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A Modest Approach to Dynamic Heuristic Search
in Probabilistic Model Checking⋆

Michaela Klauck 1 and Holger Hermanns 1,2

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2Institute of Intelligent Software, Guangzhou, China

{klauck,hermanns}@cs.uni-saarland.de

Abstract. This paper presents Modysh, a probabilistic model checker
which harvests and extends non-exhaustive exploration methods originally
developed in the AI planning context. Its core functionality is based on
enhancements of the heuristic search methods labeled real-time dynamic
programming and find-revise-eliminate-traps and is capable of handling
efficiently maximal and minimal reachability properties, expected reward
properties as well as bounded properties on general MDPs. Modysh is
integrated in the infrastructure of the Modest Toolset and extends the
property types supported by it. We discuss the algorithmic particularities
in detail and evaluate the competitiveness of Modysh in comparison
to state-of-the-art model checkers in a large case study rooted in the
well-established Quantitative Verification Benchmark Set. This study
demonstrates that Modysh is especially attractive to use on very large
benchmark instances which are not solvable by any other tool.

1 Introduction

Markov decision processes (MDPs) are the base model for probabilistic model
checking. A variety of probabilistic model checkers are being developed, and are
supported by orchestrated initiatives like the QComp competition [18,13] and
the quantitative verification benchmark set QVBS [24]. While in probabilistic
model checking MDPs often reflect concurrency phenomena, they have a longer
tradition in the context of sequential decision making under uncertainty [6,27].

Depending on the modelling context, MDPs are usually decorated with rewards
or costs. The term reward is traditionally used if the goal is to maximize the
earnings. In the dual context of costs, the spendings are usually to be minimized,
under the assumption that decisions in the MDP are controllable. Instead, in a
setting where the MDP results from concurrent interleavings it can also be natural
to ask for the maximal cost lurking or the minimal reward obtainable, since here
the decisions need to be assumed as being uncontrollable. Typical properties of
interest in this context include (max, min) reach probabilities w.r.t. a set of goal

⋆ This work has received support by the ERC Advanced Investigators Grant 695614
POWVER, by the DFG Grant 389792660 as part of TRR 248 CPEC, and by the
Key-Area Research and Development Grant 2018B010107004 of Guangdong Province.
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2 M. Klauck, H. Hermanns

states as well as (max, min) expected rewards (costs) which are accumulated until
reaching a goal state. These properties can also include bounds on the number
of steps until reaching a goal or enforce a certain reward (cost) amount to be
accumulated on the way to the goal. Iterative methods like value iteration are
the standard solution to calculate results for these property types. In its basic
form, value estimates for each state in the state space are updated synchronously
based on the values of their successors until convergence is reached [6].

Heuristic search methods [4,21,8,9] try to compute such optimal values based
on only a small fraction of the states, sufficient to answer the considered property.
These methods exploit state-wise estimates of the optimal value, for only a subset
of the state space. The order in which values are updated is made dependent on
their current value estimates, in an approach called asynchronous value iteration.

This paper presents a probabilistic model checker that harvests modified
versions of asynchronous value iteration based on heuristic search. The core
components are the labeled real-time dynamic programming (LRTDP) [8] and
find-revise-eliminate-traps (FRET) [31] procedures. LRTDP tries to find the
optimal values by continually updating the current best solution of the state
value estimates on single exploration paths. Only one state’s value is updated at
each step. FRET is needed to guarantee convergence of LRTDP to the optimal
value in special MDP structures. It eliminates cycles to guide LRTDP to the
correct solution. While contributions to this research line are manyfold (see
Sect. 5), they are quite fragmented w.r.t. assumptions on property types and
model characteristics. We instead take care to support most of the established
property types, from reach probabilities to reward expectations (but no long-run
averages), also including bounded versions, on general MDP structures efficiently.

As a result, our tool Modysh considerably enlarges the property types
supported by heuristic methods. The new elements and their integration are
described in detail in this paper. A large empirical evaluation shows that Modysh
is competitive relative to state-of-the-art model checkers and is able to solve
benchmark instances which are too large to be solved by other tools. Modysh is
shipped as an extension component to the Modest Toolset [22] inside which it
can be considered as an alternative to mcsta [16,19,23], which is an explicit-state
probabilistic model checker based on traditional value iteration. The toolset is
available for Windows, Linux and Mac OS. Integrating Modysh into it brings
the benefit that the same input languages and operating systems are supported,
and it opens the Modest Toolset for property types not supported thus far.

Outline. In Sect. 2 we review the theoretical background. Sect. 3 introduces
heuristic search approaches and discusses how LRTDP and FRET can be extended
and modified such that they are applicable to general MDP structures and
properties. Sect. 4 presents a large empirical evaluation demonstrating that
Modysh is competitive, outperforming state-of-the-art model checkers especially
on very large state spaces with a parallel structure. We conclude with a short
discussion of our achievements.

https://www.modestchecker.net/
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Dynamic Heuristic Search in Probabilistic Model Checking 3

2 Theoretical Background

Before looking into the details of the heuristic search techniques implemented in
Modysh, we introduce the theoretical background. A probability distribution
over a (countably in-)finite set X is a function µ : X → [0, 1] s.t.

∑
x∈X µ(x) = 1.

We denote by D(X) the set of all probability distributions over X.
A Markov Decision Process (MDP) is a tuple M = ⟨S,A,P,R, s0,S∗⟩ con-

sisting of a finite set of states S, a finite set of actions A, the partial transition
probability function P : S ×A → D(S), a reward function R : S ×A× S → R+

0

assigning a reward (or cost) value to each triple of state, action, state, a single
initial state s0 ∈ S, and a set of absorbing goal states S∗ ⊆ S.

An action a ∈ A is applicable in a state s ∈ S if P(s, a) is defined. In this case
we denote by P(s, a, t) the probability µ(t) of state t according to P(s, a) = µ.
We denote by A(s) ⊆ A the set of all actions that are applicable in s. We restrict
to MDPs where for each state s, A(s) is nonempty, which is no restriction as per
the following. A state s is called terminal if |A(s)| = 1 and for this a ∈ A(s) it
holds that P(s, a, s) = 1 and R(s, a, s) = 0. All goal states g are assumed to be
terminal, which forces to stay in g forever without accumulating further reward.
Terminal states not contained in S∗ are called dead-ends.

For a given MDP M, a function π : S → A with π(s) ∈ A(s) for each state s
is called a (memoryless) policy, used to determine the next action to take for any
given state. We later extend this when focussing on specific, bounded properties.
The accumulated reward over an infinite sequence of states ζ = (si)i∈N, called path,
induced by a policy π through M is defined by ρ(ζ) =

∑∞
i=0 R(si, π(si), si+1).

For the finite prefixes τ of such a path, called finite paths, the reward summation
constituting ρ(τ) is truncated accordingly. We let Paths(M) denote the set of all
paths through M rooted in its initial state s0. Each policy π induces a probability
space on the set of infinite paths through M in the usual way [25] and this in
turn induces well-defined probability measures for each of the finite paths τ ,
and similarly for the accumulated reward measures ρ(τ). States from which
S∗ can not be reached with positive probability regardless of the policy π are
called sink states and collected in S⊥. This set can be precomputed by a simple
fixpoint computation (checking for each state the LTL property □¬goal where
goal identifies all states in S∗) in the underlying graph. This graph G over S is
spanned by the edge set E = {(s, t) | ∃a ∈ A : P(s, a, t) > 0}.

The subgraph Gπ induced by policy π is obtained by restricting the edge set
of G to {(s, t) | P(s, π(s), t) > 0}. π is almost-sure if the probability of reaching
S∗ it induces is 1 regardless of the initial state. If instead that probability is
guaranteed to be positive, π is called proper. A cycle is a path in G starting and
ending in the same state. A strongly connected component (SCC) in G is a subset
of states V such that ∀(s, t) ∈ V × V a path from s to t exists. A bottom SCC
(BSCC) B is a SCC of maximal size from which only states in B are reachable.

Measures of Interest. We denote by Pπ the probability measure induced by π
and by Eπ the expectation of the accumulated reward ρ w.r.t. measurable sets
of paths starting in s0. We define the extremal values Pmax(Π) = supπ P

π(Π)
and Pmin(Π) = infπ P

π(Π), as well as Emax(Π) = supπ E
π(Π) and Emin(Π) =
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4 M. Klauck, H. Hermanns

infπ E
π(Π), for measurable Π ∈ Paths(M) and π ∈ Π. We consider the following

property types, echoing what JANI supports [28,12], with opt ∈ {max,min}:

– MaxProb and MinProb: Popt(SU U S∗) = P opt({τ ∈ Paths(M) | ∃s ∈ S∗ :
τ = (si)

∞
i=0∧s = sj∧∀k < j : sk /∈ S∗∧sk ∈ SU }) is the max/min probability

of eventually reaching a goal state and all states visited before being in SU .
Popt(SU U S∗) will be abbreviated as Popt(⋄ S∗).

– maximal/minimal expected rewards: Eopt(SU U S∗) = Eopt({τ ∈ Paths(M) |
∃s ∈ S∗ : τ = (si)

∞
i=0 ∧ s = sj ∧ ∀k < j : sk /∈ S∗ ∧ sk ∈ SU }) is the maximal

or minimal reward expectation of eventually reaching a goal state. Note that
reward ∞ is accumulated for non-almost-sure policies.

– step bounded properties: Popt(SU U[l,u] S∗) is the maximal or minimal prob-
ability of reaching a goal state in [l, u] steps defined as P opt(Π[l,u]) where
Π[l,u] is the set of paths that reach a goal state in [l, u] steps while only
passing through SU . Similar for step bounded expected reward properties.

– reward bounded properties: If a reward structure is defined, Popt(SU U[l,u] S∗)
is the extremal probability of reaching a goal state with accumulated reward
in [l, u] defined as P opt(Π[l,u]) where Π[l,u] is the set of paths having a prefix τ
with accumulated reward in [l, u] containing a goal state and only passing
through SU before. Similar for reward bounded expected reward properties.
Bounds with open intervals are also supported (for all bounded properties).

3 Dynamic Heuristic Search

Value Iteration. The problems discussed above are in practice often solved using
value iteration. This is a variant of dynamic programming where a value is
assigned to each state by a value function V : S → R which specifies the current
approximation of the value of this state. The value function is placed in an
iterative procedure updating the states’ values depending on the values of their
successors. These values are refined until convergence to the least fixpoint. In
many situations this fixpoint V ∗ = limn→∞ Vn corresponds to the optimal value
one is looking for, from which the optimal policy can be extracted. Usually,
the value function is calculated greedily via the Bellman function [5] (similar
for maximum): Vi+1(s) = mina

∑
s′∈S P(s, a, s′) · (R(s, a, s′) + Vi(s

′)) (1) where
a value of 1 is assigned to goal states and 0 to dead-ends. A value function is
admissible if it is an optimistic estimate of the correct final value. This means, if we
try to minimize, the value function V is admissible if always V (s) ≤ V ∗(s),∀s ∈ S.
If we instead maximize, a value function with V (s) ≥ V ∗(s),∀s ∈ S is admissible.
A greedy policy is always defined w.r.t. a value function V . For each state the
greedy policy always picks the action leading to the successor state with the
best value according to the value function. This action may not be unique which
means there can be multiple greedy policies. A greedy graph GV of graph G with
respect to value function V is the superposition of all Gπ induced by any greedy
policy π w.r.t. V , so it is the combined reachability graph of all greedy policies.
Heuristic Search. The approach we generally pursue is based on the heuristic
search algorithm LRTDP [8], a heuristic search dynamic programming optimiza-
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Dynamic Heuristic Search in Probabilistic Model Checking 5

tion of standard value iteration. To find an optimal policy, up to a prespecified
accuracy ε, starting in an initial state, it attempts to avoid exploring the entire
state space and delivers the requested values for the initial state only, instead
of for all states as in standard value iteration. It constantly keeps updating a
current best solution, a partial value function providing the current state value
estimates. In each round only a single state is selected for an update. These
updates are obtained by repeatedly sampling trials, i. e., executions starting in
the initial state, and ending once a state is reached for which an update does not
change the value estimate by more than ε. While doing so, the optimal policy is
constructed incrementally by extending a partial policy step by step. A partial
policy π will be called closed for a state s ∈ S, if π(t) is defined for every state
t /∈ (S⊥ ∪ S∗) that is reachable (with positive probability) from s by following π.
Traps. A trap [30, p. 171 ff.] is a BSCC not containing a goal state. In our approach
traps are defined on the greedy graph GV induced on G by value function V .
We distinguish permanent traps which are also BSCCs of G, i. e., there is no
non-greedy policy which would lead out of the trap. In contrast, transient traps
are SCCs, but not BSCCs of G, so there is a policy leading out of the trap.
Convenience MDPs. The planning literature has identified a number of model
classes with convenient properties and initially arbitrary rewards in R. A Stochas-
tic Shortest Path (SSP) MDP [6] is an MDP admitting (i) at least one almost-sure
policy and (ii) inducing expected accumulated reward ∞ for each not almost-sure
policy π. The latter corresponds to Gπ containing no reachable cycle on which
(in the MDP) the accumulated reward does not increase. Assuming the former,
the latter can trivially be enforced by restricting to models with reward function
confined to positive values (possibly except at goal states). As an apparent re-
laxation, Bertsekas [7] later introduced condition (i′) and (ii′) which replace
the role of almost-sure policies by proper policies in (i), respectively (ii), but
showed them to be (pairwise) equivalent. In a Generalized Stochastic Shortest
Path (GSSP) MDP [30] the first condition (i) is kept while the second condition
is further relaxed by instead assuming that (ii′′) for each policy and state the
expected sum of negative rewards is bounded from below. This relaxation in
particular supports zero-reward cycles, while it precludes cycles with alternations
of positive and negative rewards that cancel out. Condition (ii′′) can trivially be
enforced by restricting to models with a reward function confined to non-negative
values, as we do. Our contribution relinquishes condition (i) and (i′) of SSP and
GSSP, i. e., we do not rely on the existence of almost-sure or proper policies.
Algorithm Overview. We introduce our algorithmic contributions in the sequel
one-by-one. All modifications, adaptions and extensions made to the original
versions are marked in blue. If existing, the original version of modified lines
is stated in comments of the form ▷. . .. The base algorithm expects as inputs
the state s of the MDP for which to evaluate the property, the result precision
ε and uses flags dependent on the property class to be evaluated. max-rew is
True if a maximal expected reward property is evaluated, otherwise it is False,
analogously for min-rew. We do not use explicit flags for indicating (max or min)
reachability probabilities because there are no code fragments specific to these
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6 M. Klauck, H. Hermanns

property types. We assume that the initial and current value function, V0 and Vi,
are always globally accessible.

In fact, the original algorithmic contributions have been made without a
specific focus on reachability probabilities, which as long as zero reward values
are supported, can actually be cast into reward accumulations. We here make an
explicit distinction between these cases for the purpose of better explanability
and for the purpose of more direct and hence faster implementation in Modysh.

3.1 Reachability Properties

For reachability properties max-rew and min-rew are set to False. We first concen-
trate on calculating MinProb, i. e., Pmin(SU U S∗). We detail our modifications
to the original version of the algorithm in order to enable that condition (i′)
and thus (i) can be dropped. Afterwards we turn to MaxProb and show how
FRET-LRTDP can be modified to solve these kind of properties on general
MDPs, too. Kolobov et al. [31] already provided a reduction to show that FRET
in combination with LRTDP is applicable to general MaxProb properties, even if
condition (i′) is violated. We will give an alternative proof, based on the proof for
MinProb, demonstrating that our implementation is also valid for general MDP
types as defined above, not only for problems having at least one proper policy.

We denote by V π : S 7→ [0, 1] the goal-reachability probabilities induced by π.
Goal states S∗ have probability value 1 while sinks and other states enforced to
be avoided have probability value 0. This corresponds to the fact that if a partial
policy π is closed for s, V π constitutes the least fixpoint of Equation (2).

V π(s) =


1 if s ∈ S∗,
0 if s ∈ S⊥ ∪ SU \ S∗,∑

s′∈S P(s, π(s), s′) · V π(s′) otherwise.
(2)

Minimum Reach Probability. For MinProb properties the objective is to find the
minimal probability to reach a state in S∗ if initialized in s0 and while avoiding
the complement of SU . We are ultimately interested in the value

V ∗(s0) = min
π:π closed for s0

V π(s0). (3)

An admissible initialization for this case is a valuation of 0, except for goal states
which get a value of 1. Using a reward function defined as R(s, a, s′) = 1 if
s /∈ S∗ ∧ s′ ∈ S∗ and 0 otherwise and then applying the Bellman equation (1)
of synchronous value iteration will iteratively fill the partial policy bottom up.
Spelled out for our case, this amounts to replacing the third line of (2) by

min
a∈A(s)

∑
s′∈S

P(s, a, s′) · V π(s′) otherwise. (4)

which echoes the greedy nature of the computation. However, giving up syn-
chronicity in favor of a heuristic approach is the key to efficiency. The base
algorithm for this case we call GLRTDP, a generalization of LRTDP [8, Alg. 4].
The pseudocode is shown in Alg. 1. The algorithm iteratively selects only a
single state for a Bellman update in each round. It continually updates a current
best solution, a partial function providing the current state value estimates and
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Dynamic Heuristic Search in Probabilistic Model Checking 7

repeatedly runs trials (line 4), sample executions of the MDP, starting from the
initial state, and ending once a state is reached for which an update does not
change the value by more than ε, i. e., ε-consistency is reached (line 13, lines
17-27 are not relevant here). To determine which successor state to follow after
state s, GLRTDP considers an action a ∈ A(s) greedy w.r.t. the current value
function (line 14), i. e., one that minimizes Equation (4) for s (cf. Alg. 2, line
2 and 4) [8, Alg. 2], and then selects a successor state (line 16). Picking the
next state randomly from the set of successors of the greedy action (cf. Alg. 2,
line 9) instead of taking the probability into account is an optimization leading
to better performance as noted in probabilistic Fast Downward [36]. The
entire exploration procedure is systematic, i. e., does not starve relevant states
if the heuristic function used is admissible. A state, which has not converged
so far, will not stay in the greedy graph forever without its value being revised.
Therefore, it is guaranteed to converge to an optimal solution. After each trial,
those states are labeled as solved whose values and those of their descendants
have reached ε-consistency (cf. Alg. 3) [8, Alg. 3]. Trials are terminated at solved
states. GLRTDP terminates the value update procedure as soon as the initial
state is solved (cf. Alg. 1 line 3, 8, and 31).

Alg. 1 General Labeled Real-Time Dynamic
Programming (GLRTDP)

1: proc GLRTDP(s: State; ε: float)
2: max-rew, min-rew = True, if max., resp.

min. reward property is calculated
3: while ¬Solved(s) do
4: GLRTDP-trial(s, ε)

5: proc GLRTDP-trial(s: State, ε: float)
6: visited := Empty-Stack
7:
8: while ¬Solved(s) do
9: visited.Push(s)

10: vold = V (s)
11: Update(s)
12: vnew = V (s)
13: if Is-cons(vold, vnew, ε) then break

▷ original condition Is-goal(s)
14: a := Greedy-action(s)
15: if a ̸= NULL then
16: s := Pick-next(a, s)
17: if max-rew

&& visited.Contains(s) then
18: if Elim-cycle-max-rew() then
19: V (init-node) = ∞
20: Solved(init-node) = True
21: return
22: else
23: if min-rew

&& visited.Contains(s) then
24: if Elim-cycle-min-rew then
25: s := Merged-node(s)
26: else
27: break
28:
29: while visited ̸= Empty-Stack do
30: s := visited.Pop()
31: if ¬Check-solved(s, ε) then
32: break

Alg. 2 Subroutines of GLRTDP and FRET

1: proc Greedy-action(s: State)
2: return argMinMaxa∈A(s) QValue(a, s)

3: proc QValue(a: action, s: State)
4: return∑

s′ P (s, a, s′) · (R(s, a, s′) + V (s′))

5: proc Update(s: State)
6: a = Greedy-action(s)
7: V (s) = QValue(a, s)

8: proc Pick-next(a: action, s: State)
9: pick s′ randomly from all successors with

P (s, a, s′) > 0
▷ originally with probability P (s, a, s′)

10: return s′

11: proc Is-cons(sold , snew , ε: float)
12: if abs(sold − snew ) ≤ ε ||

sold =∞ && snew =∞ then
13: return True
14: return False
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8 M. Klauck, H. Hermanns

This is possible because a value remains ε-consistent if its descendants’ and its
own value do not change by more than ε anymore (Alg. 3). This is because V (s)
can only change by more than ε if the greedy graph starting in s changes or the
value of a descendant changes by more than ε. The graph can only change if the
value of a state within the graph changes. Updating states outside the greedy
graph will never make them part of it, because by the monotonicity property,
updates according to the Bellman function can only make the states less attractive.
Thus, a state’s value can only change by more than ε if a descendant changes by
more than ε but then it can not have been marked as solved before.

This algorithm converges faster than classical value iteration because not all
states need to be converged or even updated. The termination criterion is similar
to ε convergence in simple value iteration. If a cycle (zero-reward cycle in MDPs
with rewards) occurs in a policy, it needs to be handled during the construction
of trials in GLRTDP to guarantee convergence to an optimal value function. In
the MinProb case permanent and transient traps have to be treated as dead-ends
because in the worst case it is possible to always take an edge back to a state in
the cycle instead of leaving the loop, i. e., Pmin of eventually reaching the goal is 0.
This is done indirectly by the termination criteria and the check before adding a
new state (line 13 Alg. 1 and line 37 in Alg. 3). Because of the initialization with
0, values of trap states will lead to a cut immediately, because they never change
their value in an update and stay ε-consistent, i. e., the cycle is not explored
further and the algorithm concentrates on other branches.

To sum up, when calculating MinProb over an MDP, GLRTDP presented
in Alg. 1 with an admissible initialization for this case and Check-Solved() as
in Alg. 3 can be used. We will explain in the following why the combination
of GLRTDP solves MinProb properties on general MDP structures correctly by
converging to the optimal fixpoint. A formal proof can be found in Appendix A.

All greedy policies inspected by GLRTDP at some point end in a goal state
or a dead-end state. This could be a real dead-end, i. e., a sink state with only
a self-loop or a trap. Because of the initialization their value is already 0. In
addition, we tag these states, do not explore them further and propagate their
value back through the graph. Cycling forever is not possible because eventually
all such cycles in greedy policies are eliminated. Having this, we can state that
at some point no more states are left to explore in GLRTDP because all relevant
traps are eliminated or a goal or a sink has been found. Then GLRTDP runs until
the state values of the current greedy policy is converged up to ε. Even if the
greedy policy is not the same in every iteration, at some point it will stay within
a set of states which are part of finitely many policies. The values of these states
converged close enough to the optimal ones such that the algorithm concentrates
on these policies. The value function used in GLRTDP is initialized admissibly
and therefore can only monotonically increase and approach the optimal result
(fixpoint) from below. When this point is reached, the whole procedure terminates.
This fixpoint has to be the only one and therefore has to be optimal because it
has already been shown that the Bellman equation only has one fixpoint [7].
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Dynamic Heuristic Search in Probabilistic Model Checking 9

Alg. 3 Check-solved Procedure used in
GLRTDP

1: proc Check-solved(s: State; ε: float)
2: rv := True
3: open := Empty-Stack
4: closed := Empty-Stack
5:
6: if ¬Solved(s) then open.Push(s)
7:
8: while open ̸= Empty-Stack do
9: s := open.Pop()

10: closed.Push(s)
11:
12: if Dead-end(s) || Goal(s) then con-

tinue
13:
14: a := Greedy-action(s)
15: if max-rew || min-rew then
16: check-∞-loop = False
17: for each s′ s.t. P(s, a, s′) > 0 do
18: if closed.Contains(s′) then
19: check-∞-loop = True
20: if max-rew && check-∞-loop then
21: if Elim-cycle-max-rew() then
22: V (init-node) =∞
23: Solved(init-node) = True
24: return True
25: else
26: if min-rew && check-∞-loop then
27: if Elim-cycle-min-rew then
28: return False
29:
30: vold = V (s)
31: Update(s)
32: vnew = V (s)
33: if not Is-cons(vold, vnew, ε) then
34: rv = False
35: continue
36: for each s′ s.t P(s, a, s′) > 0 do
37: if ¬Solved(s′) &&

¬In(s′, open ∪ closed) then
38: open.Push(s′)
39:
40: if rv then
41: for each s ∈ closed do
42: Solved(s) := True
43: else
44: for s ∈ closed do
45: Update(s)
46: return rv

Alg. 4 Find, Revise, Eliminate Traps (FRET)
(M is the graph of the MDP)

1: proc FRET(M, s, V0)
2: Vi := V0

3: V ′
i := GLRTDP(s, ε)

▷ originally Find-and-Revise(M,Vi)
4: (Vi+1, elim-trap) :=

Eliminate-Traps(M,V ′
i )

5: while elim-trap do
6: Vi := Vi+1

7: V ′
i := GLRTDP(s, ε)

▷ originally Find-and-Revise(M,Vi)
8: (Vi+1, elim-trap) :=

Eliminate-Traps(M,V ′
i )

Alg. 5 Eliminate-Traps (for MaxProb)

1: proc Eliminate-Traps(M,V )
2: elim-trap := False
3: Vnext := V
4: GV := {SV , AV } ← Vs greedy graph
5: SCC := Tarjan(GV )
6: CSet := ∅
7:
8: for each SComp C = {SC , AC} ∈ SCC

do
9: if ∄(si, sj) ∈ AG : (si ∈ SC , sj /∈ SC)

&& (∄g ∈ G : g ∈ SC) then
10: CSet := CSet ∪ {C}
11:
12: for each C = {SC , AC} ∈ CSet do
13: if ∄a ∈ A, s ∈ SC , s′ /∈ SC :

T (s, a, s′) > 0 then
14: for each s ∈ SC do
15: Vnext (s) := 0

16: MergeSCC (C )
17: elim-trap := True
18: else
19: Ae := {a ∈ A|∃s ∈ SC ; s′ /∈ SC :

T (s, a, s′) > 0}
20: m := maxs∈SC,a∈AeQ

V (s, a)
21: for each s ∈ SC do
22: Vnext (s) = m

23: MergeSCC (C )
24: elim-trap := True
25: return (Vnext , elim-trap)

Maximum Reach Probability. For MaxProb properties, Pmax(SU U S∗), the
objective is to find the maximal probability to reach a state in S∗ if initialized
in s0 while avoiding SU . An admissible initialization is 1 except for states from
which only dead-end states can be reached, which get a value of 0. Pmax can be
calculated by changing the initialization and replacing the occurrences of min by
max in equations (3) and (4). In Modysh, we use a combination of GLRTDP
(Alg. 1, max-rew=min-rew=False) and a modified version of FRET (Alg. 4 and
5), adapted from the originals [31, Alg. 1] to calculate MaxProb. The combination
is needed to guarantee convergence of GLRTDP for MaxProb [31,30]. In FRET
iterations of GLRTDP followed by a call to Eliminate-Traps() to eliminate
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10 M. Klauck, H. Hermanns

zero-reward cycles are performed. In the original version, any Find-and-Revise
algorithm is foreseen, we fix GLRTDP (Alg. 4, line 3 and 7) in our implementation.
The call to Eliminate-Traps() (line 4 and 8) is needed if facing zero-reward
cycles, because these may induce convergence of GLRTDP-trials to a non-optimal
value by always choosing an action that loops on the cycle and thus the goal is
never reached (line 14, 16 in Alg. 1). The trap elimination procedure changes
the value function computed in the last iteration of GLRTDP and the graph it
is working on, thus guaranteeing progress in its next call (Alg. 4, line 8). This is
achieved by finding and eliminating traps (cf. Alg. 5). States which are part of a
trap are merged into a single new state replacing all trap states.

In contrast to MinProb, where traps are handled directly during the trial
construction, permanent and transient traps have to be handled differently here.
All SCCs in the current greedy policy are collected using Tarjan’s Algorithm
[37] (Alg. 5, line 5) and it has to be checked if these SCCs are traps (line 8).
First, permanent traps (line 13) are dead-ends from which the goal can never be
reached. Therefore, all states’ values in this SCC can be set to 0 (line 15) and the
states of the SCC can be merged into one. If the SCC is a transient trap (line
19), it has to be left to reach the goal eventually. From all states in the SCC it is
possible to take the exit with the highest probability value to reach the goal (line
20). Therefore, we merge these states and set the resulting state to this value
(line 21). In the next GLRTDP trial this will change the greedy policy, i. e., the
cycle is eliminated from the greedy graph. The algorithm terminates if the policy
of the last GLRTDP run does not contain a trap anymore.

While the original version of FRET [31] considers in each trap elimination step
all actions that are optimal according to the current value function, our implemen-
tation uses an optimization of Tarjan’s algorithm (line 5), called FRET-π [36],
considering in the subgraph of the state space inspected during trap elimination
only those state transitions chosen into the current greedy policy.

To sum up, when calculating MaxProb over an MDP we call FRET, Alg. 4,
with GLRTDP, Alg. 1, with an admissible initialization for this case. The trap
elimination procedure in FRET is instantiated with Alg. 5. A formal proof of
the correctness of this approach for general MDPs in the style of the proof for
MinProb can be found in Appendix B.

3.2 Expected Reward Properties

Expected reward properties Eopt(SU U S∗), ask for the minimal or maximal
(referred to by opt) expected accumulated reward when reaching a goal state.
For the reachability properties considered thus far, we have been able to ignore
the reward function of the MDP or more precisely, assumed it to be 0 except for
actions leading to goal states. The calculation of Eopt proceeds very much in the
same way. Iteratively a variation of the Bellman function updates is performed
as presented in Eq. 1, where contrary to the Popt-case (2) rewards are gained by
taking a transition. The conceptual variation is that goal states initially get a
value of 0 and states s ∈ S⊥ ∪ SU \ S∗ a value of ∞.
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Dynamic Heuristic Search in Probabilistic Model Checking 11

Reward maximization. For Emax max-rew is set to True. A trivial admissible
initialization is 0 for goal states and ∞ for all others. Because initializing non-
goal states with ∞, i. e., the largest possible overapproximation, increases the
runtime extremely, we approach an admissible initialization for non-dead-end
states from below by starting with a smaller maxValue, obtained by exponential
search. Dead-ends directly get a value of ∞. We execute full GLRTDP runs, as
long as one of the final state values after termination is larger than the last
maxValue, because if this happens, the initialization has not been admissible.
In each iteration the new maxValue is set to the largest state value increased
by 1 and multiplied by 2, which leads to the fastest solution we found in our
experiments. Cycles again require a special treatment. Before adding the next
state to the current trial (line 16, Alg. 1 and line 38, Alg. 3) it has to be checked
if this state closes a SCC in the current greedy graph (independent of the reward
accumulated in the SCC) (Elim-cycle-max-rew(): line 18, Alg. 1 and line 21 et
seq., Alg. 3). If this is the case, the maximal expected reward for this property
can directly be set to ∞ because in the worst case always this loop could be
taken, i. e., the goal would never be reached.
Reward minimization. For Emin min-rew is set to True and the value function
is initialized admissibly with ∞ for dead-ends and with 0 for all other states.
Similar to the Emax case, when adding the next state to the current trial, it
has to be checked if it closes a zero-reward SCC which has to be eliminated
because it has to be left immediately to reach the goal with minimal reward
(Elim-cycle-min-rew() in line 24, Alg. 1 and line 27, Alg. 3).

Correctness and optimality proofs for these property types are very similar
to the proofs for MaxProb and MinProb spelled out in the appendices.

3.3 Bounded Properties

Reachability and expected reward properties can be extended by step or reward
bounds. Popt(SU U[l,u] S∗) is the extremal probability of reaching a goal state in
[l, u] steps or with accumulated reward in [l, u] . Notably, and in contrast to the
other properties considered thus far, for such bounded properties, memoryless
policies can be outperformed by policies that are aware of the history regarding
their past evolution, namely with respect to the number of steps taken or reward
accumulated thus far. So, formally, we here work with a definition of policies that
deviates form the one in Sect. 2 in that a policy can remember how many steps
have already been made or what reward has been accumulated.

Let us first look at step-bounded properties. For those, in standard value
iteration, updating all state values synchronously makes it possible to iterate only t
times for properties with upper bound t [17] and then to extract a step-dependent
policy. In heuristic search algorithms like FRET-LRTDP this is not possible
because only the current greedy path is updated. In this case, a straightforward
remedy is to encode a step counter in each state and consider all states for which
the bounds regarding these counters are exceeded as dead-end. Formally, one
works in a derived MDP where states are enriched with counters and where states
differing in counter value are different and thus also the policy decision might
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12 M. Klauck, H. Hermanns

differ for them (implying history awareness with respect to the original MDP).
States which fulfill the reachability property and whose bound-counter lies in
the target interval are considered goal states. In our implementation we use the
same variants of GLRTDP in combination with FRET like for the unbounded
cases above and only add the bound and step counter to the state as described.
For reward-bounded properties the basic strategy is the same, except that the
counters are now replaced by real-valued variables. If the reward of the current
policy exceeds the bound, the current state is considered as a dead-end. In either
case (step or reward bounds), the derived MDP can be constructed in such a way
that it is guaranteed to be finite-state (which is one of our early assumptions).
Expected reward properties with bounds can be solved in a similar way. Since
the overall procedures stay the same when adding bounds, the correctness and
optimality proofs follow the respective same strategy.

Modysh is the only tool of the Modest Toolset which fully supports all
variants of bounds w.r.t. step/reward bounds and interval types. All other tools
do not treat step bounds at all and only support inclusive upper bounds.

4 Empirical Evaluation

5 10 15 20 25 30 35 40 45 50 55 60

Modysh

prob. FD

mcsta

ePMC

PET

Prism

Storm

total

# Instances

Pmax Pmin Pbmax Pbmin

Emax Emin Ebmax

Fig. 1: Number of benchmark instances
supported by tools per property type.
(upper bars: QComp, lower: additional)

Prototypical predecessor versions of
Modysh with less functionality, im-
plemented on a different, less perfor-
mant code base and with strategies
closer to the original version of FRET-
LRTDP took part in QComp 2019
and 2020 [18,13], where the approach
already showed promising results in
comparison to other state-of-the-art
model checkers. Since then, the new
implementation approach presented in
this work and several other optimiza-
tions implied a decrease in runtime of
Modysh by a factor of nearly 1/3.

The benchmark set of QComp com-
prises, appart from other model types,
36 MDP instances. For evaluation pur-
poses, we reran the experiments from
QComp 2020 default often ε-correct
track, i. e., with a precision of ε = 10−3 and a timeout of 30 min, on an Intel
Core i7-4790 CPU 3.60GHz with 32 GB RAM. With this setup we are able to
show plots which are directly comparable to the evaluation of QComp and the
performance improvements of Modysh are clearly visible. In addition, we added
58 additional benchmark instances from the quantitative verification benchmark
set QVBS [24] to our case study to enlarge the number of MDP benchmarks and
thereby also the number of minimum reach and bounded properties. Furthermore,
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Dynamic Heuristic Search in Probabilistic Model Checking 13

we wanted to test the tools on both smaller benchmarks, because many tools time
out on the difficult QComp instances, as well as on considerably larger instances
than in QComp, to demonstrate the capabilities and benefits of Modysh of only
inspecting a fraction of the state space. Therefore, we scaled the models for the
israeli-jalfon, philosophers-mdp, pnueli-zuck, rabin and wlan benchmarks up by
parallelizing up to 100 automata for all of them except for wlan, for which 10
processes were already enough such that only Modysh was able to solve it. The
QVBS contains only smaller instances of these benchmarks. For israeli-jalfon,
the largest instance results in a state space size of (2100)− 1, i. e., 1.268 · 1030.
For 100 dining philosophers the state space grows into the order of 1099 and for
100 parallel processes in pnueli-zuck and rabin it is in the order of 10100 and
10105, respectively. 10 parallel senders in wlan result in a size of around 7 · 108
states. The number of benchmark instances supported by each tool per property
type are listed in Figure 1. Since QComp 2020, Modysh added functionality for
bounded properties and some special minimum reach cases.

Not all participating tools of QComp 2020 support MDP benchmarks. There-
fore, we were not able to consider modes [11], STAMINA [34] and DFTRES
[35]. But we added new results for Probabilistic Fast Downward [36], which
took part in QComp 2019 but not in 2020. In addition, ePMC [20], mcsta
[16,19,23] of the Modest Toolset [22], PET [10], Prism [33] and Storm [14]
are part of our evaluation. We contacted the authors of all tools and asked for
the newest version, i. e., improvements in other tools are also taken into account.

10 20 30
≤1

6

60

600

1800

instances (QComp, total 36)

ti
m

e
(s

)

Modysh (12/36)
ePMC (17/32)
prob. FD (7/9)
mcsta (29/34)
Prism (24/26)
PET (8/15)
St.-static (30/36)

10 20 30 40 50

≤ 1

6

30
60

600
1200

instances (additional, total 58)

ti
m

e
(s

)

Modysh (53/58) ePMC (6/55)
prob. FD (5/21) mcsta (38/57)
Prism (38/48) PET (15/24)
St.-static (40/58)

Fig. 2: Quantile plots for default tool versions in often ε-correct track.

In the quantile plots in Fig. 2 a point (x, y) indicates that the runtime of the
xth fastest instance of the tool was y seconds. This allows comparing the overall
performance of the tools. The benchmark instances are ordered independently for
each tool depending on its runtime. The count of correctly solved benchmarks c
(no timeout or error) and of supported instances s is given in the label as c/s.
Modysh improved the runtime for many of the QComp instances (Fig. 2, left,
contrastable with Fig. 4 bottom right in [13]) in comparison to QComp 2020
such that it is now among the best three tools for a large number of instances.
The strength of Modysh is impressively demonstrated by the results on the
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14 M. Klauck, H. Hermanns

additional benchmark set on the right of Fig. 2. It clearly outperforms the other
tools on the extremely large scaled benchmarks because only a small fraction of
the state space needs to be visited. Modysh is able to solve 7 benchmarks in less
than 30s for which all other tools time out or do not have enough memory. For 5
other models only one other tool is able to solve them. For the largest instances
of philosophers, pnueli-zuck, rabin and wlan only a few thousand states have to
be visited in Modysh and only 1.7 · 103 for israeli-jalfon. All these benchmarks
have in common that they consist of the parallelization of automata of symmetric
structure. The results on both benchmark sets show that Modysh is clearly able
to compete with state-of-the-art model checkers and on certain MDP structures
it is even able to quickly solve instances which no other tool is able to handle.
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Fig. 3: Scatter plots (row 1: QComp, 2: additional benchmarks).

More detailed results can be inspected in Fig. 3 showing scatter plots com-
paring individual benchmark instances between two tools or a tool and the
best of all other tools. A point (x, y) indicates a runtime of x seconds for the
tool on the x-axis and a runtime of y seconds for the tool on the y-axis. This
means, if the point lies above the diagonal line, the tool on the x-axis was
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the fastest. If the point lies above the dotted line, it was more than ten times
faster. "TO", "ERR" and "INC" mean timeout, error, e. g., out of memory, and
incorrect result, respectively. "n/a" means that the tool is unable to handle the
benchmark instance. The number of benchmark instances on which the tool
on the x-axis outperformed the tool(s) on the y-axis is given in parenthesis in
the label. By the evaluation setup, the upper left plot is a direct update of [13,
Fig. 8, middle]. We see that Modysh is able to compete with the other tools
especially on the additional benchmark set for which the results are depicted in
the lower row. It solves way more instances and property types than probabilistic
Fast Downward (right column), which is based on the same algorithms. It
also supports more properties than mcsta (upper row, middle), i. e., improves
the range of the Modest Toolset and shows better performances on many
instances, especially where mcsta (lower row, middle) or various other tools
(lower row, left) are not able to deliver results at all. This demonstrates the
potential of the methods implemented in Modysh because first, it improves
the model checking performance of the Modest Toolset in comparison to
mcsta on the same code base. Second, integrating these techniques specifically
in Storm looks promising. If Modysh was dominated by a competitor, e. g., on
the QComp benchmarks (upper left), it was often outperformed by Storm. From
QComp 2020 it is already known that Storm’s code base is highly efficient and
the performance is currently out of reach for other model checkers on most of the
benchmarks. Implementing our approach in Storm would boost its performance
even more.

Interactive result tables which enable a direct runtime comparison across
benchmark instances are available online for the QComp benchmarks and for the
additional QVBS benchmarks. Furthermore, an artifact enabling the reproduction
of all empirical results reported in this paper is available online [29].

5 Related Work

As already described in Sect. 3, our algorithms are generalizations of well-known
approaches used in the planning community for the purpose of cost-optimal
planning. Of course, ideas behind heuristic search have already been used in
model checking. We highlight the parallels but also the differences to our work.
Probabilistic Planning and Heuristic Search. A variant of FRET-LRTDP is
available in the probabilistic version of Fast Downward [26] which is one of
the classical progression planning systems based on heuristic search. It has been
extended by Steinmetz et al. [36] for goal probability analysis, i. e., computing
the maximal probability to reach a goal. That extension also encompasses several
heuristic search algorithms like LRTDP with FRET-π.

The original LRTDP work by Bonet et al. [8] is tailored to SSP assuming
conditions (i′) and (ii′), the second version of Bertsekas [7], with strictly positive
action rewards (except at goal states). Kolobov et al. [31,30] instead uses (i) and
(ii′′) when discussing GSSP problems. They showed that several MDP problems,
including MaxProb, can be reduced to this problem class [31,30] and that the

https://depend.cs.uni-saarland.de/~klauck/results-qcomp-benchmarks/table_often-epsilon-correct.html
https://depend.cs.uni-saarland.de/~klauck/results-additional-benchmarks/table_often-epsilon-correct.html
https://depend.cs.uni-saarland.de/~klauck/results-additional-benchmarks/table_often-epsilon-correct.html
http://doi.org/10.5281/zenodo.4922360
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16 M. Klauck, H. Hermanns

respective properties can be solved using FRET with LRTDP. We do not need
to assume any of these, but restrict to non-negative reward structures.
Probabilistic Model Checking. This is not the first work to explore probabilistic
planning and heuristic search approaches for probabilistic model checking. For
instance, heuristic search dynamic programming methods have been applied to
MDPs, but for generating probabilistic counterexamples [1]. Closer to our work,
Kretinsky et al. developed heuristics for initializing policies in policy iteration
such that the computation time to solve long-run average reward properties on
MDPs is reduced [32], with specific treatments of SSCs and maximal end compo-
nents similar to the approach of Modysh. The PAC tool [3] uses asynchronous
bounded value iteration techniques interleaved with guided simulation phases
with permanent and transient trap elimination for statistical model checking for
reachability analysis on stochastic games. A combination of Bounded Real-Time
Dynamic Programming (BRTDP) and Monte Carlo Tree Search has been devised
with objectives similar to ours [2]. Technical differences aside, this approach has
only been applied to solve MaxProb properties.

Machine learning techniques have been exploited [10] to verify reachability
properties on MDPs using (1) BRTDP and (2) delayed Q-learning for MDPs
with limited information. The techniques are also applicable to arbitrary MDP
structures due to special treatments of end components and are implemented in
PET (aka. Prism-TUM), which is part of our evaluation in Sect. 4. In parts,
the approach is close to ours for simple reachability properties, but restricted to
that, and uses BRTDP instead of FRET-LRTDP. The paper explicitly mentions
that so far no attempts have been made to adapt these methods in the context
of probabilistic verification. With Modysh we completely fill this gap.

As became clear in our empirical evaluation, heuristic search can be especially
attractive for handling excessively large models. An entirely different approach
to attack such problems is the use of external storage to slowly but exhaustively
model check problem sizes that otherwise do not fit in memory [23].

6 Conclusion

We introduced a heuristic approach to probabilistic model checking all established
property types, except long-run averages, on general MDP structures based on
LRTDP combined with FRET. The approach is implemented in Modysh. We re-
ported on a large empirical evaluation that has demonstrated the competitiveness
of Modysh relative to other state-of-the-art model checking tools. On very large
state spaces our tool outperforms its competitors, demonstrating that planning
techniques can indeed be used to enhance the performance and capabilities of
model checkers.

As a next step we are looking into performance optimizations by exploring
the trade-offs between memory usage and runtime. In addition, other heuristics
known to work well in the planning community might be worth to implement.
Extending the approach to work on other automata types seems also promising.
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A Proof for MinProb

As announced in Sect. 3.1, this appendix provides a proof that GLRTDP solves
MinProb properties on general MDP structures correctly by converging to the
optimal fixpoint.
To show convergence to the optimal value function from below in case of an
admissible initialization, we can argue along the invariant

∀k, σ : Vk(s) ≤ Pσ
s (⋄G), where σ s.t. Pσ

s (⋄G) = V ∗(s)

stating that the value function in every iteration is always at most the value
under the optimal policy. This means that an initially admissible value function
always stays admissible. This is true for the admissible initialization when k = 0,
because then V0(s) = 1 if s ∈ G and 0 otherwise. For all other iterations it holds
that Vk+1(s) :=

∑
s′ P (s, a, s′) · Vk(s

′) for some action a and we can derive that∑
s′

P (s, a, s′) · Vk(s
′) ≤

∑
s′

P (s, a, s′) ·min
σ

Pσ
s′(⋄G)

≤
∑
s′

min
σ

(P (s, a, s′) · Pσ
s′(⋄G)) ≤ min

σ

∑
s′

P (s, a, s′) · Pσ
s′(⋄G).

The second inequality holds because σopt is memoryless and independent of s′.
Now assume σopt is such that P

σopt
s (⋄G) is minimal for all s. Then for action

a = greedy(s, Vk) we have for any action b, and in particular for b = σopt(s),∑
s′

P (s, a, s′) · Vk(s
′) ≤

∑
s′

P (s, b, s′) · Vk(s
′).

Moreover Vk(s
′) ≤ P

σopt

s′ (⋄G), which allows us to derive∑
s′

P (s, a, s′) · Vk(s
′) ≤

∑
s′

P (s, σopt(s), s
′) · Pσopt

s′ (⋄G) = Pσopt
s (⋄G).

Claim: If Vk is a fixpoint for k → ∞ then Pσ(⋄G) = V∞(s0) ∀σ greedy in V. (5)
Since V ∗(s) := minσ P

σ
s (⋄G) this means V ∗(s0) ≤ V∞(s0) and with the result

from above (∀k : Vk ≤ V ∗) we can conclude V ∗(s0) = V∞(s0).
It remains to show that (5) holds: Let σk := greedy(Vk), i. e., a greedy policy
with respect to the value function Vk and Sk = {s|Pσk

s0 (⋄s) > 0}, i. e., all states
reachable with this greedy policy, then max(residual(Sk)) ≤ δk and for k → ∞
it holds that δk → 0.
To show that δk will approach 0 it is enough to argue about the states which
will be updated an infinite number of times, i. e., in the end, about the states on
optimal policies. These are the states in S∞ =

⋂
i≥0

⋃
k≥i Sk.

Let K be such that ∀k ≥ K :
⋃

i≥k Si = S∞, i. e. a step from which on we only
consider states which will be infinitely often visited when running GLRTDP
infinitely long. Assume we are in a step j + 1 ≥ K. Let s ∈ S∞. We have to
distinguish two cases:
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18 M. Klauck, H. Hermanns

– If s has not been updated then Vj+1(s) = Vj(s).
– If s is the updated state then Vj+1(s) = minα

∑
s′ P (s, α, s′) · Vj(s

′)

But this is the same as for simple synchronous value iteration, for which con-
vergence against the optimal fixpoint is proven. For our asynchronous case in
GLRTDP we nevertheless have to guarantee fairness among the states in S∞,
i. e., we have to make sure that they are updated infinitely often. This is the case
because each possible trial of S∞ (there are finitely many trials) appears infinitely
often, i. e. the states in this trial are updated infinitely often (by construction of
GLRTDP when choosing the next greedy action). All other states not in S∞ can
be ignored because they will not influence the greedy policy and optimal values
because they are already too large:

For any s ∈ S \S∞ it holds that V∞(s) = VK(s) ≤ V ∗(s) and for any s ∈ S∞
by definition of S∞ and K we know that an action leading again to a state
in S∞ will be chosen, i. e., an a ∈ σ∞: V∞(s) ≤

∑
s′∈S∞

P (s, σ∞, s′) · V∞(s′)
but for every action we choose the greedy one and for any k ≥ K it holds that
Vk(s) ≤

∑
s′∈S P (s, a, s′) · Vk(s

′) ≤ V∞(s), i. e., the action in σ∞ must have been
the greedy action not leading to S \ S∞. This means that V∞ defines an optimal
strategy on S∞ for s0 ∈ S∞ which is also an optimal strategy on S because no
state s′ ∈ S \ S∞ is visited even with V∞(s′) < V ∗(s′). In addition the initial
state lies in S∞ by construction, i. e., Pmin(⋄G) = V σopt(s0) reaches the fixpoint
and is updated infinitely often.

In summary, when running GLRTDP in an infinite number of iterations, the
value function for states in S∞ will approach the optimal values of the minimal
probability to reach the goal from below, will never get larger than the optimal
value and the difference between V and V ∗ always becomes strictly smaller for
these states. In addition, we can at some point stop updating the value function
for parts of the state space because these values will not have an influence on
the correct optimal result for the initial state. In our implementation GLRTDP
is designed in such a way that it stops when the values on the optimal policy
only change by less than ε, which is the same convergence criterion as for simple
value iteration.

B Proof for MaxProb

Taking up our promise from Sect. 3.1, in the following we will first give an
intuition about why the presented combination of GLRTDP and FRET solves
MaxProb properties on general MDP structures correctly, not only on problems
having at least one almost-sure policy as proven in [31], by converging to the
optimal fixpoint. Afterwards we sketch a more formal proof.

All greedy policies inspected by GLRTDP at some point end in a goal state
or a dead-end state. This could be a real dead-end, i. e., a sink state with only
a self-loop or a permanent trap which has been transformed to a dead-end by
the cycle elimination of FRET. If it is a permanent trap identified by FRET, the
values of all states in it are set to 0. Otherwise, when the sink state is discovered
for the first time its value is also directly set to 0. This means we tag these
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states, do not explore them further and propagate their value back through the
graph. Cycling forever is not possible because FRET eventually eliminates all
such cycles in greedy policies. With this, we can state that at some point no more
states are left to explore in the current GLRTDP trial because all relevant traps
are eliminated or a goal or a sink has been found. Then GLRTDP runs until
the state values of the current greedy policies are converged up to ε. Even if the
greedy policy is not the same in every iteration, at some point it will stay within
a set of greedy states which are part of finitely many greedy policies. The values
of these states will have converged close enough to the optimal ones such that
the algorithm concentrates on these optimal policies. The value function used in
GLRTDP is initialized admissibly and therefore can only monotonically decrease
and approach the optimal fixpoint from above. When this point is reached (up to
ε), the entire procedure (GLRTDP + FRET) terminates. This fixpoint must be
the optimal one because the Bellman equation only admits a single fixpoint [7].

To show convergence to the optimal value function from above in case of an
admissible initialization, we can argue along the invariant

∀k, σ : Vk(s) ≥ Pσ
s (⋄G), where σ s.t. Pσ

s (⋄G) = V ∗(s)

stating that the value function in every iteration is always greater or equal
than the optimal value under the optimal policy. This means that an initially
admissible value function always stays admissible. This is true for the admissible
initialization when k = 0, because then V0(s) = 0 if s ∈ S⊥ and 1 otherwise. For
all other iterations it holds that

Vk+1(s) :=
∑
s′

P (s, a, s′) · Vk(s
′)

for some action a and we can derive that∑
s′

P (s, a, s′) · Vk(s
′) ≥

∑
s′

P (s, a, s′) ·max
σ

Pσ
s′(⋄G)

≥
∑
s′

max
σ

(P (s, a, s′) · Pσ
s′(⋄G)) ≥ max

σ

∑
s′

P (s, a, s′) · Pσ
s′(⋄G)

The second inequality holds because σopt is memoryless and independent of s′.
Now assume σopt is such that Pσopt

s (⋄G) is maximal for all s. Then for action
a = greedy(s, Vk) we have for any action b, and in particular for b = σopt(s),∑

s′

P (s, a, s′) · Vk(s
′) ≥

∑
s′

P (s, b, s′) · Vk(s
′).

Moreover Vk(s
′) ≥ P

σopt

s′ (⋄G) and hence∑
s′

P (s, a, s′) · Vk(s
′) ≥

∑
s′

P (s, σopt(s), s
′) · Pσopt

s′ (⋄G) = Pσopt
s (⋄G).

Claim: If Vk is a fixpoint for k → ∞ then Pσ(⋄G) = V∞(s0) ∀σ greedy in V. (6)
Since V ∗(s) := maxσ P

σ
s (⋄G) this means V ∗(s0) ≥ V∞(s0) and with the result

from above (∀k : Vk ≥ V ∗) we can conclude V ∗(s0) = V∞(s0).
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It remains to show that (6) holds: Let σk := greedy(Vk), i. e., a greedy policy
with respect to the value function Vk and Sk = {s|Pσk

s0 (⋄s) > 0}, i. e., all states
reachable with this greedy policy, then max(residual(Sk)) ≤ δk and for k → ∞
it holds that δk → 0.
To show that δk will approach 0 it is enough to argue about the states which
will be updated an infinite number of times, i. e., in the end, about the states on
optimal policies. These are the states in S∞ =

⋂
i≥0

⋃
k≥i Sk.

Let K be such that ∀k ≥ K :
⋃

i≥k Si = S∞, i. e. a step from which on we only
consider states which will be infinitely often visited when running FRET-LRTDP
infinitely long. Assume we are in a step j + 1 ≥ K. Let s ∈ S∞. We have to
distinguish two cases:

– If s has not been updated then Vj+1(s) = Vj(s).
– If s is the updated state then Vj+1(s) = maxα

∑
s′ P (s, α, s′) · Vj(s

′)

This is the same as for simple synchronous value iteration, for which convergence
against the optimal fixpoint is proven. For our asynchronous case in GLRTDP we
are left with the duty to guarantee fairness among the states in S∞, i. e., we have
to make sure that they are updated infinitely often. This is the case because each
possible trial of S∞ (there are finitely many trials) appears infinitely often, i. e.,
the states in this trial are updated infinitely often (by construction of GLRTDP
when choosing the next greedy action). All other states not in S∞ can be ignored
because they will not influence the greedy policy and optimal values because
they are already too large:

For any s ∈ S \S∞ it holds that V∞(s) = VK(s) ≥ V ∗(s) and for any s ∈ S∞
by definition of S∞ and K we know that an action leading again to a state
in S∞ will be chosen, i. e., an a ∈ σ∞: V∞(s) ≥

∑
s′∈S∞

P (s, σ∞, s′) · V∞(s′)
but for every action we choose the greedy one and for any k ≥ K it holds that
Vk(s) ≥

∑
s′∈S P (s, a, s′) · Vk(s

′) ≥ V∞(s), i. e., the action in σ∞ must have been
the greedy action not leading to S \ S∞.

This means that V∞ defines an optimal strategy on S∞ for s0 ∈ S∞ which is
also an optimal strategy on S because no state s′ ∈ S \ S∞ is visited even with
V∞(s′) > V ∗(s′).

In addition the initial state lies in S∞ by construction, i. e., Pmax(⋄G) =
V σopt(s0) reaches the fixpoint and is updated infinitely often.

Altogether, this shows that when running FRET-LRTDP over an infinite
number of iterations, the value function for states in S∞ will approach the optimal
values of the maximal probability to reach the goal from above, will never get
smaller than the optimal value and the difference between V and V ∗ always
becomes strictly smaller for these states. In addition, we can at some point stop
updating the value function for parts of the state space because these values
will not have an influence on the correct optimal result for the initial state. In
our implementation FRET-LRTDP is designed in such a way that it stops when
the values on the optimal policy only change by less than ε, which is the same
convergence criterion as for simple value iteration.
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