightweight software
intended to operate in resource-constrained processors and
micro-controllers, ION is a full-featured protocol stack includ-
ing state-of-the-art CGR routing for space DTNs. Both rely
on POSIX interfaces, can run on several embedded operating
systems, and are available as open-source software [38], [|39].

DTN protocols were successfully validated early in 2008
as part of the near-Earth spacecraft operations of the United
Kingdom Disaster Monitoring Constellation (UK-DMC) [40].
These satellites’ use of IP was enabled by earlier experiments
with an on-board Cisco router in low Earth orbit (CLEO).
Later, the Japanese space agency (JAXA) tested DTN and
CGR in geostationary satellites [41]] in 2012. Since 2018, ION
has been in continuous operational use on the International
Space Station (ISS) to automate the delivery of science pay-
load data to investigators on Earth [42]]. Most recently, uPCN
was launched as part of ESA’s LEO flying laboratory, OPS-
SAT.

In the interplanetary domain, in 2008 NASA’s DINET (Deep
Impact Network) experiment successfully demonstrated the
applicability of the ION stack and CGR over long-range deep-
space links for 27 days (at distances between 40 and 80

light seconds) [43]]. This remarkable experiment confirmed that
DTN principles and CGR routing can pave the way toward
autonomous networks in the interplanetary domain.

Due to its success, ION is now being integrated into NASA’s
Deep Space Network (DSN) protocol set; ION incorporates
CGR at the core of the routing framework. Further DTN and
CGR experiments are planned for the Lunar IceCube mission,
targeted to launch in 2021 [9].

However, the study of routing in space networks requires
validation over larger scale systems. Although DTN simulators
and test-beds exist [44]-[46], most have been focused on
opportunistic and probabilistic contacts. For scheduled DTN,
virtualization of the ION protocol stack enabled the emulation
of large space network topologies [47]-[49], but those emu-
lations are required to run in real-time. When CGR operation
in a large system needs to be analyzed over a long period of
time (i.e., days or weeks), accelerated simulation is preferred.
For this purpose, DtnSim [20] includes a direct interface to the
ION routing library that is adapted to run in simulation time.
The CGR variants studied in this paper are also implemented
in DtnSim, expressed in C++ language. The pyCGR library
accompanying this tutorial is written in Python.

C. Routing Framework

Routing in scheduled space networks can be divided into
three clearly differentiated but interrelated stages illustrated in
Fig. 2} a) planning, b) routing and c) forwarding.

a) Planning: In the planning stage, a centralized entity
(e.g., mission control) computes contact plans based on the
estimation of future episodes of communications. This task
involves orbital propagators that predict the physical disposi-
tion and orientation of nodes as well as missions’ commu-
nication system models and configurations (antenna, modu-
lation, transmission power, etc.). The resulting contact plan
comprises the envelope within which network connectivity can
occur. That plan can then be post-processed to accommodate
operational plans (anticipated episodes of disconnection due
to power management, body-fixed instrument pointing, etc.)
and to enhance fairness [50]], adapt to mandated routing [51]],

a) Planning b) Routing c) Forwarding
EEm | EE Contact plan Section IV Section V] Section VI
ED ED Src Dst Ini End Drate N I
}
la A B 0 150 100 Q\ Route table ‘ Bundle for node D
=] B D 160 260 100 Route 1) to D: | (local or in-transit)
A C 100 200 100 - NextNode: B 1
- BDT: 100. Best route
2 %9, % %o "9 %% %, - txWin.s: Os ° Route 1) to D:
- txWin.e: 150s :
B/ - volume: 10k NextNode: B

l""
Orbital

propagator
(Distance between nodes)

Communication
models
(Ant., mod., etc.)

0 Y Y Y Y S &
% % % % % %

Route table Transmit at: Os

look-Up

|
|
|
Route 2) to D: |
- NextNode: B i
- BDT: 4005 |
- txWin.s: 300s

- txWin.e: 400s |
- volume: 10k | Anotate
: consumed

| volume

(To transmit when
contact to B happens)

Figure 2. CGR routing framework in scheduled space DTNs. a) Orbital propagators and communication models allow the computation of a contact plan,
which may be kept at a central control center or distributed to DTN nodes (option A). b) Routing uses CGR to compute a route table from the contact plan,
which may be distributed to DTN nodes if computed in a central control center (option B). ¢c) DTN nodes consult the route table to decide upon the proper

outbound queue for forwarding outbound data.

accommodate known traffic flows [52], [53]], mitigate conges-
tion [54], reduce energy consumption [55]], [56] or fit specific
missions [S7]. Contact plan design [58] is a distinct research
area, out of scope of this tutorial. In the remaining of this
paper, and from the routing perspective, the contact plan is
assumed to represent simply the data transmission possibilities
between network nodes.

At this point, the contact plan can be either distributed to
the space DTN nodes (option A in Fig. P) for a distributed
routing computation, or kept at mission control for subsequent
centralized routing calculation.

b) Routing: The contact plan serves as input for the routing
routine with CGR sitting at its core. Algorithmic approaches
for CGR, analyzed in detailed in Section are leveraged to
compute the paths to destinations in the network. The resulting
routes not only identify which next hop node to forward the
bundle to but also indicate the best delivery time (BDT), the
route volume limit (volume), and the interval on which this
route is valid for transmission (tx_win). Among others, these
metrics are computed by CGR and stored in route tables. In
the case that routes are computed in a centralized node, the
resulting tables must be distributed to DTN nodes in timely
fashion (option B in Fig. 2). The proper management of CGR
route tables is discussed in Section [V]

c) Forwarding: Finally, the forwarding process is responsi-
ble for selecting the best route, out of many on the route table.
This selection considers local conditions that are only available
at that forwarding moment such as local time, the size and
priority of the data to be forwarded (B.EV C, B.priority),
and current queue backlog conditions. The best route is thus
expected to provide adequate resources for successful delivery
of the bundle. Based on the selected route, the bundle is placed
in the outbound queue to the node that is identified as the
next hop on the route. Once in the queue, the bundle might
be transmitted immediately or kept in storage until the next
contact occurs. The specifics of the CGR forwarding procedure
are examined in Section [VIl

D. Contact Graph Routing

Routing on space networks requires precise determination
of when and to which neighbor a given bundle should be

forwarded. Because connectivity episodes and their respective
propagation delays can be predicted and made available in
advance, routing in space networks can be accurate and
efficient although a complicated and challenging problem. The
determinism and availability of information in space networks
is in contrast with opportunistic and probabilistic DTNs, where
routing is less certain but can be based on simpler flooding
or probability inference methods [[S9]-[|64]]. Instead, the space
network connectivity information encoded in the contact plan
has to be efficiently processed to determine accurate candidate
paths. Theoretical models (e.g., linear programming models)
can ensure optimal results at the expense of processing [65], a
fact that limits any practical value, especially when consider-
ing resource-constrained on-board computers. A further limit
on linear programming models is the requirement for accurate
information about the state of remote nodes, which is typically
unavailable in a delay-tolerant network.

As a result, CGR has received increasing attention in recent
years. CGR has been able to demonstrate sufficient accuracy
and efficiency to become the de facto routing framework for
space DTNG.

CGR was first mentioned as an interplanetary routing ap-
proach by S. Burleigh in 2008 [66]]. IETF drafts were also
proposed for CGR in 2009 [18] and 2010 [|19]. By then, CGR
was being periodically released with ION [15]. The first im-
provements came in 2011 with the proposal of source routing
extensions by Dr. Edward Birrane in [67], [68]], documented in
an [ETF draft [|69]]. In that same year, the adaptation of Dijkstra
in CGR was introduced by Segui et al. in [70]]. By profiting
from a monotonically increasing time-related cost function,
this contribution provided CGR with a solid algorithmic frame-
work motivating Section |1'_V| of this document. In 2012, Dr.
Birrane presented an extended vision of CGR including pre-
vention of routing loops and multiple destination analysis [[71].
At the same time, Dr. Carlo Caini et al. argued in favor of
implementing CGR as a routing solution for near-Earth Low-
Earth Orbit (LEO) satellite networks [29]—[31]]. Similar studies
followed afterwards [72]]-[74], especially in the context of
“ring-road” networking, an inexpensive data mule approach for
relaying data to and from isolated networks [26]], [75]-[77]. In
2014, Bezirgiannidis et al. made the first steps in modeling the

impact of traffic in bundle delivery time estimation together
with overbooking management techniques [78]], [79]. These
methods are reviewed in detail in Section [VIl At about the
same time, Fraire et al. explored congestion mitigation by
proper volume annotations in CGR routes combined with
source routing updates [80], [81]]. Araniti e al. summarized the
advances and experimental experiences with CGR up to 2015
in [14], the most cited CGR article at the time of this writing.
In 2016, Burleigh et al. proposed an opportunistic enhance-
ment to CGR so that unplanned contacts could be correctly
reacted upon and included in the routing decisions [82]. Dr.
Ruhai Wang et al. then presented the first investigations into
CGR scalability [83]], which motivated later contributions by
Madoery et al. via efficient forwarding [84] and region-based
approaches [85]], [86]. Initial CGR reliability studies followed
in 2017. Dr. Juan Fraire ef al. showed how CGR behaved under
uncertain contact plans [87], [88]], for which reliable CGR
variations based on state-of-the-art computer science models
were introduced [89]]-[91]. As discussed in Section scal-
ability as well as uncertain and opportunistic CGR extensions
are among the most active and promising research lines in
CGR. In 2018, route table management strategies were also
analyzed by Fraire et al. in [92]. It was from this contribution
that Yen’s algorithm became the default routing management
approach for CGR in ION as described in Section [V] In
2019, a spanning-tree formulation was proposed as a CGR
alternative to compute routes to several destinations [93]], and
a partial queue information sharing was introduced in [94]. In
that same year, the Schedule Aware Bundle Routing (SABR)
recommended standard (blue book) was released by CCSDS
recommending CGR as the routing procedure for the Solar
System Internet [17]. As the development of this extensive
ecosystem demonstrates, CGR has become something more
than a simple algorithm. CGR is a comprehensive process for
tackling the operation and management of a scheduled space
DTN. As such, it is quite unique when compared with other
routing approaches,

E. Comparison with Other Routing Algorithms

CGR operates on networks where local nodes can consult
asserted knowledge of scheduled connectivity intervals as
noted in a contact plan. CGR is the sole routing algorithm,
to the best of the authors’ knowledge, that aligns with the
planning, routing and forwarding procedures of scheduled
space flight communications. For this reason, virtually all
deployments of DTN for space flight missions have adopted
CGR. As discussed below, CGR is qualitatively superior to
other DTN routing approaches that could be utilized in space
communication environments.

On the one hand, flooding approaches such as epidemic [|62]]
and spray-and-wait [95], [[96] assume abundant link capacity
and energy, enabling each node of the network to forward
multiple copies of each bundle to multiple available neighbors.
Although these approaches are popular because they effec-
tively address the unscheduled connectivity of opportunistic
terrestrial DTN communications, they are not applicable to
space networks due to the limited bandwidth of space links

and the severe constraints on satellites’ power subsystems. On
the other hand, probabilistic solutions such as MaxProp [|60]]
and Prophet [64] attempt to infer the connectivity patterns
of the network by means of metadata exchanges between the
nodes at the beginning of each contact. These exchanges are
infeasible over high-latency space links where round trip times
can be on the order of seconds or minutes. While assuming
Internet-like capacity and latency, flooding approaches and
probabilistic routing are unable to take advantage of the time-
varying topological information provided in a flight mission’s
contact plan as CGR does. Contact plan awareness enables
CGR to compute well-informed accurate forwarding decisions
that avoid dead-ends and unwanted congestion [89]

In contrast, topological information is central to the design
of delay-tolerant link-state routing (DTLSR) [97]. However,
in DTLSR that information is acquired automatically in the
course of network operation rather than asserted during mis-
sion planning. Link state announcements are flooded through-
out the network as it evolves over time. Each node uses
these announcements to maintain a graph representing its
current view of the topology of the network, and a shortest
path computation is employed to find routes for messages.
However, the effectiveness of DTLSR depends on the accuracy
of that graph. The lengthy signal propagation delays of deep
space communication increase the likelihood that the link state
information on which routing decisions are based is out of date
at the time the decisions are made.

The following sections cover these unique aspects at the
core of CGR in detail.

III. SPACE NETWORKS MODEL

This section details the model and abstractions on which
CGR is based: contacts, contact plan, contact graph, routes,
and volume considerations.

A. Contact

A contact C''2 R is defined as a time interval (ty;¢2)

during which it is expected that data will be transmitted by
DTN node A (the contact’s sending node) at rate R such that
data will be received by node B (the contact’s receiving node).
The time values can be expressed either in absolute units
(e.g., Gregorian Coordinated Universal Time, UTCG) or in
relative time with respect to a reference epoch. In Fig. 3] a),
a table lists each contact identified by a number (#1...16).
Contacts C’gﬁg, C%?CO and C’g’,ﬁg represent permanent links
(e.g., between mission control and ground stations connected

through Internet). Contacts Cg"j:(,) and 6114050 stand for episodic

Ground to Space Links (GSLs) while C’%}Ig, 01?507,];0 and C’}r’j()”go
identify episodic Inter-Satellite Links (ISLs).

Each contact is characterized by a start time, an end time, a
data rate, and the identifiers of the sender (snd) and receiver
(rcv) nodes. Nodes must be uniquely identified, nominally
by unique node numbers as discussed in the specification
for Compressed Bundle Header Encoding (CBHE) [98]. A
contact’s data rate is the mean rate at which data is expected
to be transmitted by the sending node throughout the indicated
time period. In other words, the data rate for a contact can

src dst st end rate range D E
172 A B 0 60 1 1 e SPeERS
3/4 B (o} 0 60 1 1 storage #11/12
5 A C 0 60 1 1 #risdd wana Wrono
y o #IB16
7/8 C D 0 30 1 1
9/10 A E 10 20 1 1 c = > A
11/12 D E 0 10 1 1 #5/6
13144 D E 30 40 1 1 \ /
#3/4 #1/2
15/16 D E 50 60 1 1 '/g!
a) b)
A<eB #1/2)
B«C- ‘ ' 34 ' ')
Route 3
A<C #5/6
Route1jg - Inon
: trensmission | Route 4
C-D *
Route2 : “"° (‘“
A-E (#9110 o
D_’E #1142 ‘.\ l: #13/14 :' #15/16)
Os 10s 20s 30s 40s 50s 60s
c)
A ,) /I ,)
B #5/6 \) \I \)
C N g W M M M
D ;" Route 4
% el g 3/14) Route 3 #15/16’)
o T WP M SN | S T SO S | A
Os 10s 20s 30s 40s 50s 60s
d)
Figure 3. An example space network represented by a) Contact plan table,

b) static graph of the topology, c) time line view, and d) time-evolving graph.
Example routes from A to E are highlighted and ordered by best delivery
time (BDT) (others are possible, see Section m)

be computed by dividing the total volume of data that can be
transferred during the contact by the duration of the contact.
Furthermore, the approximate distance (also known as One-
Way Light Time (owlt), measured in light-seconds) between
nodes A and B during a contact must be known in order
for routes to be computed. It is theoretically possible for this
“range” value to change between the start and end of a contact,
but for simplicity we will here assume that each contact is
associated with a single range value [[17].

Since unidirectional transmission is not uncommon in space
communications, contacts are by definition unidirectional;
bidirectional communication is represented in a contact plan
by a pair of unidirectional contacts. Moreover, because of
owlt, the start time of a contact in one direction is typically
not the same in the reverse channel of a bidirectional link.
In particular, if the time interval (¢1,t5) is the transmission
time for node A, then the reception time interval for B is
(t1 + owlt, ta + owlt). This asymmetry has some non-intuitive
consequences as illustrated in Fig. @] A transmission to a
spacecraft which is out of line of sight must start before it rises
in the horizon of e.g., a remote planet. After a period equal
to the owlt between sender and receiver, both forward and
return contacts can exist simultaneously, but not before. The

Time 1))no visibility
between A

and B, which
approaches

the horizon

Time 2))A can
start to transmit
even though B
is not yet in line
of sight (LoS)

Time 3))signal
from A arrives to
B after 5s, when
B is just emerging
in the horizon

Node A
\ J transmlsspn time

: Node B
A reception time

T —

0s 55 10s ts t+5s

Time 3)

Figure 4. The propagation delay over long-range bidirectional communica-
tions requires two different contacts shifted in time for a proper modeling. In
interplanetary occlusions, transmission shall start from A before the target
node emerges in the horizon (5 seconds in the example). Once over the
horizon, node B can start transmitting. The inverse effect is observed when
the remote satellite hides on the planet horizon.

same effect, but opposite, is seen when the satellite hides in the
horizon at the end of the contact. Finally, space communication
contacts also typically exhibit different forward and return
data rates. For these reasons we use unidirectional contacts
to properly model space networking connectivity.

Contact volume is a function of data transmission rate
and contact duration. If the rate is constant, the product
(end — start) * rate is enough to model the connectivity
throughout the contact. Variable bit rates can otherwise be
approximated via averaging as illustrated in Fig. [5] a). Also,
adaptive modulation and coding schemes can be modeled via
multiple consecutive contacts with different rates as depicted
in Fig. 5| b). It is important to note at this point that a contact
is specifically not an episode of activity on a link between two
nodes. Episodes of activity on different links (e.g., different
radio transponders operating on the same spacecraft) may
well overlap, but contacts by definition cannot. Therefore,
all concurrent links must be considered together in a single
contact as shown in Fig. 3] ¢). The correct balancing of data
over different link technologies is a convergence layer adapter
matter and should be tackled on that level; it is beyond the
scope of this tutorial.

So far, the parameters of route computation have been
fixed, meaning that they do not change after the contact
has been predicted in the planning phase. A contact can,
however, include variables to store valuable information for
the CGR routing and forwarding processes discussed in the
following sections. In particular, maximum available trans-
mission volume (M AV (p)) variables are used to keep track

> (AP s ORI, B o
JLIGEIC AR SR LN ¢

Max range O
9 QOQ@ Qo&(b QOQ@ Qé‘@ Qo‘\@
T{ Min range Aole [o1 | ‘
o) Q | [
® ®
o data I~
@© © -
© / rate ©
© © ‘ ‘ /
{ | data
avg. data | || rate
rate [of
| MCS
' > L »
tl Contact #1 .Etime t Contact #2 t time
1 2 3 4
a) b)
overlapping
AtoB ! (ran;ponders !))
data rate 1 /ﬂ | datarate 1) datarate 1 |
1 { AtoB + |
datarate2) {_data rate 2
Aché }) f AtoB f Ato B f)
Links (transponders) time Contacts time
c)

Figure 5. Data volume considerations: a) The data rate parameter in a contact
can be obtained by averaging the data rate over the period. b) Specific contacts
for each modulation and coding scheme (MCS) class can be considered. c)
Data rate over overlapping links with the same source-destination pair must
be modeled by a single contact.

of the remaining available volume of a contact as bundles
are assigned to be forwarded through iﬂ Because different
priorities p exist, different M AV (p) values express the volume
availability for each of them. Indeed, while a contact can be
fully booked for a lower priority p;oy (.€., M AV (piow) = 0),
a higher priority bundle could still be allocated to C' provided
that M AV (prign) > B.EVC. Other variables are managed
in the algorithm’s working areas. There is a working area
for route search, route management and forwarding that will
be further described and used in Section and
respectively. All the contact parameters used in this tutorial
are summarized in Table

B. Contact Plan

Arranging all the anticipated contacts into a contact plan
allows the operator to capture the time-evolving nature of a
space network. A contact plan can naturally be expressed in a
table such as the one in Fig. [3] a), but different representation
and models can be considered for routing computation. On
the one hand, a traditional static graph representation is
shown in Fig. [3| b). Although this familiar representation
provides a direct match with the physical disposition of nodes
(i.e., ground stations, satellites etc. are the actual nodes in
the graph), it hinders an intuitive understanding of the time
dynamics (the presence of edges between nodes depends on
the time). Indeed, trying to integrate time effects into such
a model (i.e., by aggregation or other simplifications) can
result in non-trivial model inaccuracies as reported in [99].
A time-line view, as illustrated in Fig. E] c), is useful as an
intuitive visualization of the contact plan, but it cannot be
used for graph-based algorithm calculations. Time-evolving

2C.M AV (p) corresponds with the Maximum Transmission Volume
(MTV) terminology in SABR [[I7]. We have chosen a different naming to
avoid confusion with C.volume, which is the maximum volume the contact
can carry.

Table IIT
CONTACT PARAMETERS

Fixed parameters

C.snd, C.rcv Sending and receiving nodes

C.start, C.end | Start and end transmission time

C.rate Data transmission rate

Cl.owlt Distance (range) expressed in light-seconds
C.volume Contact volume ((end — start) * rate)

Variable parameters]
C.MAV (p) | Maximum available volume for priority p
Route search working area:

C.arr_time Data arrival time at the destination (dst)

Clvisited Contact was visited in a previous loop
C.visited_n] | List of previously visited nodes
C.pred Pointer to the predecessor contact in route

Route management working area:

C.suppr Contact suppressed by management
C.suppr_nhl] List of suppressed Next hop contacts
Forwarding working area:

C.fbtx First Byte transmission time for a route
Cllbtx Last Byte transmission time for a route
Cllbrx Last Byte arrival time for a route
C.EVL Contact’s effective volume limit

graphs, as shown in Fig. |3|d) are an appealing representation
and modeling technique for space networks [100], [101],
where time dynamics are captured in discrete states. For
each state snapshot, a static graph is used to represent the
(stable) connectivity of the network during that period of
time. Naturally, a connectivity change (i.e., the initiation or
termination of any contact) requires of a new state. The main
drawback of time-evolving graphs is that they scale poorly,
not only with larger numbers of nodes and contacts but also
especially with time, hindering the efficient modeling of space
networks with long time horizons. Furthermore, the modeling
of delay effects requires yet more states. For example, the
two contacts in Fig. 4 would require 4 states: (1,6), (6,11),
(11,¢) and (¢,t + 5), each with a connectivity graph of the
whole network [65]].

C. Contact graph

Contact graphs, illustrated in Fig. [6] overcome the draw-
backs of other models. A contact graph for destination node
D at source node S is a conceptual directed acyclic graph

CGg = (V,E) where vertices V correspond to contacts
C’E’BQ in the contact plan. Edges E in a contact graph can

be seen as episodes of data retention at a node 7, between
the end of the earlier contact and the start of the subsequent
contact. Fig. E)] illustrates the CGE based on the contact plan
example of Fig. 3] The structure of the contact graph may
seem somewhat counter-intuitive as it bears almost no relation
to the topology of the network as illustrated in Fig. [3| b).
The vertices of the graph are not the satellites or ground
stations at which data reside, but rather the episodes of contact
during which data can be transferred; the edges of the graph
are not paths enabling data transfer but rather the periods
of time during which data must be stored while awaiting
successor contacts. In compensation, though, this static graph
representation facilitates the execution of network algorithms
over time-evolving networks on simple graph structures.

A contact graph is formed by one vertex for each contact
in the contact plan that signifies transmission either directly
or indirectly (i.e., through other contacts) from A to node E.
Edges are then added between contacts where destination and
source nodes correspond (i.e., the receiving node of a contact
matches the source node of the next contact in the path). In
the example of Fig. |§|, the receiving node of contact 1 (Cg’%))
is the same as the transmission node of contact 3 (C’%éco).
An edge between them represents a temporal storage in the
connecting node B which is 0 when contacts are overlapped
in time since an immediate transmission is possible; otherwise
it can take any value. Besides storage time modeling, prop-
agation delay or owlt can be conveniently considered within
each vertex on the graph. In other words, time can pass on
edges (storage) but also on vertices (propagation). Finally,
notional contacts from node A to itself and from node E to
itself (a.k.a. root and terminal contacts) are included as part
of the contact graph, enabling consistent notation throughout.
As stated in [[17]], the root and terminal vertex may be thought
of as corresponding to delivery from the application to the
source node’s Bundle Protocol agent (the root vertex) and
delivery from the destination node’s Bundle Protocol agent
to the application (the terminal vertex).

A different contact-graph data structure is used for each
source-destination pair. This might be seen as a disadvantage
with respect to time-evolving graphs, where a single data
structure serves for all source-destination node pairs. How-
ever, in practical operations on flight computers with modest
computing power, it is desirable to compute routes to a single
destination and not all or several destinations. For computation
of routes from a single source node to a single destination
node, a simple contact graph as described here is all that is
needed. Furthermore, as discussed in [[70] and detailed in [71]],
adapted Dijkstra’s searches can be used over contact graphs
to efficiently determine optimal routes. For these reasons
contact-graph based routing had received increasing attention
from the space networking community and is now a CCSDS
recommended procedure for space networks [[17]].

D. Routes

A route RE for a bundle with node A as current location
and node E as destination is defined as some sequence hops||
of the contacts in a contact plan such that a) the sending node
for the first contact is A, b) the receiving node for the last
contact is E, c) the receiving node for contact ¢ is the sending
node for contact 7 + 1, and d) the time at which contact 7 + 1
ends is no earlier than the time at which contact ¢ begins [17].

In the example of Figs. |3| and [6] one of the fastest routes,
route (1) RE = {CO'¥,C& . CH'p}. is highlighted in red.
A different route can also be obtained via a different last
contact: route (3) RE = {C’%%,C%%,C’%Oféo}, marked as
light blue. As mentioned, DTN assumes no persistent end-to-
end connectivity, thus a route might require temporal storage
at intermediate nodes (e.g., in node D until time 30 in route
(3)). Also, contact propagation delays (owlt) are aggregated
along with storage times to calculate the best delivery time
(BDT) for each route. Route (1), for example, exhibits a

Route (1) to E Terminal contact Route (2) to E
next_node: C next_node: E
txWin: (0,10) E- txWin: (10,20)
volume: 8 volume: 10

BDT: 3 BDT: 11

-

Se—
- ——

Route (3) to E Route (4) to E
next_node: C next node: C
txWin: (0,30) txWin: (0,30)
volume: 10 volume: 10
BDT: 31 Root contact BDT: 51

Figure 6. Contact graph CGE for the topology of Fig. [3 Example routes
from A to E are highlighted and ordered by best delivery time (B DT') (others
are possible, see Section E])

BDT = 3 despite immediate transmission at each node
because the owlt = 1 in each of the three constitutive contacts.
Storage and propagation times in a route are computed during
the contact graph exploration as presented in Section

The receiving node for the first contact of a route is termed
the route’s entry node (or next_node, e.g., node C), and the
destination node is noted as to_node. Each route is character-
ized by a valid transmission window (tx_win) defined by the
earliest and latest time where transmission from sending node
A to the next_node can happen. As mentioned, a best-case
delivery time or BDT indicates the earliest possible time the
first byte of data can arrive at the destination node (that is,
the earliest time at which delivery of the data can begin, not
the time at which delivery will be completed). Also, similar
to contacts, the volume of a route indicates the maximum
amount of data the route can carry. Indeed, as discussed
below, there is a correlation between R.volume and constitute
contacts’ C.volume. These are parameters that remain fixed
once the route is discovered.

A route also has a working area used to store variable
metrics in forwarding time, which depend on the bundle to
be forwarded and the node’s queuing status. For example, the
earliest transmission opportunity (£7°O) parameter is used to
estimate the real transmission time of data given the actual
backlog of bundles [78]].

Projected arrival time or PAT is the adjusted time at which
the bundle, of a given size, can be delivered to the destination.
While BDT is a best-case delivery time, PAT considers
ETO and bundle size, which are only available at forwarding
time.

Finally, the effective volume limit or EV L stores the
actual volume of data the route can carry considering ETdﬂ

3R.EV L(p) corresponds to the Route Volume Limit (RVL) terminology
in SABR [[17]. We have chosen a different naming to avoid confusion with
R.volume, which is the maximum volume the route can carry.

Table IV
ROUTE PARAMETERS

[Fixed parameters |
R.hops|]
R.to_node
R.next_node
R.tx_win(s,e)
R.BDT
R.volume

List of contacts in the route

Final node in the path (hops[—1].dst)

First neighbour in the path (hops[1].dst)
Interval of time (s, e) where the route is valid
Best time at which data can arrive to dst
Maximum data the route can carry

[Variable parameters |

Forwarding working area:

R.ETO Earliest Transmission Opportunity
R.PAT Projected arrival time
R.EVL Route’s effective volume limit

These variables will be referenced and further described in
Section Table [[V] summarizes the route parameters used
in the following sections.

E. Volume

Contacts’ and routes’ volume modeling is an important
aspect of CGR that takes especial relevance in congestion
control at the forwarding stage. Both contacts and routes have
fixed volume, which indicates the maximum volume of data
they can carry. In the case of a contact, the volume is directly
obtained from (end — start) x rate; but the route volume
depends on the sequence of hops and their owlt. An example
is illustrated in Fig. l /| a), where the contact volumes are
computed as Cg%’ = ngg = and C’%l}g = 10, but
due to owlt, the resultmg route Volume of RE = 8. This is
the maximum amount of data that the route can carry from
A to E, and does not change throughout the contacts and
route’s lifetime. On the other hand, as discussed in Section [V1]
when data is forwarded through contacts, available resources
are consumed and maximum available volume C.M AV (ini-
tialized to C.M AV (p) = C.wolume V p) is decreased. As
discussed in Section C.M AV affects the route’s R.EV L,
which can preclude the forwarding of a bundle if the available
volume is not enough to accommodate the bundle as indicated
by B.EVC.

The simplest approach towards variable volume annota-
tion is to use linear modeling, as currently implemented in
ION and assumed throughout this paper. In a linear volume
model, the residual volume of a contact C' after forwarding
a bundle B; with priority p is updated by C.M AV (p)yx =
C.MAVy1(p)y1—B1.EV C. When a subsequent By with EVC
larger than C.M AV (p):2 needs to be forwarded, any route
through C will not be considered a candidate. This simplistic
volume modeling assumes that the resource utilization of the
contact always begins at the contact start time, and that subse-
quent bookings will always come immediately after that. This
approach might not reflect real utilization of resources in time,
especially in the case of networks with long (e.g., continuous)
contacts. Fig. [/] b) illustrates the inaccurate annotation this
assumption might generate. As such, an incorrect volume
annotation can result in sub-optimal bundle forwarding. In-
deed, in a linear volume modeling, there is no record of
the time within the contact on which the volume is being

d txWin.start: Os

txWin.end: 8s
\ #5
A*C volume: 8s * 1 =8
(all contacts have the same
| #7 data rate in this example
C>D \Route 1\\\ ple)
)
777 P W W W WA WA BDT: 3s
D > E \\\ \ \\ \ (delivery window
is between 3s and 11s)
Os 5s 105
a)

0Os 5s

A>C ____________ %\\

5s 10s

C.D =\ \
D>E i % \ \
0:3 5:5 1(:)s O:S 5:5 1(:)5

b)

Figure 7. a) Volume illustration of route (1) on a time line view. Transmission
and reception windows are (0s,8s) and (3s,11s) for a total route volume
R.volume = 8s x 1 = 8, where rate = 1 for all contacts in the example
CP. b) Linear volume modeling inaccuracies. Although the real data flow (in
red) occupies contact C'c, p from 4s to 6s, the linear model would represent a
utilization between Os to 2s. The incorrect depiction of the volume placement
within a contact can result in incorrect route selection at forwarding time.

consumed. An alternative and more accurate list modeling
would address C.M AV as a list of volume windows instead
of single numeric characterization. In such a way, volume
consumption in contacts and routes can be represented by
time-bounded elements with (start, end) intervals. The trade-
off between accuracy and the computational resources required
to implement the routines discussed below remains an open
research issue.

IV. ROUTE SEARCH

In this section we present the route search algorithmic
approach, the core of the CGR routing ecosystem.

A. Contact Graph Dijkstra Search

The main advantage of contact graph data structures is that
they can be used as input for traditional shortest-path algo-
rithms. In particular, Dijkstra’s shortest path algorithm [[102]
can be adapted to find a path from a source to a destination
node with the best delivery time in a contact graph [70]. The
resulting calculation can either be used to determine the next
hop (in distributed routing such as ION [15]]) or serve as the
complete route path (in source or centralized routing [71]).

Main Algorithm: The modified Dijkstra search for the best
route through a contact graph is presented in Alg. The
final outcome of the procedure is a route RE from source
S to destination D, with an arrival time BDT. The route
is computed starting from the root contact (C,..:) to the
destination D in the contact plan C'P. As mentioned earlier,
the root contact is an artificial contact Cs from source S

to itself. The arrival time in the root contact C’S’ g -arr_time

is set to the starting time of the expected route (i.e., the
time at which the Dijkstra search is called). The route search
will thus ignore contacts ending before C’g:?.arr_time. The
working area of each contact in the C'P must be cleared
before each Dijkstra search. A cleared working area means: (i)
contact arrival time C.arr_time = oo, (ii) contact visited flag
Clisited = False, (iii) contact predecessor C.pred = &,
and (iv) visited nodes list C.visited_n < {}. Note that the list
of visited nodes is a CGR enhancement that goes beyond the
basic algorithm described in SABR [17]], as discussed below.

The first part of the algorithm is a loop that explores the C'P
while keeping track of the current contact in Cey,- (line 5).
Cleyrr 18 Initially C).0¢, the root contact of the contact graph.

The successor (or “next hop”) contacts of the current contact
Ceurr are those contacts C' that have sender node C.snd
equal to the receiver node of the current contact C.ypp.7cv
(see Fig. [8). Within each iteration of the exploration loop,
(i) a Contact Review Procedure (CRP) updates the arrival
time metric (cost) through all contacts that are successors to
Ceyrr (line 6), (ii) a Contact Selection Procedure (CSP) then
selects the contact with best cost metric (line 7), C)ecut, and
(iii) current contact C.,,.. is set to the best contact C,cu¢
before proceeding with the next iteration (line 9). The Contact
Review Procedure (CRP) and Contact Selection Procedure
(CsP) are described below. Finally, when no C,.,; contact
can be determined, the C'P exploration loop ends (line 11).

A “final contact” is a contact whose receiving node is the
destination node D. If the destination node D was reached
during the C'P exploration loop, the best final contact was
stored in Cy;, and the best final arrival time in BDT,
indicating the best route has been discovered. If this is the
case, the route reconstruction loop takes place (line 12). The
sequence of contacts in the route is recovered from predecessor
contacts (C.pred) starting from C';,, back to the root contact
CS o, while populating the resulting route RE.hops list (line
14-16). The RS BDT was computed during CRP, and the
to_node and next_node parameters are directly accessible via
the first hop RE .hops[0].rcv and last hop RE .hops|— rczﬂ
However, the route volume limit (RD .volume) and the valid
transmission window (RSD .tx_win) remain to be be computed
at the end of this phase (line 17).

Example: In the example network of F1g [6] the fastest route
is Route (1), for which Cy;;, = C’ and BDT = 4. The
iterations followed by the adapted D1Jkstra search to obtain
this route are illustrated in Fig. [§] After the last 1terat10n the
CRP and CSP procedures will have populated c% D E pred =
Cg?)g, C’O p-pred = % 669 and Cgfg pred = Cgoj, the latter
being prec1sely the root contact. As a result, Route (1) will be
constructed as RY = {091600, ngzg, cY 10} witha BDT = 3,
to_win = (0;8) and R.volume = 8 in the second part of the
algorithm. A timeline view illustration of route 1) and the
exposed metrics is offered in Fig.

4In the algorithms listings throughout this paper we use Python-like list
notations namely: list[—1] indicates the last element of the list, list[: z]
returns a sub-set of elements in list up to = and list[x :] a sub-set starting
from z. This facilitates the study of these algorithms with the provided pyCGR
library. Note that we use a coding style suitable for low-level programming
languages (i.e., skips, breaks, etc.), as required for flight-grade software.

Algorithm 1: Contact Graph Dijkstra Search
Data: root contact C).,, destination D, contact plan
CP (with cleared working area)
Result: Route RY from source S to destination D

1 R« {3}

2 Cfin — {} // final contact
3 BDT = // final arrival time
4 Ccurr = C’root // current contact is root

/+ contact plan exploration loop =*/

5 while True do
/+ contact review procedure =/

6 Cfina BDT «+CRP (CP, Ceyrr, Cfin’ BDT)
/* contact selection procedure x/

7 | Chewt <-CSP (CP, Courr, BDT)

8 if Cert # {} then

9 ‘ Ccu'rr — Cne:nt
10 else
11 ‘ break // review and selection completed

/* route reconstruction loop */

12 if Cy;y, # {} then

13 C = Cfm

14 while C' # CS g do

15 RE .hops + {C}

16 C =C.pred // previous contact in path
17 Compute (Rg.tx_win, Rg.volume)

Contact Review Procedure: The specific steps of the
Contact Review Procedure (CRP) are listed in Alg. 2] These
steps are performed for each successor contact C' of the current
contact Coyr. The CRP reviews the C'P and updates the
working areas of those successor contacts.

The following disqualification conditions are tested in the
first part of the algorithm (lines 1-11): (i) C' ended before
the arrival time in Cey.r, (if) C has already been visited in
a previous call to CRP, (iii) C' leads to an already visited
node, (iv) C or its destination node have been administratively
suppressed (suppr and suppr_nh variables), (v) C' does not
comply with data volume requirements. Regarding this last
point, contacts for which available volume for the lowest
priority has been depleted (C.MAV(0) = 0) should be
ignored. In other words, this disqualification considers the
case where route computation happens after enough low-
priority data has been forwarded through the evaluated contact
consuming all its available volume. In such case, there is no
more possible data that can flow through this contact and it
should be disqualified.

The best-case arrival time C.arr_time (cost) for transmis-
sion of a bundle during contact C' is then computed (lines 12-
16). C.arr_time is initialized to the start time of C' or the ar-
rival time of the current contact C,,,.,., whichever is later. Then
arr_time needs to be increased by the contact’s propagation
delay (C.owlt). Since OWLT is approximated, a safety margin
is suggested in [17] equal to owlt g, = 125%C.owlt/186282.

Next, if the computed arrival time is earlier than any pre-
viously computed arrival time for C' (line 17), indicating that
the arrival time for C' is improved by transmitting from C.,;.r-,

Contacts explored
from current
during the iteration

Iteration 1

Iteration 4

Iteration 5

Iteration 6

Figure 8. Dijkstra search iterations over the contact graph on Fig. [} Current and visited contacts are annotated at each iteration. A light blue highlight
indicates which are the visited contacts, while a red dashed arrow indicates which is the lowest cost path (lowest BDT) on each stage. As per Dijkstra

10,20

algorithm properties, the best route is found even though some contacts (e.g., C'y %) are never visited.

then the new arrival time and corresponding predecessor node
Crurr are noted in C’s working area.

After the CRP steps have been performed for each successor
contact C' of the current contact Coyyrr, Ceyrr 1S marked as
“visited” and the Contact Selection Procedure begins.

Example: In the first call to CRP in the example network of
Fig. @ the current contact is set to the root contact (Clypr =
C’g’yoj). As illustrated in Fig. 8| three neighbor contacts are
reviewed in iteration 1: Cg’f}g, Cg’,GCO and C’X?ﬁo. Since arrival
times at these contacts were initialized to oo, all of them are

updated to Cg’g.arr_time =1, Cg’%).arr_time = 1 and
CL2" arr_time = 11 (labeled as BDT in the figure). Note
that this last contact is able to reach E, so Cy;, = 114?50

and BDT = 11 after this call to CRP terminates. But this
is not the best route. As seen below, the next call to CRP
will select Chept = C’g’ﬁg, from which potential neighbors are

C%’ig and C%’,ﬁg. The former, however, will be skipped as A is
already in the C’g’%}.visited_n list (see iteration 2 in Fig. Ej
As discussed below, the best route is found on iteration 6 with

C%}Ig as final contact and a BDT = 3.

An alternative and slightly different formulation of CRP is
possible if the information of the specific bundle B to be
forwarded is available when calling the routine. Since this

approach is not standard SABR and is not implemented in
ION, we discuss it separately in Appendix [Al

Contact Selection Procedure: The Contact Selection Pro-
cedure (CSP) is detailed in Alg. 3] Once the C'P has been
reviewed and its contacts’ working areas updated by CRP,
the procedure in CSP revisits all contacts in C'P to deter-
mine which is the one with the best annotated arrival time
(C.arr_time). This set of nodes is known as the frontier in
Dijkstra terminology [102]. Each contact in the frontier that
has already been visited or is administratively suppressed is
immediately skipped (lines 4-5). Each contact whose arrival
time is later than the current BDT is likewise immediately
skipped (lines 6-7). It is at this point where Dijkstra assump-
tion of a monotonically increasing cost metric must hold. In-
deed, since time cannot go back, it makes no sense to proceed
with exploration through such a contact. This phenomenon
can also be appreciated in Fig. [8| where a BDT = 3 forces
CSP to never select contacts such as Ci052.arr_time =11.
From the remaining contacts, the one with the earliest arrival
time teqriiest_arrival = min(C.arr_time¥ C € C'P) is noted
in Cpege. If no Cpepy contact is selected, then the contact
exploration loop terminates. Alternatively, if the receiver node
Chext-Tcv of the newly selected next contact Cl,e .y is the des-
tination node D, then the newly selected C,,.,; is recognized

Algorithm 2: Contact Review Procedure (CRP)

Algorithm 3: Contact Selection Procedure (CSP)

Data: CP, Ceyrr, Ctin, BDT
Result: revised CP, Cy;y, BDT
1 for contact C € CP | C.src = Ceyyr.dst do

/* Ignore conditions test =/

2 if C.end < Cuyyr.arr_time then

3 ‘ skip C // (i) ignore due contacts

4 if C.visited then

5 ‘ Skﬂ)(j // (ii) ignore visited

6 if C.to € Cpypr.visited_n then

7 | skip C // (iii) ignore visited nodes

8 if C.suppr or C' € Cyr.suppr_nh then

9 ‘ Skﬂ)(j // (v) 1ignore suppressed contacts

10 if C.M AV (0) = 0 then

11 SkH)(j // (iv) ignore overbooked
contacts

/* Calculate arrival time =/
12 if C.start < Coypr-arr_time then

13 ‘ arr_time = Coypr.arr_time
14 else
15 ‘ arr_time = C.start
16 arr_time+ = C.owlt + owlt,,gn

/+ Update arrival time if better =/
17 if arr_time < C.arr_time then
18 C.arr_time = arr_time
19 C.pred = Ceyrr
20 C.visited_n = Coypr.visited_n + C.dst

/* Mark if destination reached =*/

21 if C.dst = D and C.arr_time < BDT then
22 BDT = C.arr_time
23 Ciin=0C
24 Coypr.visited = True // contact review

completed

as the final contact of the best route; C'y;,, is set to the new
Chrest, BDT is set to the arrival time of the new C,,..:, and
the contact plan exploration loop ends. Otherwise, Ce, is set
to Cheze and the next iteration of the contact plan exploration
loop begins.

Example. Contact C’%}g is noted as final with a BDT = 3
on iteration 6 as shown in Fig. [). Since not of the other
possible contacts (Ca’, Co 00 and C2° with respective
arr_time = 31, 51 and 11) can improve that BDT, the
routine terminates and deliver Route (1) as the best route.

B. Loops

Contacts in the C'P are marked as visited to avoid choosing
as the next current contact C,,,. a contact that has already
been considered as the current contact. Because time is mono-
tonic (strictly increasing as the contact graph is explored), the
arr_time of a visited contact that cannot improve the current
BDT metric and so this contact can be safely ignored. This
is the fact that makes Dijkstra suitable for computing loop-
free routes over the contact graph. Nevertheless, a loop-free
path in a contact graph is not necessarily a loop-free path in

Data: CP, BDT
Result: C,,c0t
1 Cnezt — {}

2 tearliest_arrival = 00

3 for contact C € CP do

// earliest delivery time

4 if C.suppr or C.visited then

5 ‘ Skﬂ)(j // ignore suppressed or visited
6 if C.arr_time > BDT then

7 ‘ Skﬁ)(j // ignore worst arrival time
8 if C.arr_time < teariiest_arrival then

9 tearliest_arrival = C.arr_time

10 Chest = C

Aloop-free path in
a contact graph can
be a looped path in
the network topology

Contact #4 is ignored
since its dest is B,

but B is in visited
nodes list in current #3

B-c(
Visited nodes
[A, B, C]

Root contact

Figure 9. A loop-free path in a contact graph is not necessarily a loop-free
path in the topology. In order to build a truly acyclic contact graph, additional
measurements shall be taken by a visited nodes list (C.visited_n][]).

the real network topology. An illustrative example is shown
in Fig. [0] Both paths offers the same BDT = 10 (owlt = 0
for all contacts), but one exhibits a forwarding loop through
nodes A, B and C. Note that the latter is not a loop in the
contact graph, as no contact appears more than once in the
path. To avoid this problem in the adapted Dijkstra search,
the visited_n list keeps the visited nodes along each contact
working area. The list is considered on the CRP procedure to
avoid revising contacts that lead to visited nodes (lines 6-7 in
Alg.). The visited node list disqualification is not part of
SABR standard [17].

C. Complexity

The overall complexity of the CGR adapted Dijkstra search
can be extrapolated from the base Dijkstra structure [[102]. The
original Dijkstra algorithm is known to have a time complexity
of O(|V|?), where |V| is the number of vertices in the graph.
In this case, the time complexity of the CGR Dijkstra call is
O(|C|?), where |C| is the size of the contact plan. Indeed,
in the worst case, all contacts are visited in Alg. [I| and
all contacts are reviewed in Alg. 2 resulting in a quadratic

complexity (route reconstruction is linear with respect to |C|
and is thus disregarded). Optimizations based on min-priority
queues and Fibonacci Heaps are known to reduce the worst-
case complexity of Dijkstra searches [103]. With this in mind,
a time complexity of O(|C|log(|C|)) can be achievable in
CGR Dijkstra if, instead of iterating over all contacts in Alg. 3]
a suitable priority queue is used when annotating the contact
arrival times in Alg. [2| We have kept these processes separated
for the sake of clarity.

In most practical cases, however, the average complexity
should be much lower as many contacts are immediately
ignored for the reasons noted above. Furthermore, the contact
iterations in line 1 of Alg[2]can be encoded into a hash table of
contact lists with C'.snd as key, reducing the processing effort
on subsequent Dijkstra calls. Disregarding the time to build
the hash table (which can be indeed built offline) the overall
complexity of the adapted Dijkstra can be reduced. Note that
the complexity studies in [83[] consider the whole route table
computation and not a single Dijkstra computation, thus they
are applicable to Section [V]

D. Multiple Destinations

As with the base Dijkstra algorithm, the adapted CGR
algorithm can be trivially adapted to calculate the best route to
all possible destinations. To this end a C;, and BDT need
to be independently tracked and verified for each potential
destination D (lines 21-23 in Alg. . In CsSP, the maximum
BDT among all destinations should be considered (lines 7-
8 in Alg. [3), and route reconstruction must occur for all final
contacts found (lines 12-17 in Alg. [I). This approach has been
recently explored in conjunction with a node-based spanning
tree approach for contact plans in [93].

V. ROUTE MANAGEMENT

At any DTN node, multiple routes to any single destination
node may need to be computed and managed. The main
reasons are these: (i) each route expires after tx_win.end,
thus others will be needed afterwards; (if) routes have limited
volume, thus others might provide the required extra capacity;
(iii) routes might be overbooked for a given priority class,
thus others might provide a means to reduce congestion; and
(iv) routes might not occur as expected due to uncertainties
or failures, thus others might provide necessary redundancy.
Route management is the approach by which multiple routes
to a single destination are properly computed, stored, used,
and pruned.

As with Internet routing, storing computed routes in route
tables enables the node to avoid repeating Dijkstra searches.
For CGR, a route table is a list of route lists, one route list for
every other node in the network that is cited in any contact in
the contact plan [17]. A route list [RE] from S to D can be
of size 0 (no routes for destination) up to all possible routes
in the contact plan for that node pair.

A. Classification

As introduced in Section |lI} the routing scheme for a space
network can be centralized or distributed. Also, source routing
can be a middle-ground approach.

1) Centralized: In a centralized approach, a mission oper-
ation and control center generates the contact plan, computes
all necessary route lists, and uploads those route lists to the
nodes of the network (option B in Fig. 2). The number of
routes to be retained for each source-destination pair at any
given moment in time is a mission decision. Centralizing the
computation of routes is a conservative approach that enables
tight control and detailed debugging, as all possible decisions
taken by potentially unreachable nodes are already present and
available on ground. Furthermore, centralized routing reduces
the route computation effort on limited flight computers.

2) Distributed: In distributed routing, the topological infor-
mation in the contact plan is distributed to nodes (option A in
Fig.2), which then autonomously compute the route lists based
on local state and policies. A DTN node with this capability
can decide the exact number of routes to compute based on
traffic shape. This is a more aggressive but scalable approach
as DTN nodes are the only source of truth regarding the traffic
status and route demand at any given moment.

3) Source routing: Source routing can be an intermediate
solution where only the sender node computes the route and
stores it in the bundle so that next hop nodes can forward
the bundle without recomputing the route [|67]], [69]. Although
example applications using this approach were studied [77]],
an in-depth quantitative comparison of the centralized, source
routing and distributed routing approach remains a topic for
future research.

While in centralized routing all required routes are statically
computed, the approach towards route management in dis-
tributed routing can be either static or dynamic [92]. In static
route management, all possible routes for a destination are
calculated for the contact plan duration period. Following this
calculation, the route list remains unchanged until an update
of the contact plan is received. In dynamic route management,
a limited number of routes are initially computed from the
contact plan. The route list can then be extended and updated
as per traffic demand (or prediction) from the local node.
In other words, a limited number of new best routes are
calculated on-demand by the DTN node. The reader interested
in implementations of these CGR variations is referred to
DtnSim code [20].

ION. In older ION versions (v3.6 and older), the route
management was distributed and static. All routes to a given
destination D were fully computed as soon as a bundle was
to be forwarded to D for the first time [15]], [87]], The main
drawback was that valuable compute time was required when
long route lists were to be populated on resource-constrained
processors (i.e., several Dijkstra calls), and any modification
to the contact plan forced the deletion and re-computation of
all route lists. Since computations were made at forwarding
time, the processing blocked any transmission until all routes
were computed; this reduced the effective utilization time
of a contact [84]. Therefore, in recent ION implementations
(v3.7 and later), route lists are dynamically computed. When
required, ION computes the next best route for a given
destination and adds it to the route list. When such route is no
longer valid (i.e., tz_win.end time passed, or RE.EV L(p)
is exhausted for the priority class p, the best next route is

Terminal contact

BDT=0
txWin=(0,10)

BDT=40
txWin=(0,40)

BDT=0
txWin=(0,10)

BDT=20
txWin=(0,30)

BDT=40
txWin=(0,50)

Long initial
contacts, if
set as anchors
allows to
discover more
routes

Anchor search
is ended as
soon as a

route is found
through another
initial contact

Root contact (A-D in this case)

(@)

Terminal contact

BDT=20
txWin=(0,30)

Route not’
discovered
by the
anchor
search in
early ION
versions

A-D

Routes not
discovered
by the
anchor
search in
early ION
0 versions

BDT=40
tXWin=(0,50)
Initial contacts
as anchors
do not guarantee
the discovery
of all routes

0
30

Root contact Root contact

(b) (c)

Figure 10. Anchor search limitations. (a) Anchor search anchors on long initial contacts (C%’Ejg in this case) and explores further routes. (b) However, the

20,30

anchor search can be prematurely terminated when a next best route is found outside the anchor contact (e.g., through C%"%). (c) Also, anchoring only on

initial contacts excludes the discovery of all routes branching from contacts further ahead (e.g., through C%’

calculated (but the previous RY is retained in the route list
if valid, as RY.EV L might be suitable for higher priority
traffic).

Whether centralized or distributed, static or dynamic, some
number of routes have to be obtained from a contact plan for
a given source-destination pair. Clearly, the first route can be
obtained from a contact graph Dijkstra search, as presented
in Section However, modifications or annotations to the
contact graph need to be made so that each subsequent
Dijkstra search returns the next best route. The contacts’ route
management working area as shown in Table serves this

purpose.
B. Anchor Search

Older versions of ION leveraged a custom route manage-
ment heuristic which serves as an explanation for what a route
management process should do. The original approach was to
remove from consideration the initial contact of the previously
computed route (RE.hops[0].suppr = True). Subsequent
calls to the Dijkstra route search algorithm would thus ignore
such contact from that moment on. As a result, in the best
case, one route would be added to the route list per initial
contact in the contact graph. However, the suppression of
long initial contacts (i.e., ground contacts such as in Fig.
hindered the discovery of alternative routes starting later in
time through that same contact. The first heuristic to overcome
this issue was to apply the so-called anchor-based search.
In an anchor search, a long initial contact (i.e., a contact
C | C.end = RE .tx_win.end) was temporarily considered as
anchor, meaning that several routes could be obtained from
it before its suppression [87]. However, the limitations of the
anchor approach were soon discovered and addressed in [92].
Among them, anchor search was prone to miss the detection
of routes by prematurely terminating the anchor phase, or by
ignoring routes branching from long contacts ahead in the path
as summarized in Fig[T0]

C. Yen’s algorithm

The correct and complete approach to construct the route
table is to use Lawler’s modification of Yen’s algorithm [104],

60
0

[105]). This method was implemented in ION v3.7 and is still
being used at the time of this writing (v4.0). Yen’s algorithm
performs a Dijkstra search in a nested loop to deliver a set of
the K best routes (len([RY]) = K), where K is provided as
argument.

The adaptation of Yen’s algorithm is listed in Alg.] The
algorithm delivers a route list [RE] with at most K best routes
from source S to D as per contact plan C P. After clearing the
Dijkstra and route management working areas in the C'P, the
first best route is computed by Dijkstra and added to the route
list (lines 1-2). The root contact Cé? is also added as one
hop in the route for the reasons explained below. A potential
route list [PZ] is then initialized (line 3) and populated with
candidate best routes in a loop ranging from 1 to K (line 4).
The best route at the end of the outer loop is added to the final
route list in [RE]. The inner loop iterates over each contact
of the last route added to [R%].[-1] (line 5). Each of the
chosen contacts becomes a so-called spur contact (Cspyy). In
order to properly detect all routes, the root node Cgi?’ should
also be treated as a spur node, thus, it should also be part
of the route data structure during Yen’s procedure. A root
path is then defined from the root contact to the spur contact,
but without including the latter (hops[0] to hops[Cspyur — 1]
in line 6). The next step is to compute the best route from
the spur contact to the destination terminal node. To this end,
the C'P working areas are again cleared (line 7). Then, all
contacts in the root path are suppressed from the C'P (lines 8-
9). Also, all edges from Cjp,,, to neighbouring contacts which
are already considered in previous routes with the same root
path in [RY] must be suppressed (lines 10-12). The Clpyyr is
then prepared as root contact for a subsequent Dijkstra call by
setting a proper arr_time and visited_n list composed by all
visited hops hops.to in the root path P, (lines 13-14). If
a route from the spur contact to the destination is found, the
CGR Dijkstra call returns a spur path Psp,, (line 15), which
is combined with the root path rendering a new route to be
included in the potential route list (lines 16-17). Routes in
[PP] are then sorted by BDT such that the first route in the
potential route list (P2 [0]) has the best arrival time among

Algorithm 4: Contact Graph Yen’s algorithm

Data: source-dest. S-D, contact plan C P, K routes
Result: Route list [RE] with K routes
1 Clear (CP)

2 [RE] + Cg T+ Dijkstra(CgY, D, CP)
3 [PSD] < {} // potential routes
4 for k from 1 to K — 1 do
5 | for Cypur € [RE].[-1] do
/* root path from Cg’go to spur contact
*/
6 Proot = [Rg].[fl].hops[(), Copur — 1]
7 Clear (CP)
/* suppress all contacts in root path */
8 for C € P, do
9 ‘ C.suppr = True
/x suppress Cspur edges in any R in RE
*/
10 for R € [RZ] do
1 if P.,o: = R.hops then
12 ‘ Cispur-suppr_nh < R.hops[len(Pyoot)]
/* compute spur path from Cspur to D =/
13 Cospur-arr_time = Proor.arr_time
14 Cspur-visited_n <= YV Proo.hops.to
15 Pipur =Dijkstra (Cspyr, D, CP)
/+ if any, insert new potential route =/
16 if Py, # {} then
17 [PSD] A {Proot + Pspur}
18 Sort [PL] by arrival time
/* move best potential route to [RE] x/
19 if [PP] is not empty then
2 | [RS]« P20]
21 else
22 ‘ finish // no more potential routes

all routes (lines 18). If the potential route list is not empty,
the best route in [PZ] is moved to the route list [RE] (line
20). Otherwise, if the potential route list is empty, no more
routes can be found and the algorithm terminates (line 22).
The resulting list in [R%] will contain the best K routes in
the contact plan, ordered by BDT.

Example. The step-by-step iterations and the results of
Yen’s computations for the example network in Fig. 3| are illus-
trated in Fig.[T1] As mentioned, the best route is found by Di-
jkstra on the initialization stage (RY = {02’7%7 C’g’ig, C%’,lg}).
Then, the figure presents one graph for each iteration and
spur contact on which a new potential route is found. For
instance, at iteration 0 and spur contact 0 (root contact),
RE = {Cg’,ﬁg, C%?CO, Cg:ngO, C%}g} is found. Although another
potential route is found on the second spur node Cipyr =
C’g’fg, the first one makes it to the final route list. Indeed,
its BDT = 4 is better than BDT = 31, so it is the next
route moved from [PZ] to [RE] at the end of iteration 0.
The next one added to [RE] is RE = {C'2"}, at the end
of iteration 1. No potential routes can be found branching

out from the latter on iteration 2. Two more potential routes
are found on iteration 3 and 4 (routes using the latest 015307,20
contact rendering a BDT = 51). The algorithm terminates in
iteration 6 when no more potential routes are found in [PZ].
Actually, Yen’s algorithm is able to find the best routes from
A to E in the example contact plan in Fig. 3]

ION. Yen’s algorithm is part of ION in order to control
the number of best routes to be computed. Indeed, in practice,
only a few out of many possible routes are typically used
from a contact plan. As a result, ION’s routing routine (in
libcgr.c) operates on a stateful Yen’s implementation. In
other words, k is advanced until a workable route is obtained
(the conditions under which a route is declared workable are
discussed in Section [VI). Then, the loop is put on hold, storing
the state of the algorithm until the computation of a next
route is commanded. This is indeed a Yen’s implementation
that dynamically computes routes. Finally, as stated in [17]], a
route pruning is recommended every time the contact plan is
changed or updated. A route pruning implies that earlier route
computations might be invalidated and thus all route lists shall
be discarded and recomputed as needed. Efficient strategies to
selectively update route tables without pruning remain an open
research topic.

D. Complexity

Evidently, if all possible routes from a graph are to be
determined, then breadth first or depth first algorithms fol-
lowed by a sorting of the obtained list would outperform
Yen’s algorithm. Such an approach would have been appro-
priate for the example in Fig. if all 7 routes were to
be computed. The worst case complexity of a breadth first
search (BFS) is known to be O(|C|?). Plus, a route sorting
algorithm of O(|R|log(|R])) is required afterwards, where
|R| = |C| in the worst case [106]. A BFS route computation
approach would thus render a worst case time complexity of
O(|C|? + |C|log(|C|))~ O(|C|?). Instead, when only a few
(and controllable number of) best routes need to be extracted,
Yen’s is an adequate solution. Yen’s time complexity depends
on the Dijkstra’s complexity (O(|Cllog(|C|)) when using a
Fibonacci Heap). A total of K x s Dijkstra calls are made in
Yen’s loop, where K is the number of routes requested and s
is the average size of the spur path (which is estimated to be
log(|C]) but is |C| in the worst case [107]). As a result, the
CGR-adapted Yen’s worst case time complexity is estimated to
be O(K|C|%log(|C|))~ O(|C|%log(|C])) (as K is supposed
to be a small value, thus amenable to a constant).

E. Alternative Methods

Alternative route management methods with practical ad-
vantages had been proposed in [92] before Yen’s was adopted
by CCSDS in the SABR recommendation. Alternative meth-
ods are introduced below and compared in Table Their
implementation is publicly available in DtnSim [20].

First ended: One of those methods suggests the suppression
of the first contact in the path to terminate (the one with
min(C.end)) before calling Dijkstra again. This approach was
coined first-ended route management strategy. The first-ended

First Route

BDT=3
txwm:(o,n\

New potential route
BD

T=4
txWin=(0,7) \

Spur contact

Initialization Iteration 0 - Spur #0

New
potential route
BDT=31

txWin=(0,28)

Spur contact Spur contact

A,
N/
yred j00y —

g

Iteration 1 - Spur #3 Iteration 3 - Spur #2

Figure 11.

New potential route
BDT=3

potentlal route
BD

thln (0 28)

tXWin=(0,28)

\ze /

yjed uindg

New
potential route __
)., Spur contact BDT=1

tXWin=(0,19)
£/
2 .)
3
&N
Spur contact

Iteration 0 - Spur #2

Iteration 1 - Spur #0

New
potential route
DT=51

txWin=(0,28)

7 routes in
route list
once yen'is'
finished

; Spur contact
Spur contact

Iteration 4 - Spur #3

Iteration 6

The iterations of the Yen’s algorithm when applied to the example network in F1gE| with K > 7. Spur contact and contacts in root path are

highlighted in red. Computed potential routes never overlap with suppressed edges crossed out in the graphs. Potential routes are inserted into [PS |, the list
of potential routes, and are moved to the route list [RD] one at a time as needed. As a result, up to 7 routes in order of BDT are found and added to [RD]

Table V
ROUTES DISCOVERED BY ROUTE MANAGEMENT METHODS FOR THE
EXAMPLE NETWORK IN FIGE

&
3 @V § .
be Ry Q:J Hops in RE Yso ({?‘b Q@Q j 5)
3 | 8 |(0,10)|{CS%,C&S Co} vIvIv P v,
4 | 7 |(0,10) | {C3%.C%,Cep,Con VAV,
11 10 (10,20) {C%° VIV
31| 10 | (0,30) | {C5D,CED,Co5" v K34 v
31 10 | (0,30) {CS%,CY%,CET, Coa’t VIV,
51 10 (0,30) {CS%,CR%.CED.CHs’ NV,
51 10 (0,30) {CS‘60 (1830 C40 50 \/ s— \/

strategy guarantees that for each interval of time, the route
management method will provide one route (the fastest) to
the destination. As shown in Table [V] the first-ended approach
delivers at least one route for each of the (0, 10), (10,20) and
(20, 30) intervals. This is indeed a simpler technique which
reduces computation effort at the expense of not accessing
redundant paths during each time window.

First depleted: Alternatively, the first-depleted approach
bases the suppression decision on the volume bottleneck in
the previously computed route. In particular, the contact that is
limiting the route volume is suppressed before subsequent Di-
jkstra searches. For example, in RY = {C'g’,6 ggg, C% },

the contact C’O 10 is the limiting contact with 8 seconds of
effective transm15510n time (see Fig. [7). Suppressing such
contact from a new Dijkstra search delivers the route RY =
{CIO 201, and so on. As described in [92], the scheme also
annotates the volume reduction in all contacts on the route.
This allows an accurate detection of limiting contacts in
subsequent routes. As a result, the “first depleted” approach
mimics the time-evolving booking of contacts as if traffic
were actually being allocated in the contact plan. However,
as discussed in Section [V} volume annotation is a forwarding
stage matter.

VI. FORWARDING

Once routes are computed and stored in a route table, the
forwarding of outbound data can take place. Local information
on queue status at current time ¢ and the parameters of bundle
B are consulted in order to select the best candidate route for
a target destination. Finally, placement of the bundle in the
outbound queue triggers volume annotations and consequent
(immediate or deferred) transmission of the data.

A. Candidate Routes

The conceptual list of routes that can be used at node S at
time ¢ to forward a bundle B is termed the candidate routes
list. The construction of such a list implies the selection of
a sub-set of the routes in the route list [RY] at forwarding
time. The [RZ] list is computed and maintained as discussed
in Sections [IV] and [V] respectively. While formal rules for the
candidate routes list construction procedure are provided in the

SABR recommended standard [17]], in this section we describe
how to realize the candidate route list construction in Alg. [3}
We advise the reader to rely on Tables and [TV] to follow
the procedure divided into four distinct phases as described
below.

1) Basic checks: The procedure evaluates all routes in the
route list [RE] (line 1). In order to reduce the computation,
basic checks that can detect and skip non-plausible routes
with minimal processing are executed first. In particular, (7)
any route for which the best-case delivery time is later than
the bundle deadline and (ii) any route for which next_node
(the receiver node of the first contact in the route) is in the
excluded nodes list ([E,]) will be immediately ignored (line
2). As indicated in [[17], the excluded nodes list identifies
nodes which must not be considered for forwarding due to
any of the following causes. Cause 1) the node is B.sender,
i.e., that node sent the bundle to node S; that is, back-
propagation is normally excluded. In particular, forwarding
loops resulting from differences in topological information
(i.e., contact plan or volume annotations) at different nodes
can be avoided by forbidding back-propagation. However, if
the bundle is being reforwarded as consequence of a custody
refusal, return to the sender can be authorized in hopes of
finding an alternative path [17]. Cause 2) nodes that have
previously refused custody of bundles with this destination.
Under the assumption that nodes refusing custody of a bundle
are unavailable or overbooked, forwarding through them is not
recommended. Periodic probing can detect the recovery of the
neighbour and remove it from the excluded nodes list. Cause
3) nodes can be manually added to the excluded nodes list via
configuration for management purposes.

2) Earliest transmission opportunity: The earliest trans-
mission opportunity or ET'O is then computed based on the
volume already in queue (named applicable backlog volume
in [17], and here represented by vy0q(B.p)). The applicable
backlog volume is defined as the sum of the EVCs of
all bundles currently queued for transmission to the route’s
next_node whose priority p is greater than or equal to that of
the bundle that is to be forwarded. For instance, in ION, the
local node learns about vy,q(B.p) by inspecting the status
of the CLA used to reach the next_node. To compute the
ETO, the adjusted start time %, is first determined as either
the current time ¢ or the start time of the first contact in the
route R.hops|0].start, whichever is later (line 4). tstq.¢ is the
earliest possible start time for the transmission of B, which
needs to be adjusted by the residual backlog already allocated
for R.next_node (vpiog(priority)). The residual backlog is
the portion of the applicable backlog affecting the route’s
first contact. These bundles will have to be transmitted in
R.hops|0] before transmission of bundle B can begin. To
compute the residual backlog, all contacts whose receiver is
the next hop node (R.next_node), that have not ended and that
start earlier than the first hop (R.hops[0].start) are evaluated
(line 6). In simpler words, these are contacts that can at least
partially clear the applicable backlog volume before the route
R starts. The applicable prior contact volume (Vpyior) that
each of these contacts can clear out of the backlog before
current time ¢ is computed and accumulated (line 7). To this

Algorithm 5: Candidate Routes Construction

Data: Route List [Rg], Bundle B, excluded nodes list
[E,], current node S, current time ¢
Result: Candidate route list [CZ]
1 for route R € [RE] do

/% 1) Basic checks */

2 if R.BDT > B.dline or R.next_node € [E,]
then

3 skip R // bundle expires or node

excluded

/+ 2) R.ETO computation and check =/

4 tstart = max(t, R.hops|0].start)

5 Uprior = 0

6 for C € CP|C.src= S and

C.dst = R.next_node and C.end >t and
C.start < R.hops|0].start do

7 | Vprior+ = (C.end — max(t, C.start)) * C.rate
8 toiog = max(0, Vbiog(B.p) —Vprior)/R.hops|0].rate
9 ETO = tstart + tblog

10 | if ETO > R.hops[0].end then

11 | skip R
/+ 3) R.PAT computation and check x/
12 R.hopsl0]. fbte = ETO

13 for C € R.hops[l :] do

// first hop is overbooked

14 C.fbotx = maz(C.start, Cpre,.lbrz)
15 C.lbtx = C.fbtx + B.EVC/C.rate
16 Cllbrz = C.lbtx + C.owlt

17 R.PAT = R.hops|—1].lbrx
18 if R.PAT > B.deadline then

19 ﬂdp R // arrival time later than
deadline
/* 4) R.EVL computation and check =/
20 | for C € R.hops[] do
21 SUCCmin_end = Min(C.endV C' € R.hops|C)
22 ef fstop = min(C.end, succmin_end)
23 effdur = effstap - Cfbtl‘
24 C.EVL =

min(ef faur * C.rate, C.M AV (B.p))

25 R.EVL = min(C.EVLY R.hops|])

26 if REVL <0 then

27 ‘ skip R // no volume left
28 if R.EVL < B.size and B.frag = False then
29 | skip R
30 | [CBI«+R

// no volume for whole bundle

end, the applicable start time of the contact is set to the current
time t if the contact started before the forwarding phase.
The residual backlog volume affecting R’s first hop can be
obtained by subtracting the volume accumulated in v),.;,, from
the applicable backlog volume (vpioq(B.p)). The time shift
(termed backlog lien in [17]) imposed by the residual backlog
volume is then computed (£504, line 8) and used to determine
the ETO under current queuing conditions considering the
bundle priority (line 9). In order to declare R a potential route,
the obtained ETO must not be later than the end of R’s first

hop (line 10).

3) Projected arrival time: Based on the ETO computations,
the projected arrival time or PAT of the bundle can be
obtained. ETO is used as the first byte transmission time of
R’s first hop (C. fbtx, line 12); subsequent contacts in the path
can then be considered (line 13). The fbtx of each subsequent
contact in the route is set to the contact’s start time or the pre-
vious contact’s last byte arrival time (Cpye,.lbra), whichever
is greater. This is roughly equivalent to computing the ETO for
each hop in the route path, assuming that forwarding at each
node can begin as soon as the full bundle (i.e., last byte) has
been receivecﬂ The time required to transmit the bundle on
the channel is then calculated (B.EV C/C.rate) and used to
compute the last byte transmission time of the current contact
(C.lbtz, line 15). The last byte reception time for the contact
indicates the point in time at which the bundle is expected to
be completely received at the next hop node (line 16). Finally,
the C.lbrz of the last contact in the path is the projected arrival
time of the bundle (line 17). If PAT is greater than the bundle
deadline B.deadline, the route must be ignored (line 18).

4) Effective volume limit: Based on the PAT timing
results, the effective volume limit of the route R.EV L can
be determined and evaluated. For this purpose, each contact
C on the route is examined (line 20) to compute its individual
effective volume limit, as follows. First, the minimum end
time among all of C’s successor contacts (SUCCmin_end, line
22) is determined. Then the latest moment at which data can
be transmitted from C', termed the contact’s effective stop time,
is set to succ,op Or the current contact end time, whichever is
less (line 22). The contact’s effective start time is the contact’s
first byte transmission time C.fbtxz. The contact’s effective
duration - the interval during which data transmitted from
C' can potentially reach the destination node - can then be
computed as the difference between effective stop time and
effective start time (line 23). The contact’s effective volume
limit (C.EV L) is the maximum volume of data that can
be transmitted during such period, or the available volume
for priorities equal or greater than p in C (C.MTV(B.p)),
whichever the less (line 24). The route volume limit is then
determined as the lowest value of EVL among all contacts in
the path (line 24). In the case that R.EV L is depleted (that
is, not greater than zero), the route is ignored (line 26). Even
if R.EV'L is not depleted, if R.EV L is less than the size of
the bundle and the bundle cannot be fragmented then the route
must be ignored (line 28).

All routes that passed the 1) basic, 2) ETO, 3) PAT and
4) EV L validations are considered candidate routes for the
destination (line 30). If the resulting list contains no candidate
routes and the routing approach is dynamic, the calculation
of new routes (i.e., a new call to Yen’s algorithm) should
take place. If no candidate routes were found and either the
route calculation is static or dynamic route calculation fails to

STt is worth mentioning that we (and ION) assume that the queuing status
of remote nodes is not available, as timely access to such information cannot
be guaranteed in a DTN. Note, though, that works such as [67], [68]], [94]
have exploited this knowledge at forwarding time in non-delayed networks to
affect the computation of effective transmission times of the bundle at remote
nodes.

applicable residual bundle tx time
backlog backlog (B.EVC/C.rate)
\ R.ETO
A >B e siac e oo
[y :
R.hops[O]. P A RBDT
B »C i Fite i .| 5 R R
" Rhops1] ‘aﬁ
i R.hops[2] e R.EVL
H . s,
C IR [08 O S O o “l%__
current : : ' : R.PAT
time ~0s 55 10s 15s

Figure 12. Illustration of parameters computed in Alg. E] Applicable backlog
is the total volume in queue at current time, while residual backlog is the part
of that volume affecting the current route. Bundle transmission time is the
time needed to transmit the whole bundle on the channel. These parameters
are needed to evaluate the route considering bundle size and queue status.

identify a new route, then no valid route has been found in
the forwarding stage and the bundle cannot be forwarded.

Example. Fig. [I2] illustrates the parameters computed in
Alg. 5| for an example route R. Assuming C.rate =1V C €
R.hops, the applicable backlog for B.priority is 6, from
which 4 corresponds to a previous contact and 2 is the
residual backlog affecting the route first hop (R.hops[0]). The
resulting R.ETO is thus 8s, which is less than R.hops[0].end
indicating the route meets the initial condition. If B.size = 2,
its transmission time is 2 for all contacts with rate = 1 and the
R.PAT results 17s (R.hops[2].lbrz). This is the maximum
bundle deadline allowable through this route. Finally, R.EV L
is the lowest C.EV L, which in this case is 4, limited by
R.hops|0]. Indeed, R.hops[0].volume = 6, but a residual
backlog of 2 should imply a C.MTV =2 and C.EVL = 4.
Bundles larger than 4 can be transmitted via this route if and
only if fragmentation is enabled.

ION. In ION, bundles for which no candidate routes can be
found are placed in a limbo list. The limbo list is a memory
space where bundles can be stored with the expectation that a
future contact plan update will provide valid routes. To meet
the Bundle Protocol specification and avoid congestion issues,
bundles in the limbo are deleted when their expiration times
are reached.

B. Route Selection and Enqueuing

When the candidate route list for a destination contains
multiple routes, the best candidate is defined as the route with
the smallest value of projected arrival time (P AT') among all
candidate routes. If several routes in the candidate route list
offer the same PAT, then the one with the fewest contacts
(hops) is selected among them. If tied, the route with latest
termination time (end of tx_win) is selected. Finally, the route
with the smallest first hop node number is selected if all other
conditions are equal.

If the best candidate route’s effective volume is less than the
size of the bundle (R.EV L(p) < B.EV (') and anticipatory
fragmentation is allowed and available, then the bundle may be
fragmented at the local node. In this case the first fragment’s
payload is the portion of the bundle payload that results in a
fragmentary bundle size that is no greater than the route’s

available volume (B.size = R.EV L(p)), and the second
fragment, containing the remainder of the bundle’s payload,
should be forwarded through a different route.

If the bundle is flagged as a critical (B.critical), then a
copy of this bundle should be enqueued for transmission to
every neighboring node (to_node) in the candidate route list.
In the example list of Table [V] a critical bundle from A to
FE would be copied twice and forwarded via C, B and E,
with best-case delivery times of BDT¢x = 3, BDTp = 4 and
BDTg =11.

Notionally, the bundle being forwarded will be enqueued in
the transmission buffer allocated to the next_node marked
in the selected route, a neighbor in the topology of the
network. An alternative approach is to enqueue the bundle
being forwarded in a transmission buffer more specifically
allocated to the initial contact in the the selected route, to
guarantee that the bundle is sent through the right contact
despite possible contention from other locally or remotely
sourced traffic [[54].

Whenever a bundle B is enqueued for transmission via a
particular route, the C.M AV (p) of all contacts in that route,
for that bundle’s level of priority p and every lower level of
priority, needs to be reduced by B.EV C'. This will affect the
EV L of all future candidates routes using these contacts (see
volume modeling discussion in Section [II).

In the enqueuing process, a bundle may be assigned to a
route that is already fully subscribed by bundles of lower
priorities. This is an oversubscription, which will cause some
low priority bundles in the queue to miss their contact to
accommodate higher priority bundles. The procedure by which
these bumped bundles are handled is known as overbooking
management [78]. Overbooking management takes care of
quickly and efficiently re-forwarding the bumped bundles
through alternative candidate routes that have enough effective
volume for their (lower) priority level.

Finally, when a contact does not occur as expected, bundles
need to be reforwarded by means of a procedure that is similar
to the aforementioned overbooking management.

VII. TRENDS OUTLOOK

The CGR framework presented here, comprising planning,
route search, route management, and forwarding, has been
shown to be capable of managing the routing of DTN bundles
in a delayed and disrupted space network in concrete practical
applications. However, we can imagine improvements in CGR
scalability and resilience.

A. Scalability

Throughout the text we have alluded to the processing-
constrained on-board computers (OBC) used in most space-
craft. Although high-performance COTS computing hardware
is being evaluated for use in spacecraft, the electrical power
available for flight computers is limited and dissipation of
the heat generated by powerful processors is difficult in the
vacuum of space. Additionally, the hostile radiation environ-
ment above Earth’s atmosphere results in frequent single-bit
upsets that are especially troublesome for machines operating

20

CGR route search run time in Nanomind OBC
120
100 .

’
80 * +
Q
Q

60
R
40

20 -

Time [s]

E 3

t]
]
.
.
A Y
-

.

Min Outlier #Max Outlier

1 100 200 300 400 500 600 700 800 900 1000 1100 1200 1400

Number of contacts in CP

Figure 13. CGR route search (Alg. [T) run time in GomSpace’s Nanomid
AT12C on-board computer with Free RTOS clocking at 10 MHz (implemented
in C language). The contact plan corresponds to a Walker constellation of
12 satellites, 10 ground stations, and 100 ground spots for a duration of
24 hrs. [87]. Results are averaged among traffic from all ground sites to
a mission control center reachable through any of the ground stations. The
number of contacts considered ranges from 1 to 1400, at which point the
OBC’s 2MB of static RAM are exhausted. Courtesy of the Argentinian Space
Agency (CONAE, Unidad de Formacién Superior).

on high-frequency clocks [108]. The plot in Fig. [I3] shows
the execution time of the CGR route search routine as a
function of contact plan size on a commercial nano-satellite
OBC. The execution time reaches several dozens of seconds
on realistic contact plans with a few hundreds of contacts.
This computational cost is in agreement with the complexity
analysis presented in Section and the results published
in [83]]. While software optimizations might mitigate this
problem somewhat, adaptations that would enable CGR to
scale up to larger networks over extended time-horizons should
be explored.

Hierarchical inter-regional routing: Hierarchical inter-
regional routing (HIRR), proposed in [85], [86], aims at reduc-
ing the scope of route computation by limiting the topology
knowledge provided to each DTN node in the network - in
other words, reducing the contact plan size. In order to control
the routing computation effort, the network can be divided into
multiple regions as illustrated in Fig.[T4] A region is defined as
the set of all BP nodes that are either the senders or receivers
of all contacts in some single contact plan; the size of the
contact plan necessarily limits the size of the region. A region
is thus a bounded sector of network topology; it might also
correspond to some bounded sector of geographical space, but
this is not required. Just as each node is required to have a
unique identifier within the network, so too must each region
be uniquely identified with the network. Regions nest. A given
node is always a member of at least one region (termed the
node’s home region) and may additionally be a member of the
region that encompasses the node’s home region (the node’s
outer region). Note that a given node might be cited either
as a receiver or as a sender in the contacts of the contact
plan that defines a region of which it is a member. When the
contact plan indicates that a node N can receive bundles as a
member of region A and transmit those bundles as a member

of region B, and vice versa, [N is termed the passageway
node between regions A and B; the contacts that enable this
traffic flow between regions A and B are termed vents. The
advantage of hierarchical inter-regional routing is that each
node sees only the contact plans describing the connectivity
of the region(s) of which it is a member; contact plan storage
requirements are small and the scope of CGR computation is
sharply constrained, yet the size of the network is unlimited.
A bundle that is destined for another node in the source node’s
own region is routed to that node by CGR; a bundle that
is destined for a node is another region is routed via CGR
to the passageway node that is a member of the destination
region (and thence to the destination node by CGR) - or is
a member of a region from which the bundle can ultimately
be routed to the destination region by these same mechanisms.
An initial inter-region routing algorithm was proposed in [85]],
and an auto-discovery approach was described in [86]. Further
evaluation, potential optimization, and efficient region design
procedures motivate further research efforts in this important
domain.

B. Resilience

Standard contact graph routing rests on relatively relaxed
modeling assumptions such as linear volume annotations, es-
timated bundle volume consumption (B.EV C), and averaged
contact capacity approximations. Furthermore, the communi-
cation opportunities that arise in real time may not exactly
follow the plan: divergences might be introduced by inaccura-
cies in the predictions at the planning stage, by unexpected
interference, or by node failure. New, unplanned contacts
might be established opportunistically as nodes come into
unanticipated proximity. Also, distributed CGR can result in
sub-optimal forwarding because not all nodes will have access
to the same information regarding contact volume allocations.
For these reasons, research into adaptations that would make
CGR more resilient to deviations from its predictions is impor-
tant. Specifically, making CGR resilient implies (i) considering
probability in the uncertain components of the procedure and
(ii) efficiently reacting to unexpected opportunistic events.

Uncertain contacts: Early reliability studies indicated that
CGR was able to react to divergence from contact plans by
late bundle reforwarding [87], [88]]. Heuristic improvements to
routing in DTN under uncertain contact plans were introduced
in [89]], where alternative CGR metrics and copy-based for-
warding were explored. In particular, considering hops count
with respect to PAT proved to increase the delivery ratio. As
a result, a dual-copy CGR variant proposed to send one copy
of the bundle through the route with best PAT and another
through the one with less hops, but these were early efforts
outperformed by proper formalism as discussed below.

Another approach is to assume that each contact’s start and
end times are probability distributions rather than known time
values. Fig. [T3] illustrates both cases.

Recent studies have proposed formal methods to model
these probabilistic routing and copy-based forwarding ques-
tions [[90]. The probabilistic contact plan may be modeled as
a Markov Decision Process (MDP), from which optimal copy-
based routing policies can be obtained [91]].

21

—. =

Geostationary relay network

O k

//
Dynamic 14
@Eil

Satellite \
clusters ’

\ Challenged

y CubeSat
@//@' constellation

! Network without
direct access P
5 N to Internet AR \

—) infrastructure A
N l
8 3 8.7 = A
A - / \
=7 L 6

~ « Cellular and cabled |
T\ . networks

_ 7 - -

Node Capability

[x] Rx
o /A Tx

() Rx and Tx

[S
..
\ S — —

m
P
® 7

\

Intra
\ /

Passageway | A @ Region
. , noges y \ , ~~_Routing
S o s AN
~ -~ -
Figure 14. An example space network partitioned into six regions (A, B, C,
D, E, F) in a). The criteria for composing this contact plan and, hence, the
composition of the region were physical proximity and connection type (i.e.,
permanent, episodic), but others can be considered. An abstract diagram of the
regions is shown in b). Depending on the contacts asserted in the contact plan,
a given node may be able only to receive (Rx), only to transmit (Tx), or both
within a region of which it is a member. When node 11 has a bundle destined
for node 13, CGR is enough to route that bundle towards its destination. If
node 11 has a bundle destined for node 61 (region F), 1) Inter-RR is used
to identify a trans-regional route and a valid passageway node in region A
(node 10), and 2) CGR is used to find a route to the passageway.

A>C “|[Roue 0 \\\ ﬂ;—o‘ute P 0?
c-p-— LN]
oo 1 /T

ds 55 165 155 265
L—D-E start/end distribution

Node C outage —

Figure 15. Contact plan becomes inaccurate due to a) node’s transient or
permanent contact outages, hindering transmission or reception of data, and b)
uncertain start and end time of a contact due to unreliable orbit determination,
incorrect orbit propagation (i.e., trajectory prediction), or errors in orientation
estimation. The parameters of computed routes can be affected by these
inaccuracies; even entire routes can be rendered invalid.

Opportunistic Contacts: While in considering uncertain
contacts we deal with the problem of inaccuracy in computa-
tion based on scheduled contacts, the problem of opportunistic
contacts arises from the discovery of non-scheduled contacts,
potentially with new neighbor nodes. In other words, there
is a learning and prediction strategy in opportunistic CGR
(OCGR), as presented in [82]. The process starts with the
recording in a contact log, at each node, of the start and
end times and volume of all discovered contacts. Contact
logs are exchanged between neighboring nodes when contacts
(whether scheduled or discovered) begin. Contact prediction
can then be performed for each snd, rcv pair in the updated
contact log. Prediction involves the computation of mean and
standard deviation of the duration both of contacts and of the
gaps between contacts. A base confidence B value is obtained
based on the standard deviation, and a new predicted contact
Chew for the snd, rcv pair is added to the C'P. Ciey.start
is set to current time tcyryr, and Cpey.end = teyrr + teiogs
where t.,4 is the earliest applicable entry in the contact log
for the sender/receiver pair. The predicted transmission rate
for the new contact is the sum of the volumes of all applicable
log entries, divided by C,., duration. Also, the contact is
configured with a net confidence Ceony = 1 — (1 — B)N,
where N is the number of applicable entries in the log (net
confidences of scheduled contacts remains always 1). This
enables a route R to exhibit a route confidence R,y that
is the product of the computed confidences for all contacts in
that route. When a bundle is forwarded through R, its delivery
confidence is incrementally increased by R,y and, unless a
predetermined threshold is reached, another copy is created
for future forwarding.

Both uncertain and opportunistic CGR variants are recent
research and must be considered preliminary. Room for im-
provement is considerable, making CGR resilience one of the
most interesting research areas in delay-tolerant networking.

VIII. CLOSING REMARKS

The fundamental problem of DTN is simply to maximize the
volume of data that can be delivered to its destination in timely
fashion through a network characterized by lengthy round-trip
times. Solutions to that problem have multiple dimensions,
but one of the most important is routing: how to best decide
whether or not - and if so, when - to forward a copy of a given
bundle to a given topologically adjacent node. While a very
wide range of strategies for DTN routing have been proposed
and studied, Contact Graph Routing is the only one that has
been shown to be effective in network communications beyond
Earth orbit. CGR is complex in order to accommodate the
constraints imposed by the space environment, but that very
complexity suggests that many opportunities for improving the
algorithms remain. We expect research on this challenging
topic to continue. To this end, we highlight possible axes
on which research could extend the state-of-the-art frontier
of routing in space networking.

(i) Devise efficient strategies to update route tables without
a full pruning of the table after the contact plan is updated.

(if) Perform an in depth quantitative comparison of the
centralized and distributed routing approaches.

22

(iii) Derive estimations of the numbers of routes to be com-
puted for each source-destination pair in centralized routing.

(iv) Study the trade-off between accuracy and processing-
memory resources in linear and list volume modeling.

(v) Integrate opportunistic and uncertain CGR into a unified
routing framework fitting space and ground networks.

(vi) Develop effective region operations methods for CGR,
including region definition and self-learning approaches.

APPENDIX
CAPACITY-ORIENTED SEARCH

In cases where the Dijkstra algorithm (see Section is
requested to obtain a route for a particular bundle B, the
parameters of that bundle can be considered in the compu-
tation. However this is not standard CGR, where information
pertaining to B is only available at the forwarding stage (see
Section of the algorithm and not before. Since bundle-
sensitive CGR goes beyond what is implemented in ION [[15]
and documented in the SABR specification [17], it is discussed
separately in this appendix.

In some implementations, the CGR route search can be
triggered for a specific bundle B. If this is the case, the overall
search algorithm can be adapted to filter contacts based on the
parameters of B. In particular, B.EV C and B.p can be used
to condition the CRP (Alg. |2)) as discussed below. On the one
hand, in line 10 of Alg.[2] an extra volume check can be added
in the ’if” statement. Instead of just checking that the contact
retains some non-zero capacity for bundles of the lowest prior-
ity (C.MAV(0) =0), B.EVC and B.p can further constrain
the disqualification condition ((C.M AV (B.p) < B.EV(C)).
This simple check is applicable for any bundle for which
fragmentation is disabled (B. frag = False); for a bundle that
can be fragmented, we instead check M AV (p) > 100Bytes
indicating that at least a fragment of the bundle can be
allocated to the contact. By this means, every contact with
too little volume to convey bundle B will be skipped during
the Dijkstra search. Moreover, the arrival time variable in
line 16 in Alg. [J] can be affected by the time required to
transmit bundle B, much as in the computation done in the
forwarding stage. Specifically, line 16 could be replaced by
arr_time+ = C.owlt +owlt,,gn + (B.EVC/C.rate), where
(B.EVC/C.rate) is the total time required to transmit bundle
B given the contact’s asserted transmission data rate.

ACKNOWLEDGMENTS

This research has received support from the ERC Advanced
Grant 695614 (POWVER) and by the DFG Grant 389792660,
as part of TRR 248 (https://perspicuous-computing.science).
Part of this work has been developed while Dr. Juan Fraire
was visiting Politecnico di Torino. Part of this research was
performed at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics
and Space Administration. Government sponsorship acknowl-
edged.

https://perspicuous-computing.science

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

M. N. Sweeting, “Modern small satellites-changing the economics of
space,” Proceedings of the IEEE, vol. 106, no. 3, pp. 343-361, 2018.
[Online]. Available: https://doi.org/10.1109/JPROC.2018.2806218
G.-P. Liu and S. Zhang, “A survey on formation control of small
satellites,” Proceedings of the IEEE, vol. 106, no. 3, pp. 440457,
2018.

R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez-
Osorio, F. Pinto, and S. C. Burleigh, “Survey of inter-satellite
communication for small satellite systems: Physical layer to
network layer view,” IEEE Communications Surveys and Tutorials,
vol. 18, no. 4, pp. 2442-2473, 2016. [Online]. Available: https:
//doi.org/10.1109/COMST.2016.2564990

O. Brown and P. Eremenko, “The value proposition for fractionated
space architectures,” in AIAA-2006-7506, AIAA Space 2006, San Jose,
CA, 2006.

J. Alvarez and B. Walls, “Constellations, clusters, and communication
technology: Expanding small satellite access to space,” in 2016 IEEE
Aerospace Conference, 2016, pp. 1-11.

J. R. Kopacz, R. Herschitz, and J. Roney, “Small satellites an
overview and assessment,” Acta Astronautica, vol. 170, pp. 93 —
105, 2020. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0094576520300540

A. T. Klesh, J. D. Baker, J. Bellardo, J. Castillo-Rogez, J. Cutler,
L. Halatek, E. G. Lightsey, N. Murphy, and C. Raymond, “Inspire:
Interplanetary nanospacecraft pathfinder in relevant environment,” in
AIAA SPACE 2013 Conference and Exposition, 2013, p. 5323.

J. Schoolcraft, A. Klesh, and T. Werne, “Marco: interplanetary mission
development on a cubesat scale,” in Space Operations: Contributions
from the Global Community. Springer, 2017, pp. 221-231.

N. Bosanac, A. D. Cox, K. C. Howell, and D. C. Folta, “Trajectory
design for a cislunar cubesat leveraging dynamical systems techniques:
The lunar icecube mission,” Acta Astronautica, vol. 144, pp. 283-296,
2018.

J. O. Burns, B. Mellinkoff, M. Spydell, T. Fong, D. A. Kring, W. D.
Pratt, T. Cichan, and C. M. Edwards, “Science on the lunar surface
facilitated by low latency telerobotics from a lunar orbital platform-
gateway,” Acta Astronautica, vol. 154, pp. 195-203, 2019.

S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst,
K. Scott, and H. Weiss, “Delay-tolerant networking: An approach to
interplanetary internet,” Comm. Mag., vol. 41, no. 6, pp. 128-136,
June 2003. [Online]. Available: http://dx.doi.org/10.1109/MCOM.
2003.1204759

Z. Zhang, “Routing in intermittently connected mobile ad hoc net-
works and delay tolerant networks: overview and challenges,” IEEE
Communications Surveys Tutorials, vol. 8, no. 1, pp. 24-37, 1Q 2006.
R. Diana, E. Lochin, L. Franck, C. Baudoin, E. Dubois, and P. Gelard,
“A dtn routing scheme for quasi-deterministic networks with applica-
tion to leo satellites topology,” in 2012 IEEE Vehicular Technology
Conference (VIC Fall), September 2012, pp. 1-5.

G. Araniti, N. Bezirgiannidis, E. Birrane, I. Bisio, S. Burleigh, C. Caini,
M. Feldmann, M. Marchese, J. Segui, and K. Suzuki, “Contact graph
routing in DTN space networks: overview, enhancements and perfor-
mance,” IEEE Communications Magazine, vol. 53, no. 3, pp. 38-46,
2015.

S. Burleigh, “Interplanetary overlay network: An implementation of
the dtn bundle protocol,” 2007.

M. Feldmann and F. Walter, “uPCN—A bundle protocol implemen-
tation for microcontrollers,” in 2015 International Conference on
Wireless Communications & Signal Processing (WCSP). IEEE, 2015,
pp. 1-5.

Consultative Committee for Space Data Systems (CCSDS), “Schedule-
aware bundle routing (SABR) (blue book, recommended standard
CCSDS 734.3-B-1,” https://public.ccsds.org/Pubs/734x3b1.pdf, July
2019.

S. Burleigh, “Contact graph routing, IETF-Draft draft-burleigh-dtnrg-
cgr-00,” December 2009.

S. Burleigh, “Contact graph routing, IETF-Draft draft-burleigh-dtnrg-
cgr-01,” July 2010.

J. A. Fraire, P. G. Madoery, F. Raverta, J. M. Finochietto, and
R. Velazco, “Dtnsim: Bridging the gap between simulation and im-
plementation of space-terrestrial dtns,” in Space Mission Challenges
for Information Technology (SMC-IT), 2017 IEEE Int. Conference on,
September 2017.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

23

L. Gupta, R. Jain, and G. Vaszkun, “Survey of important issues in uav
communication networks,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 2, pp. 1123-1152, 2015.

N. Benamar, K. D. Singh, M. Benamar, D. E. Ouadghiri, and J.-M.
Bonnin, “Routing protocols in vehicular delay tolerant networks:
A comprehensive survey,” Computer Communications, vol. 48, pp.
141 - 158, 2014, opportunistic networks. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S01403664 14001212
J. Hom, L. Good, and Shuhui Yang, “A survey of social-based routing
protocols in delay tolerant networks,” in 2017 International Conference
on Computing, Networking and Communications (ICNC), January
2017, pp. 788-792.

F. Z. Benhamida, A. Bouabdellah, and Y. Challal, “Using delay tolerant
network for the internet of things: Opportunities and challenges,” in
2017 8th International Conference on Information and Communication
Systems (ICICS), April 2017, pp. 252-257.

J. Partan, J. Kurose, and B. N. Levine, “A survey of practical
issues in underwater networks,” SIGMOBILE Mob. Comput. Commun.
Rev., vol. 11, no. 4, pp. 23-33, October 2007. [Online]. Available:
http://doi.acm.org/10.1145/1347364.1347372

J. A. Fraire, M. Feldmann, and S. C. Burleigh, “Benefits and challenges
of cross-linked ring road satellite networks: A case study,” in 2017
IEEE International Conference on Communications (ICC), 2017, pp.
1-7.

V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,
K. Fall, and H. Weiss, “Delay-tolerant networking architecture,”
Internet Requests for Comments, RFC Editor, RFC 4838, April 2007.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc4838.txt

J. A. Fraire, M. Feldmann, F. Walter, E. Fantino, and S. C. Burleigh,
“Networking in interstellar dimensions: Communicating with trappist-
1,” IEEE Transactions on Aerospace and Electronic Systems, vol. 55,
no. 4, pp. 1656-1665, August 2019.

C. Caini, H. Cruickshank, S. Farrell, and M. Marchese, ‘“Delay- and
Disruption-Tolerant Networking (DTN): An Alternative Solution for
Future Satellite Networking Applications,” Proceedings of the IEEE,
vol. 99, no. 11, pp. 1980-1997, November 2011.

C. Caini and R. Firrincieli, DTN for LEO Satellite Communications.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 186-198.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-23825-3_18
C. Caini and R. Firrincieli, “Application of contact graph routing to leo
satellite dtn communications,” in 2012 IEEE International Conference
on Communications (ICC), June 2012, pp. 3301-3305.

M. Ramadas, S. Burleigh, S. Farrell et al., “Licklider transmission
protocol-specification,” Internet Requests for Comments, RFC Editor,
RFC 5326, September 2008. [Online]. Available: http://www.rfc-editor.
org/rfc/rfc5050.txt

Consultative Committee for Space Data Systems (CCSDS), “Proximity-
1 space link protocol - rationale, architecture and scenarios (green book,
informational report CCSDS 210.0-G-2,” https://public.ccsds.org/Pubs/
210x0g2.pdf, December 2013.

Consultative Committee for Space Data Systems (CCSDS), “Unified
space data link protocol (blue book, recommended standard CCSDS
732.1-B-1,” https://public.ccsds.org/Pubs/732x1b1.pdf, October 2018.
K. Scott and S. Burleigh, “Bundle protocol specification,” Internet
Requests for Comments, RFC Editor, RFC 5050, November 2007.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc5050.txt
Consultative Committee for Space Data Systems (CCSDS), “Ccsds
bundle protocol specification (blue book, recommended stan-
dard CCSDS 734.2-B-1,” https://public.ccsds.org/Pubs/734x2b1.pdf,
September 2015.

W.-B. Péttner, J. Morgenroth, S. Schildt, and L. Wolf, “Performance
comparison of dtn bundle protocol implementations,” in Proceedings
of the 6th ACM workshop on Challenged networks. ACM, 2011, pp.
61-64.

“Interplanetary Overlay Network (ION) software home page,” https:
//sourceforge.net/projects/ion-dtn/.

“Micro Planetary Communication Network (uPCN) software home
page,” https://www.upcn.eu/.

W. Ivancic, W. M. Eddy, D. Stewart, L. Wood, P. Holliday, C. Jackson,
and J. Northam, “Experience with delay-tolerant networking from
orbit,” in 2008 4th Advanced Satellite Mobile Systems, August 2008,
pp. 173-178.

K. Suzuki, S. Inagawa, J. Lippincott, and A. Cecil, “Jaxa-nasa inter-
operability demonstration for application of dtn under simulated rain
attenuation,” in SpaceOps 2014 Conference, 2014, p. 1920.

https://doi.org/10.1109/JPROC.2018.2806218
https://doi.org/10.1109/COMST.2016.2564990
https://doi.org/10.1109/COMST.2016.2564990
http://www.sciencedirect.com/science/article/pii/S0094576520300540
http://www.sciencedirect.com/science/article/pii/S0094576520300540
http://dx.doi.org/10.1109/MCOM.2003.1204759
http://dx.doi.org/10.1109/MCOM.2003.1204759
https://public.ccsds.org/Pubs/734x3b1.pdf
http://www.sciencedirect.com/science/article/pii/S0140366414001212
http://doi.acm.org/10.1145/1347364.1347372
http://www.rfc-editor.org/rfc/rfc4838.txt
http://dx.doi.org/10.1007/978-3-642-23825-3_18
http://www.rfc-editor.org/rfc/rfc5050.txt
http://www.rfc-editor.org/rfc/rfc5050.txt
https://public.ccsds.org/Pubs/210x0g2.pdf
https://public.ccsds.org/Pubs/210x0g2.pdf
https://public.ccsds.org/Pubs/732x1b1.pdf
http://www.rfc-editor.org/rfc/rfc5050.txt
https://public.ccsds.org/Pubs/734x2b1.pdf
https://sourceforge.net/projects/ion-dtn/
https://sourceforge.net/projects/ion-dtn/
https://www.upcn.eu/

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

A. Jenkins, S. Kuzminsky, K. Gifford, R. Pitts, and K. Nichols, “Delay/
disruption-tolerant networking: Flight test results from the international
space station,” in 2010 IEEE Aerospace Conf., March 2010, pp. 1-8.
J. Wyatt, S. Burleigh, R. Jones, L. Torgerson, and S. Wissler, “Disrup-
tion tolerant networking flight validation experiment on nasa’s epoxi
mission,” in Advances in Satellite and Space Coms., 2009. SPACOMM
2009. First International Conference on, July 2009, pp. 187-196.

A. Keridnen, J. Ott, and T. Kirkkiinen, “The ONE Simulator for
DTN Protocol Evaluation,” in SIMUTools '09: Proceedings of the 2nd
International Conference on Simulation Tools and Techniques. New
York, NY, USA: ICST, 2009.

J. Morgenroth, S. Schildt, and L. Wolf, “Hydra: Virtualized distributed
testbed for dtn simulations,” in Proceedings of the fifth ACM interna-
tional workshop on Wireless network testbeds, experimental evaluation
and characterization, 2010, pp. 71-78.

Z.Zhang, Z. Jin, H. Chen, Y. Shu, and C. Zhao, “Design and implemen-
tation of a delay-tolerant network emulator based in qualnet simulator,”
in 2009 5th International Conference on Wireless Communications,
Networking and Mobile Computing. 1EEE, 2009, pp. 1-4.

C. Caini, R. Firrincieli, D. Lacamera, and M. Livini, “Virtualization
technologies for dtn testbeds,” in International Conference on Personal
Satellite Services. Springer, 2010, pp. 276-287.

I. Komnios, I. Alexiadis, N. Bezirgiannidis, S. Diamantopoulos, S.-
A. Lenas, G. Papastergiou, and V. Tsaoussidis, “Spice testbed: A
dtn testbed for satellite and space communications,” in International
Conference on Testbeds and Research Infrastructures. Springer, 2014,
pp. 205-215.

Y. Li, P. Hui, D. Jin, and S. Chen, “Delay-tolerant network protocol
testing and evaluation,” IEEE Communications Magazine, vol. 53,
no. 1, pp. 258-266, 2015.

J. A. Fraire, P. G. Madoery, and J. M. Finochietto, “On the design and
analysis of fair contact plans in predictable delay-tolerant networks,”
IEEE Sensors Journal, vol. 14, no. 11, pp. 3874-3882, 2014.

J. A. Fraire and J. Finochietto, “Routing-aware fair contact plan design
for predictable delay tolerant networks,” Ad Hoc Networks, vol. 25, pp.
303 - 313, 2015.

J. A. Fraire, P. G. Madoery, and J. M. Finochietto, “Traffic-aware
contact plan design for disruption-tolerant space sensor networks,” Ad
Hoc Networks, vol. 47, pp. 41 — 52, 2016.

J. A. Fraire, P. G. Madoery, J. M. Finochietto, and G. Leguizamon,
“An evolutionary approach towards contact plan design for disruption-
tolerant satellite networks,” Applied Soft Computing, vol. 52, pp. 446—
456, 2017.

P. G. Madoery, J. A. Fraire, and J. M. Finochietto, “Congestion
management techniques for disruption-tolerant satellite networks,”
International Journal of Satellite Communications and Networking,
vol. 36, no. 2, pp. 165-178, 2018.

J. A. Fraire, G. Nies, H. Hermanns, K. Bay, and M. Bisgaard,
“Battery-aware contact plan design for leo satellite constellations: The
ulloriaq case study,” in 2018 IEEE Global Communications Conference
(GLOBECOM). 1EEE, 2018, pp. 1-7.

J. A. Fraire, G. Nies, C. Gerstacker, H. Hermanns, K. Bay, and
M. Bisgaard, “Battery-aware contact plan design for leo satellite
constellations:the ulloriaq case study,” IEEE Transactions on Green
Communications and Networking, pp. 1-1, 2019.

D. Zhou, M. Sheng, X. Wang, C. Xu, R. Liu, and J. Li, “Mission aware
contact plan design in resource-limited small satellite networks,” IEEE
Transactions on Communications, vol. 65, no. 6, pp. 2451-2466, June
2017.

J. A. Fraire and J. M. Finochietto, “Design challenges in contact
plans for disruption-tolerant satellite networks,” IEEE Communications
Magazine, vol. 53, no. 5, pp. 163-169, May 2015.

M. Demmer and K. Fall, “Dtlsr: Delay tolerant routing for developing
regions,” in Proceedings of the 2007 Workshop on Networked Systems
for Developing Regions, ser. NSDR ’07. New York, NY, USA:
Association for Computing Machinery, 2007. [Online]. Available:
https://doi.org/10.1145/1326571.1326579

J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “Maxprop:
Routing for vehicle-based disruption-tolerant networks,” in Proceedings
IEEE INFOCOM 2006. 25TH IEEE International Conference on
Computer Communications, April 2006, pp. 1-11.

T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and
wait: An efficient routing scheme for intermittently connected
mobile networks,” in Proceedings of the 2005 ACM SIGCOMM
Workshop on Delay-tolerant Networking, ser. WDTN ’05. New
York, NY, USA: ACM, 2005, pp. 252-259. [Online]. Available:
http://doi.acm.org/10.1145/1080139.1080143

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

24

A. Vahdat and D. Becker, “Epidemic routing for partially-connected
ad hoc networks,” Tech. Rep., 2000.

Y. Wu, S. Deng, and H. Huang, “Performance analysis of epidemic
routing in dtns with limited forwarding times and selfish nodes,” Int. J.
Ad Hoc Ubiquitous Comput., vol. 13, no. 3/4, pp. 254-263, July 2013.
[Online]. Available: http://dx.doi.org/10.1504/IJAHUC.2013.055474
A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing
in intermittently connected networks,” SIGMOBILE Mob. Comput.
Commun. Rev., vol. 7, no. 3, pp. 19-20, July 2003. [Online]. Available:
http://doi.acm.org/10.1145/961268.961272

S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,”
SIGCOMM Comput. Commun. Rev., vol. 34, no. 4, pp. 145-158,
August 2004. [Online]. Available: http://doi.acm.org/10.1145/1030194.
1015484

S. Burleigh, “Dynamic routing for delay-tolerant networking in space
flight operations,” in SpaceOps 2008 Conference, 2008, p. 3406.

E. J. Birrane, “Improving graph-based overlay routing in delay tolerant
networks,” in 2011 IFIP Wireless Days (WD). 1EEE, 2011, pp. 1-6.
E. J. B. III, “Building routing overlays in disrupted networks: inferring
contacts in challenged sensor internetworks,” International Journal of
Ad Hoc and Ubiquitous Computing, vol. 11, no. 2-3, pp. 139-156,
2012.

E. Birrane, “Contact graph routing extension block,”
RFC, Internet Draft, October 2013. [Online]. Available:
//tools.ietf.org/id/draft-irtf-dtnrg-cgreb-00.txt

J. Segui, E. Jennings, and S. Burleigh, “Enhancing contact graph rout-
ing for delay tolerant space networking,” in Global Telecommunications
Conference (GLOBECOM 2011), 2011 IEEE, December 2011, pp. 1-6.
E. Birrane, S. Burleigh, and N. Kasch, “Analysis of the contact graph
routing algorithm: Bounding interplanetary paths,” Acta Astronautica,
vol. 75, pp. 108 — 119, 2012.

Z. Laitao, L. Yong, Z. Junxiang, W. Jing, T. Xiao, and Z. Jianguo, “Ap-
plication of contact graph routing in satellite delay tolerant networks,”
Chinese Journal of Space Science, vol. 35, no. 1, pp. 116-125, 2014.
J. A. Fraire, P. G. Madoery, J. M. Finochietto, P. Ferreyra, and R. Ve-
lazco, “Internetworking approaches towards along-track segmented
satellite architectures,” in Wireless for Space and Extreme Environments
(WIiSEE), 2016 IEEE International Conference on, October 2016, in
Press.

M. Marchese and F. Patrone, “A source routing algorithm based on
CGR for DTN-nanosatellite networks,” in GLOBECOM 2017-2017
IEEE Global Communications Conference. 1EEE, 2017, pp. 1-6.

C. Krupiarz, C. Belleme, D. Gherardi, and E. Birrane, “Using small-
sats and DTN for communication in developing countries,” in Proc.
International Astronautical Congress (IAC-08. B4. 1.8), 2008.

S. C. Burleigh and E. J. Birrane, “Toward a communications
satellite network for humanitarian relief,” in Proceedings of the Ist
International Conference on Wireless Technologies for Humanitarian
Relief, ser. ACWR "11. New York, NY, USA: ACM, 2011, pp. 219-
224. [Online]. Available: http://doi.acm.org/10.1145/2185216.2185280
M. Feldmann, J. A. Fraire, and F. Walter, “Tracking lunar ring road
communication,” in 2018 IEEE International Conference on Commu-
nications (ICC), May 2018, pp. 1-7.

N. Bezirgiannidis, C. Caini, D. D. P. Montenero, M. Ruggieri, and
V. Tsaoussidis, “Contact graph routing enhancements for delay tolerant
space communications,” in 2014 7th Advanced Satellite Multimedia
Systems Conf. and the 13th Signal Processing for Space Comms.
Workshop (ASMS/SPSC), September 2014, pp. 17-23.

N. Bezirgiannidis, C. Caini, and V. Tsaoussidis, “Analysis of contact
graph routing enhancements for DTN space communications,” Int.
Journal of Satellite Coms. and Networking, vol. 34, no. 5, pp. 695-709,
2016.

J. A. Fraire, P. Madoery, and J. M. Finochietto, “Leveraging routing
performance and congestion avoidance in predictable delay tolerant
networks,” in Wireless for Space and Extreme Environments (WiSEE),
2014 IEEE International Conference on, October 2014, pp. 1-7.

J. A. Fraire, P. Madoery, J. M. Finochietto, and E. J. Birrane, “Conges-
tion modeling and management techniques for predictable disruption
tolerant networks,” in Local Computer Networks (LCN), 2015 IEEE
40th Conference on, October 2015, pp. 544-551.

S. Burleigh, C. Caini, J. J. Messina, and M. Rodolfi, “Toward a
unified routing framework for delay-tolerant networking,” in 2016
IEEE International Conference on Wireless for Space and Extreme
Environments (WiSEE), 2016, pp. 82-86.

G. Wang, S. C. Burleigh, R. Wang, L. Shi, and Y. Qian, “Scoping
contact graph-routing scalability: Investigating the system’s usability

Internet
https:

https://doi.org/10.1145/1326571.1326579
http://doi.acm.org/10.1145/1080139.1080143
http://dx.doi.org/10.1504/IJAHUC.2013.055474
http://doi.acm.org/10.1145/961268.961272
http://doi.acm.org/10.1145/1030194.1015484
http://doi.acm.org/10.1145/1030194.1015484
https://tools.ietf.org/id/draft-irtf-dtnrg-cgreb-00.txt
https://tools.ietf.org/id/draft-irtf-dtnrg-cgreb-00.txt
http://doi.acm.org/10.1145/2185216.2185280

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

in space-vehicle communication networks,” IEEE Vehicular Technology
Magazine, vol. 11, no. 4, pp. 46-52, December 2016.

P. Madoery, P. Ferreyra, J. Fraire, F. Gomez, J. Barrientos, and R. Ve-
lazco, “Enhancing Contact Graph Routing Forwarding Performance
for Segmented Satellites Architectures,” in Ist IAA Latin American
Symposium on Small Satellites, Argentina, March 2017.

P. G. Madoery, J. A. Fraire, F. D. Raverta, J. M. Finochietto, and S. C.
Burleigh, “Managing Routing Scalability in Space DTNs,” in 2018
6th IEEE International Conference on Wireless for Space and Extreme
Environments (WiSEE), December 2018, pp. 177-182.

N. Alesi, “Hierarchical Inter-Regional Routing Algorithm for Interplan-
etary Networks,” Master’s thesis, School of Engineering and Architec-
ture, Department of Computer Science and Engineering, Bologna, Italy,
2018.

J. A. Fraire, P. Madoery, S. Burleigh, M. Feldmann, J. Finochietto,
A. Charif, N. Zergainoh, and R. Velazco, “Assessing contact graph rout-
ing performance and reliability in distributed satellite constellations,”
Journal of Computer Networks and Communications, vol. 2017, 2017.
P. Madoery, F. Raverta, J. Fraire, and J. Finochietto, “On the perfor-
mance analysis of disruption tolerant satellite networks under uncer-
tainties,” in Proceedings of the 2017 XVII RPIC Workshop, September
2017.

P. G. Madoery, F. D. Raverta, J. A. Fraire, and J. M. Finochietto,
“Routing in space delay tolerant networks under uncertain contact
plans,” in 2018 IEEE International Conference on Communications
(ICC), May 2018, pp. 1-6.

F. D. Raverta, R. Demasi, P. G. Madoery, J. A. Fraire, J. M. Finochietto,
and P. R. D’ Argenio, “A Markov Decision Process for Routing in Space
DTNs with Uncertain Contact Plans,” in 2018 6th IEEE International
Conference on Wireless for Space and Extreme Environments (WiSEE),
December 2018, pp. 189-194.

P. R. D’ Argenio, J. A. Fraire, and A. Hartmanns, “Sampling distributed
schedulers for resilient space communication,” in NASA Formal Meth-
ods - 12th International Symposium, NFM 2020, Moffett Field, CA,
USA, May 11-15, 2020, Proceedings (In Press), 2020.

J. A. Fraire, P. G. Madoery, A. Charif, and J. M. Finochietto, “On
route table computation strategies in delay-tolerant satellite networks,”
Ad Hoc Networks, vol. 80, pp. 31-40, 2018.

O. De Jonckere, “Efficient contact graph routing algorithms for unicast
and multicast bundles,” in 2019 IEEE International Conference on
Space Mission Challenges for Information Technology (SMC-IT), July
2019, pp. 87-94.

S. Dhara, C. Goel, R. Datta, and S. Ghose, “CGR-SPI: A New En-
hanced Contact Graph Routing for Multi-source Data Communication
in Deep Space Network,” in 2019 IEEE International Conference on
Space Mission Challenges for Information Technology (SMC-IT), July
2019, pp. 33-40.

T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and
wait: An efficient routing scheme for intermittently connected mobile
networks,” in 2005 ACM SIGCOMM Workshop on DTN, 2005, pp.
252-259.

T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and focus:
Efficient mobility-assisted routing for heterogeneous and correlated
mobility,” in Fifth Annual IEEE International Conference on Pervasive
Computing and Communications Workshops (PerComW’07). 1EEE,
2007, pp. 79-85.

M. Demmer and K. Fall, “Dtlsr: delay tolerant routing for developing
regions,” in Proceedings of the 2007 workshop on Networked systems
for developing regions, 2007, pp. 1-6.

S. Burleigh, “Compressed Bundle Header Encoding (CBHE),”
Internet Requests for Comments, RFC Editor, RFC 6260, May
2011, http://www.rfc-editor.org/rfc/rfc6260.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6260.txt

T. Hossmann, F. Legendre, and T. Spyropoulos, “From contacts to
graphs: Pitfalls in using complex network analysis for DTN routing,”
in IEEE INFOCOM Workshops 2009. 1EEE, 2009, pp. 1-6.

S. Merugu, M. H. Ammar, and E. W. Zegura, “Routing in
space and time in networks with predictable mobility,” Georgia
Institute of Technology, Tech. Rep., 2004. [Online]. Available:
http://hdl.handle.net/1853/6492

A. Sekhar, B. S. Manoj, and C. S. R. Murthy, “MARVIN: movement-
aware routing over interplanetary networks,” in 2004 First Annual
IEEE Communications Society Conference on Sensor and Ad Hoc
Communications and Networks, 2004. IEEE SECON 2004., October
2004, pp. 245-254.

[102]

[103]

[104]

[105]

[106]

[107]

[108]

25

E. W. Dijkstra, “A note on two problems in connection with graphs,”
Numer. Math., vol. 1, no. 1, pp. 269-271, December 1959. [Online].
Available: http://dx.doi.org/10.1007/BF01386390

M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses
in improved network optimization algorithms,” Journal of the ACM
(JACM), vol. 34, no. 3, pp. 596-615, 1987.

J. Y. Yen, “Finding the K shortest loopless paths in a network,”
Management Science, vol. 17, no. 11, pp. 712-716, 1971.

E. L. Lawler, “A procedure for computing the k best solutions to
discrete optimization problems and its application to the shortest path
problem,” Management science, vol. 18, no. 7, pp. 401-405, 1972.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. The MIT Press, 2001.

Mesh Routing and Recovery Framework. John Wiley & Sons, Ltd,
2007, ch. 3, pp. 61-80. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/9780470032985.ch3

E. Stassinopoulos and J. P. Raymond, “The space radiation environment
for electronics,” Proceedings of the IEEE, vol. 76, no. 11, pp. 1423—
1442, 1988.

http://www.rfc-editor.org/rfc/rfc6260.txt
http://www.rfc-editor.org/rfc/rfc6260.txt
http://hdl.handle.net/1853/6492
http://dx.doi.org/10.1007/BF01386390
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470032985.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470032985.ch3

	Introduction
	Space Networks Overview
	Protocols and Procedures
	Implementations and Experiments
	Routing Framework
	Contact Graph Routing
	Comparison with Other Routing Algorithms

	Space Networks Model
	Contact
	Contact Plan
	Contact graph
	Routes
	Volume

	Route Search
	Contact Graph Dijkstra Search
	Loops
	Complexity
	Multiple Destinations

	Route Management
	Classification
	Anchor Search
	Yen's algorithm
	Complexity
	Alternative Methods

	Forwarding
	Candidate Routes
	Route Selection and Enqueuing

	Trends Outlook
	Scalability
	Resilience

	Closing Remarks
	Appendix: Capacity-Oriented Search
	References

