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Doping Tests for Cyber-Physical Systems

SEBASTIAN BIEWER, Saarland University, Saarland Informatics Campus, Germany

PEDRO R. D’ARGENIO, Universidad Nacional de Córdoba, FAMAF, Argentina, CONICET, Argentina,

and Saarland University, Saarland Informatics Campus, Germany

HOLGER HERMANNS, Saarland University, Saarland Informatics Campus, Germany and Institute of

Intelligent Software, China

The software running in embedded or cyber-physical systems (CPS) is typically of proprietary nature, so

users do not know precisely what the systems they own are (in)capable of doing. Most malfunctionings of

such systems are not intended by the manufacturer, but some are, which means these cannot be classified as

bugs or security loopholes. The most prominent examples have become public in the diesel emissions scandal,

where millions of cars were found to be equipped with software violating the law, altogether polluting the

environment and putting human health at risk. The behaviour of the software embedded in these cars was

intended by the manufacturer, but it was not in the interest of society, a phenomenon that has been called

software doping. Due to the unavailability of a specification, the analysis of doped software is significantly

different from that for buggy or insecure software and hence classical verification and testing techniques have

to be adapted.

The work presented in this paper builds on existing definitions of software doping and lays the theoretical

foundations for conducting software doping tests, so as to enable uncovering unethical manufacturers. The

complex nature of software doping makes it very hard to effectuate doping tests in practice. We explain the

main challenges and provide efficient solutions to realise doping tests despite this complexity.
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1 INTRODUCTION
Embedded and cyber-physical systems are becoming more widespread as part of our daily life.

Printers, mobile phones, smart watches, smart home equipment, virtual assistants, drones and

battery-equipped gadgets are just a few examples. Modern cars are composed of a multitude of such

systems. These systems can have a significant impact on our lives, especially if they do not work

as expected. As a result, numerous approaches exist to assure quality of a system. The classical

and most common type of malfunctioning is what is widely called “bug”. Usually, a bug is a small

mistake in the software or hardware that causes a behaviour that is not intended or expected.

Other types of malfunctioning are caused by incorrect or wrongly interpreted sensor data, physical

deficiencies of a component, or might for instance be radiation-induced.
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16:2 Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns

Another interesting kind of malfunction (also from an ethical perspective [4]) arises if the

expectation of how the system should behave is different for two (or more) parties. Examples for

such scenarios are widespread in the context of personal data privacy, where product manufacturers

and data protection agencies have notoriously different opinions about how a software is supposed

to handle personal data. Another example with a considerable history is related to the usage of third-

party cartridges in printers. Manufacturers and users do not agree on whether their printer should

work with third-party cartridges (the user’s opinion) or only with those sold by the manufacturer

(the manufacturer’s opinion). Lastly, an example context that received very high media attention is

that of emission cleaning systems in diesel cars. These systems are meant to reduce the amount of

dangerous particles and gases like CO2 and NO2 released through the exhaust pipe, and there are

regulations in place defining how much of these substances are allowed to be emitted during car

operation. Part of these regulations are emissions tests, precisely defined test cycles that a car has

to undergo on a chassis dynamometer [34]. For every car model the manufacturers need to obey to

these regulations in order to get admission to the market. The central weakness of these regulations

is that the relevant behaviour of the car is only a very small fraction of the possible behaviour

on the road. Indeed, several manufacturers equip their cars with defeat devices that recognise if

the car is undergoing an official emissions test. During the test, the car obeys the regulation, but

outside test conditions, the emissions emitted are often significantly higher than allowed. Generally

speaking, the phenomena described above are considered as incorrect software behaviour by one

party, but as intended software behaviour by the other party (usually the manufacturer). In the

literature, such phenomena are called software doping [3, 12].

The difference between software doping and ordinary bugs is threefold: (1) Only for the former

there is a basic mismatch in intentions about what the software should do. (2) While a bug is

most often rooted in a small coding error, software doping can occupy a considerable portion of

the implementation. (3) Bugs can potentially be detected during production by the manufacturer,

whereas software doping by its nature can only be discovered after production, by the other party

facing the final product.

This problem is worsened by the fact that embedded software is typically proprietary, so (unless

one finds a way to breach the intellectual property [11]) it is only possible to detect software doping

by observation of the behaviour of the product, i.e., by black-box testing.

This paper develops the foundations for black-box testing approaches geared towards discovering

doped software in concrete cases. We will start off from an established formal notion of robust

cleanness (which is the negation of software doping) [12]. Essentially, the idea of robust cleanness

is based on a succinct specification (called a “contract”) that all involved parties are assumed to

have agreed on upfront and which captures the intended behaviour of a system with respect to

all inputs to the system. Inputs are considered to be user inputs or environmental inputs given

by sensors. The contract is defined by input and output distances on standard system trajectories

supplemented by input and output thresholds. Intuitively, the input distance and threshold induce

a tube around the standard inputs, and similar for outputs. For any input in the tube around some

standard input the system must be able to react with an output that is in the tube around the

output possible according to the standard. In many cases, the radii of the tubes are identical to the

respective thresholds. This is similar to the tube illustration for the robustness degree of temporal

logics formulas [18].

Example 1.1. For a diesel car the standard trajectory is the behaviour exhibited during the official

emissions test cycle. The input distance measures the deviation in car speed from the standard. The

input threshold is a small number, larger than the acceptable error tolerance of the cycle, limiting

the inputs considered of interest. The output distance then is the difference between (the total

ACM Trans. Model. Comput. Simul., Vol. 31, No. 3, Article 16. Publication date: August 2021.
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amount of) NO2 released by the car facing inputs of interest and the NO2 emitted if on the standard

test cycle. For cars with an active defeat device we expect to see a violation of the contract even for

relatively large output thresholds.

A cyber-physical system (CPS) is influenced by physical or chemical dynamics. Some of these

influences can be observed by the sensors the CPS is equipped with, but some portion might remain

unknown, making proper analysis difficult. Nondeterminsm is a powerful way of representing such

uncertainty faithfully, and indeed the notion of robust cleanness supports nondeterministic reactive

systems [12]. Furthermore, the analysis needs to consider (at least) two trajectories simultaneously,

namely the standard trajectory and another that stays within the input tube. In the presence of

nondeterminism it might even become necessary to consider infinitely many trajectories at the

same time. Properties over multiple traces are called hyperproperties [10]. In this respect, expressing

robust cleanness as a hyperproperty needs both ∀ and ∃ trajectory quantifiers. Formulas containing

only one type of quantifier can be analysed efficiently, e.g., using model-checking techniques,

but checking properties with alternating quantifiers is known to be computationally hard [9, 20].

Moreover, testing of such problems is in general not possible. Assume, for example, a property

requiring for a (nondeterministic) system that for every input 𝑖 , there exists the output 𝑜 = 𝑖 , i.e.,

one of the system’s possible behaviours computes the identity function. For black-box systems with

infinite input and output domains the property can neither be verified nor falsified through testing.

In order to verify the property, it is necessary to iterate over the infinite input set. For falsification

one must show that for some 𝑖 the system cannot produce 𝑖 as output. However, not observing

an output in finitely many trials does not rule out that this output can be generated. As a result,

there is no prior work (we are aware of) that targets the automatic generation of test cases for

hyperproperties, let alone robust cleanness.

This work is an extension of a recent paper [6]. These extensions shed light on the complete

process from developing the theory, several transformations of a state-of-the-art testing algorithm

towards an implementation of a testing framework, which we used to do doping tests in practice.

The contribution of this paper is three-fold. (1) We observe that standard behaviour, in particular

when derived by common standardisation procedures, can be represented by finite models, and we

identify under which conditions the resulting contracts are (un)satisfiable. (2) For a given satisfiable

contract we construct the largest nondeterministic model that is robustly clean w.r.t. this contract.

We integrate this model into a model-based testing theory, which can provide a nondeterministic

algorithm to derive sound test suites. (3) We develop a testing algorithm for bounded-length tests

and discretised input/output values. We present a concrete implementation of this algorithm and

demonstrate its effectiveness using examples for the diesel emissions scandal. Two of these test

cases were executed with a real car on a chassis dynamometer.

2 SOFTWARE DOPING ON REACTIVE PROGRAMS
Embedded software is reactive, it reacts to inputs received from sensors by producing outputs

that are meant to control the device functionality. We consider a reactive program as a function

𝑃 : In𝜔 → 2
(Out𝜔 )

on infinite sequences of inputs so that the program reacts to the 𝑘-th input in

the input sequence by producing nondeterministically the 𝑘-th output in each respective output

sequence. Thus, the program can be seen, for instance, as a (nondeterministic) Mealy or Moore

machine. Moreover, we consider an equivalence relation ≈ ⊆ In𝜔 × In𝜔 that equates sequences of

inputs. To illustrate this, think of the program embedded in a printer. Here ≈ would for instance

equate input sequences that agree with respect to submitting the same documents regardless of the

cartridge brand, the level of the toner (as long as there is sufficient), etc. We furthermore consider

the set StdIn ⊆ In𝜔 of inputs of interest or standard inputs. In the previous example, StdIn contains

ACM Trans. Model. Comput. Simul., Vol. 31, No. 3, Article 16. Publication date: August 2021.
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all the input sequences with compatible cartridges and printable documents. The definitions given

below are simple adaptations of those given in [12] (but where parameters are instead treated as

parts of the inputs).

Definition 2.1. A reactive program 𝑃 is clean if for all inputs i, i′ ∈ StdIn such that i ≈ i′,
𝑃 (i) = 𝑃 (i′). Otherwise it is doped.

This definition states that a program is clean if its execution exhibits the same visible sequence

of output when supplied with two equivalent inputs, provided such inputs comply with the given

standard StdIn. Notice that the behaviour outside StdIn is deemed immediately clean since it is of

no interest.

In the context of the printer example, a program that would fail to print a document when

provided with an ink cartridge from a third-party manufacturer, but would otherwise succeed to

print would be considered doped, since this difference in output behaviour is captured by the above

definition. For this, the inputs (being pairs of document and printer cartridge) must be considered

equivalent (not identical), which comes down to ink cartridges being compatible.

However, the above definition is not very helpful for cases that need to preserve certain intended

behaviour outside of the standard inputs StdIn. This is clearly the case in the diesel emissions

scandal where the standard inputs are given precisely by the emissions test, but the behaviour

observed there is assumed to generalise beyond the singularity of this test setup. It is meant to

ensure that the amount of NO2 and NO (abbreviated as NO𝑥 ) in the car exhaust gas does not deviate

considerably in general, and comes with a legal prohibition of defeat mechanisms that simply turn

off the cleaning mechanism. This legal framework is obviously a bit short sighted, since it can

be circumvented by mechanisms that alter the behaviour gradually in a continuous manner, but

in effect drastically. In a nutshell, one expects that if the input values observed by the electronic

control unit (ECU) of a diesel vehicle deviate within “reasonable distance” from the standard input

values provided during the lab emission test, the amount of NO𝑥 found in the exhaust gas is still

within the regulated threshold, or at least it does not exceed it more than a “reasonable amount”.

This motivates the need to introduce the notion of distances on inputs and outputs. More precisely,

we consider distances on finite traces: 𝑑In : (In∗×In∗) → R≥0 and 𝑑Out : (Out∗×Out∗) → R≥0. Such
distances are required to be pseudometrics. (𝑑 is a pseudometric if 𝑑 (𝑥, 𝑥) = 0, 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥) and
𝑑 (𝑥,𝑦) ≤ 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧,𝑦) for all 𝑥 , 𝑦, and 𝑧.) With this, D’Argenio et. al [12] provide a definition of

robust cleanness that considers two parameters: parameter ^i refers to the acceptable distance an

input may deviate from the norm to be still considered, and parameter ^o that tells how far apart

outputs are allowed to be in case their respective inputs are within ^i distance (Def. 2.2 spells out

the Hausdorff distance used in [12]).

Definition 2.2. Let 𝜎 [..𝑘] denote the 𝑘-th prefix of the sequence 𝜎 . A reactive program 𝑃 is

robustly clean if for all input sequences i, i′ ∈ In𝜔 with i ∈ StdIn, it holds for arbitrary 𝑘 ≥ 0 that

whenever 𝑑In (i[.. 𝑗], i′ [.. 𝑗]) ≤ ^i for all 𝑗 ≤ 𝑘 , then

(1) for all o ∈ 𝑃 (i) there exists o′ ∈ 𝑃 (i′) such that 𝑑Out (o[..𝑘], o′ [..𝑘]) ≤ ^o, and

(2) for all o′ ∈ 𝑃 (i′) there exists o ∈ 𝑃 (i) such that 𝑑Out (o[..𝑘], o′ [..𝑘]) ≤ ^o.

Notice that this is what we actually need for the nondeterministic case: each possible output

generated along one of the executions of the program should be matched within “reasonable

distance” by some output generated by the other execution of the program. Also notice that i′

does not need to satisfy StdIn, but it will be considered as long as it is within ^i distance of any

input satisfying StdIn. In such a case, outputs generated by 𝑃 (i′) will be requested to be within ^o
distance of some output generated by the respective execution induced by a standard input.

ACM Trans. Model. Comput. Simul., Vol. 31, No. 3, Article 16. Publication date: August 2021.
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Doping Tests for Cyber-Physical Systems 16:5

We remark that Def. 2.2 entails the existence of a contract which defines the set of standard

inputs StdIn, the tolerance parameters ^i and ^o as well as the distances 𝑑In and 𝑑Out. In the context

of diesel engines, one might imagine that the values to be considered, especially the tolerance

parameters ^i and ^o for a particular car model are made publicly available (or are even advertised

by the car manufacturer), so as to enable potential customers to discriminate between different

car models according to the robustness they reach in being clean. It is also imaginable that the

tolerances and distances are fixed by the legal authorities as part of environmental regulations.

3 ROBUSTLY CLEAN LABELLED TRANSITION SYSTEMS
This section develops the framework needed for an effective theory of black-box doping tests based

on the above concepts. In this, the standard behaviour (e.g. as defined by the emission tests) and

the robust cleanness definitions together will induce a set of reference behaviours that then serve

as a model in a model-based conformance testing approach. To set the stage for this, we recall

the definitions of labelled transition systems (LTS) and input-output transitions systems (IOTS)

together with Tretmans’ notion on model-based conformance testing [31]. We then recast the

characterisation of robust cleanness (Def. 2.2) in terms of LTS.

Definition 3.1. A labelled transition system (LTS) with inputs and outputs L = ⟨𝑄, In,Out,→, 𝑞0⟩
is a five-tuple where (i) 𝑄 is a (possibly uncountable) non-empty set of states; (ii) 𝐿 = In ⊎Out is a
(possibly uncountable) set of labels; (iii)→ ⊆ 𝑄 × 𝐿 ×𝑄 is the transition relation; (iv) 𝑞0 ∈ 𝑄 is the

initial state. An LTS is an input-output transition system (IOTS) if it is input-enabled in any state,

i.e., for all 𝑞 ∈ 𝑄 and 𝑎 ∈ In there is some 𝑞′ ∈ 𝑄 such that 𝑞
𝑎−→ 𝑞′.

For ease of presentation, we do not consider internal transitions. The following definitions will

be used throughout the paper. A finite path 𝑝 in an LTS L = ⟨𝑄, In,Out,→, 𝑞0⟩ is a sequence

𝑞1𝑎1𝑞2𝑎2 · · ·𝑎𝑛−1𝑞𝑛 with 𝑞𝑖
𝑎𝑖−→ 𝑞𝑖+1 for all 1 ≤ 𝑖 < 𝑛. We denote last(𝑝) as the last state occurring in

𝑝 , i.e., last(𝑝) = 𝑞𝑛 . An infinite path 𝑝 in L is a sequence 𝑞1𝑎1𝑞2𝑎2 . . . with 𝑞𝑖
𝑎𝑖−→ 𝑞𝑖+1 for all 𝑖 ∈ N>0.

Let paths∗ (𝑞) and paths𝜔 (𝑞) be the sets of all finite and infinite paths of L beginning in state 𝑞,

respectively. If𝑞 = 𝑞0, we also write paths∗ (L) (paths𝜔 (L)) instead of paths∗ (𝑞0) (paths𝜔 (𝑞0)). The
sequence 𝑎1𝑎2 · · ·𝑎𝑛 is a finite trace 𝜎 of L if there is a finite path 𝑞1𝑎1𝑞2𝑎2 . . . 𝑎𝑛𝑞𝑛+1 ∈ paths∗ (𝑞1).
We denote last(𝜎) as the last action label occurring in 𝜎 , i.e., last(𝜎) = 𝑎𝑛 . 𝑎1𝑎2 · · · is an infinite
trace if there is an infinite path 𝑞1𝑎1𝑞2𝑎2 . . . ∈ paths𝜔 (𝑞1). If 𝑝 is a path, we let trace(𝑝) denote the
trace defined by 𝑝 . For states 𝑞 ∈ 𝑄 , let traces∗ (𝑞) and traces𝜔 (𝑞) be the set of all finite and infinite
traces beginning in 𝑞, respectively, and let traces∗ (L) = traces∗ (𝑞0) and traces𝜔 (L) = traces𝜔 (𝑞0).
We will use L1 ⊆ L2 to denote that traces𝜔 (L1) ⊆ traces𝜔 (L2).

Model-Based Conformance Tests. In the following we recall the basic notions of input-output
conformance (ioco) testing [31–33], and refer to the mentioned literature for more details. In this

setting, it is assumed that the implemented system under test (IUT) I can be modelled as an IOTS

while the specification of the required behaviour is given in terms of an LTS Spec. The idea of
whether the IUT I conforms to the specification Spec is formalized by means of the ioco relation.

In the remainder of this article it is necessary to identify quiescent (or suspended) states. A
state is quiescent whenever it cannot proceed autonomously, i.e., it cannot produce an output. A

quiescent state may be explicitly highlighted as such by having an outgoing quiescence transition

with the distinct label 𝛿 . An implementation can observe quiescence with a timeout mechanism.

In specifications, 𝛿-transitions are often modelled as self-loops back to the quiescent state. These

self-loops are added to all quiescent states of an LTS when applying the quiescence closure to it.

ACM Trans. Model. Comput. Simul., Vol. 31, No. 3, Article 16. Publication date: August 2021.
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16:6 Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns

Definition 3.2. Let L = ⟨𝑄, In,Out,→, 𝑞0⟩ be an LTS. The quiescence closure (or 𝛿-closure) of L is

defined as the LTS L𝛿 B ⟨𝑄, In,Out𝛿 ,→𝛿 , 𝑞0⟩ with Out𝛿 B Out∪ {𝛿} and→𝛿 B →∪ {𝑠
𝛿−−→𝛿 𝑠 |

∀𝑜 ∈ Out, 𝑡 ∈ 𝑄 : 𝑠 ̸𝑜−−→ 𝑡}. Using this the suspension traces of L are defined by traces∗ (L𝛿 ).

Let L = ⟨𝑄, In,Out,→, 𝑞0⟩ be an LTS with 𝜎 = 𝑎1 𝑎2 . . . 𝑎𝑛 ∈ traces∗ (L) and let 𝑄 ′ ⊆ 𝑄 . The

set L after 𝜎 is defined as {𝑞𝑛 | 𝑞0𝑎1𝑞1𝑎2 . . . 𝑎𝑛𝑞𝑛 ∈ paths∗ (L)} and 𝑄 ′ after 𝑎 as {𝑞′ | ∃𝑞 ∈
𝑄 ′ : 𝑞

𝑎−→ 𝑞′}. For a state 𝑞, let out(𝑞) = {𝑜 ∈ Out ∪ {𝛿} | ∃𝑞′ : 𝑞 𝑜−→ 𝑞′} and for a set of states 𝑄 ′, let
out(𝑄 ′) = ⋃

𝑞∈𝑄 ′ out(𝑞).
The idea behind the ioco relation is that any output produced by the IUT must have been

foreseen by its specification, and moreover, any input in the IUT not foreseen in the specification

may introduce new functionality. As a result, I ioco Spec is defined to hold whenever out(I𝛿 after
𝜎) ⊆ out(Spec𝛿 after 𝜎) for all 𝜎 ∈ traces∗ (Spec𝛿 ).

The base principle of conformance testing now is to assess by means of testing whether the IUT

conforms to its specification w.r.t. ioco. Tretmans defines test cases as LTS. These LTS are described

by means of a basic process algebra [33]. A process is a term defined in the language P given by

𝑝 F
∑

𝑧∈𝑍 𝑎𝑧 ;𝑝𝑧 | 𝐴

where 𝑍 is an index set, each 𝑎𝑧 is a label, and each 𝑝𝑧 is a process, and 𝐴 belongs to a set of

constants called process names which in turn can be defined by equations of the form 𝐴 B 𝑝 .

Following [33], we use the semicolon as action prefix operator. We write

∑
𝑧∈𝑍1

𝑎𝑧 ;𝑝𝑧 +
∑

𝑧∈𝑍2

𝑎𝑧 ;𝑝𝑧
for

∑
𝑧∈𝑍1∪𝑍2

𝑎𝑧 ;𝑝𝑧 . A process has semantics in terms of LTS in the usual way: the set of states is

the set of all possible processes and the transitions are defined according to the following rules.∑
𝑧∈𝑍 𝑎𝑧 ;𝑝𝑧

𝑎𝑧−−→ 𝑝𝑧
𝑝

𝑎−→ 𝑝′

𝐴
𝑎−→ 𝑝′

𝐴 B 𝑝

A test case 𝑡 for an implementation with inputs in In and outputs in Out is defined as a de-

terministic LTS. Let 𝑡0 be the initial state of 𝑡 . 𝑡 has the following restrictions: (i) from 𝑡0, any of

the special processes pass and fail can be reached, where pass ≠ fail, and they are defined by

pass B
∑{𝑎;pass | 𝑎 ∈ Out𝛿 } and fail B

∑{𝑎; fail | 𝑎 ∈ Out𝛿 }, (ii) 𝑡 has no reachable cycles

except those of pass and fail, and (iii) for any state 𝑞 reachable from 𝑡0, the set {𝑎 | 𝑞 𝑎−→ 𝑞′}
contains the whole setOut of outputs, and also contains either exactly one input or 𝛿 (but not both).

A test suite is a set of test cases, a test run of a test case 𝑡 with an IUT I is an experiment where

the test case supplies inputs to the IUT while observing the outputs of the IUT or the absence of

them [33]. This can be captured by parallel composition according to the following transition rule:

𝑞
𝑎−→ 𝑞′ 𝑝

𝑎−→ 𝑝′ 𝑎 ∈ In ∪Out𝛿
𝑞 ∥ 𝑝 𝑎−→ 𝑞′ ∥ 𝑝′

Let 𝑝0 be the initial state of I. The IUT I passes the test case 𝑡 , notation I passes 𝑡 , if and only if

there is no state 𝑝 such that a state fail ∥ 𝑝 is reachable from 𝑡0 ∥ 𝑝0. Given a test suite 𝑇 , we write

I passes 𝑇 whenever I passes 𝑡 for all 𝑡 ∈ 𝑇 .
A test case can be generated by the algorithm TG shown below. Argument 𝑆 is a subset of the

state space of the specification LTS Spec. The algorithm nondeterministically returns a process,

which induces a deterministic LTS. We write 𝑡 ∈ TG(𝑆) to denote that 𝑡 is one of the processes that
can be generated by an execution of TG(𝑆).
TG(𝑆) B choose nondeterministically one of the following processes:

(1) pass
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Doping Tests for Cyber-Physical Systems 16:7

(2) 𝑖; 𝑡𝑖 where 𝑖 ∈ In, 𝑆 after 𝑖 ≠ ∅ and 𝑡𝑖 ∈ TG(𝑆 after 𝑖)
+ ∑{𝑜 ; fail | 𝑜 ∈ Out ∧ 𝑜 ∉ out(𝑆)}
+ ∑{𝑜 𝑗 ; 𝑡𝑜 𝑗

| 𝑜 𝑗 ∈ Out ∧ 𝑜 𝑗 ∈ out(𝑆)}, where for each 𝑜 𝑗 , 𝑡𝑜 𝑗
∈ TG(𝑆 after 𝑜 𝑗 )

(3)

∑{𝑜 ; fail | 𝑜 ∈ Out ∪ {𝛿} ∧ 𝑜 ∉ out(𝑆)}
+ ∑{𝑜 𝑗 ; 𝑡𝑜 𝑗

| 𝑜 𝑗 ∈ Out ∪ {𝛿} ∧ 𝑜 𝑗 ∈ out(𝑆)}, where for each 𝑜 𝑗 , 𝑡𝑜 𝑗
∈ TG(𝑆 after 𝑜 𝑗 )

Given a specification Spec with initial state 𝑠0, TG({𝑠0}) generates a test suite for Spec. The first
possible option in the algorithm states that at any moment the test process can stop indicating that

the execution up to this point has been satisfactory. The second option may exercise input 𝑖 and

continue with test 𝑡𝑖 . Alternatively it can accept any possible output. If the output is not included

in the specification, the test fails. If instead the output is considered, it is accepted and it continues

with the testing process. The third option is similar to the previous one only that it considers the

possibility of quiescence instead of inputs. When the absence of an output (label 𝛿) is observed, the

test fails if quiescence is not accepted and otherwise continues with the selected execution. TG can

produce a (possibly infinitely large) test suite𝑇 , for which a system I passes 𝑇 if I ioco Spec and,
conversely, I ioco Spec if I passes 𝑇 . The former property is called soundness and the latter is

called exhaustiveness. A test suite is complete, if and only if it is both sound and exhaustive. We refer

to the original work by Tretmans [32, 33] for more details and intuitions about ioco, P and TG.
It is important to note that in the setting of robust cleanness the specification Spec is missing.

Instead, we need to construct the specification from the standard inputs and the respective observed

outputs, together with the distance functions and the thresholds given by the contract. Furthermore,

this needs to respect the ∀ − ∃ interaction required by the cleanness property (Def. 2.2).

Software Doping on LTS. To capture the notion of software doping in the context of LTS, we

provide two projections of a trace, projecting to a sequence of the appearing inputs, respectively

outputs. To do this, we extend the set of labels by adding the input –𝑖 , that indicates that in the

respective step some output (or quiescence) was produced (but masking the precise output), and the

output –𝑜 that indicates that in this step some (masked) input was given. Projection on inputs ↓𝑖 :
(In ∪Out𝛿 )𝜔 → (In ∪ {–𝑖 })𝜔 and projection on outputs ↓𝑜 : (In∪Out𝛿 )𝜔 → (Out𝛿 ∪{–𝑜 })𝜔 are de-

fined for all traces 𝜎 ∈ (In∪Out𝛿 )𝜔 and𝑘 ∈ N as follows: 𝜎↓𝑖 [𝑘] B if 𝜎 [𝑘] ∈ In then 𝜎 [𝑘] else –𝑖
and similarly 𝜎↓𝑜 [𝑘] B if 𝜎 [𝑘] ∈ Out𝛿 then 𝜎 [𝑘] else –𝑜 . They are lifted to sets of traces in the

usual elementwise way.

Definition 3.3. An LTS S is a standard for an LTS L, if traces𝜔 (S𝛿 ) ⊆ traces𝜔 (L𝛿 ).

The above definition provides an interpretation of the notion of StdIn for a given program 𝑃

modelled in terms of LTS L. This interpretation relaxes the original definition of StdIn, because it
requires to fix only a subset of the behaviour that L exhibits when executed with standard inputs.

This corresponds to a testing context, in which recordings of the system executing standard inputs

are the baseline for testing. StdIn can then be considered as implicitly determined as the input

sequences traces𝜔 (S)↓𝑖 occurring in S. If instead L and StdIn ⊆ (In ∪ –𝑖 )𝜔 are given, we denote

by S (L,StdIn) a standard LTS which is maximal w.r.t. StdIn and L, i.e., for all 𝜎 ∈ (In ∪ Out𝛿 )𝜔 ,
𝜎 ∈ traces𝜔 (S𝛿 (L,StdIn) ) if and only if 𝜎↓𝑖 ∈ StdIn and 𝜎 ∈ traces𝜔 (L𝛿 ).

In this new setting, we assume that the distance functions 𝑑In and 𝑑Out apply on traces containing

labels –𝑖 and –𝑜 , i.e. they are pseudometrics in (In∪ {–𝑖 })∗ × (In∪ {–𝑖 })∗ → R≥0 and, respectively,
(Out ∪ {–𝑜 })∗ × (Out ∪ {–𝑜 })∗ → R≥0. In the context of this article, we maintain the notion of

a contract for robust cleanness and denote it explicitly by a 5-tuple C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩. It
contains an LTS S representing some standard behaviour, the distance functions and thresholds
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16:8 Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns

(the domains In and Out are captured implicitly as the domains of 𝑑In, respectively 𝑑Out). With this,

we state robust cleanness for LTS as follows.

Definition 3.4. An IOTS L is robustly clean w.r.t. some contract C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩ if and
only if S is a standard for L and for all 𝜎 ∈ traces𝜔 (S𝛿 ), 𝜎 ′ ∈ traces𝜔 (L𝛿 ) and 𝑘 ≥ 0 it holds that

whenever 𝑑In (𝜎 [.. 𝑗]↓𝑖 , 𝜎 ′ [.. 𝑗]↓𝑖 ) ≤ ^i for all 𝑗 ≤ 𝑘 then

(1) there exists 𝜎 ′′ ∈ traces𝜔 (L𝛿 ) such that 𝜎 ′↓𝑖 = 𝜎 ′′↓𝑖 and 𝑑Out𝛿 (𝜎 [..𝑘]↓𝑜 , 𝜎 ′′ [..𝑘]↓𝑜 ) ≤ ^o,

(2) there exists 𝜎 ′′ ∈ traces𝜔 (S𝛿 ) such that 𝜎↓𝑖 = 𝜎 ′′↓𝑖 and 𝑑Out𝛿 (𝜎 ′ [..𝑘]↓𝑜 , 𝜎 ′′ [..𝑘]↓𝑜 ) ≤ ^o.

The definition is in the fashion of the HyperLTL interpretation of Proposition 19 of [12] (restricted

to programs with no parameters). There, contracts define the set StdIn instead of the LTS S and

hence the standard behaviour is fully defined. The relaxed interpretation of standard behaviour

S is reflected in the last line of Def. 3.4, which requires 𝜎 ′′ to be a trace of S𝛿 instead of L𝛿 . For

the maximal standard LTS S (L,StdIn) , Def. 3.4 echoes the HyperLTL semantics. Thus, the proof

showing that Def. 3.4 is the correct interpretation of Def. 2.2 in terms of LTS, can be obtained in a

way similar to that of Prop. 19 in [12]. In the spirit of model-based testing with ioco, Def. 3.4 takes
specific care of quiescence in a system. In order to properly integrate quiescence into the context of

robust cleanness it must be considered as a unique output. As a consequence, in the presence of a

contract C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩, we use—instead of S, Out and 𝑑Out—the quiescence closure S𝛿 of

S, Out𝛿 = Out ∪ {𝛿} and an extended output distance defined as 𝑑Out𝛿 (𝜎1, 𝜎2) B 𝑑Out (𝜎1\𝛿 , 𝜎2\𝛿 )
if 𝜎1 [𝑖] = 𝛿 ⇔ 𝜎2 [𝑖] = 𝛿 for all 𝑖 , and 𝑑Out𝛿 (𝜎1, 𝜎2) B ∞ otherwise, where 𝜎\𝛿 is the same as 𝜎 with

all 𝛿 removed.

In the sequel, we will at some places need to refer to Def. 3.4 only considering the second

condition (but not the first one). We denote this as Def. 3.4.2. We will also use the predicate

∀𝑗 ≤ 𝑘 : 𝑑In (𝜎 [.. 𝑗]↓𝑖 , 𝜎 ′ [.. 𝑗]↓𝑖 ) ≤ ^i, which we abbreviate by a predicate V(𝑑In,^i ) (𝑘, 𝜎, 𝜎 ′). If 𝑑In
and ^i are known from the context, we omit the index.

4 REFERENCE IMPLEMENTATION FOR CONTRACTS
As mentioned before, doping tests need to be based on a contract C, which we assume given.

C specifies the domains In, Out, a standard LTS S, the distance functions 𝑑In and 𝑑Out and the

bounds ^i and ^o. We intuitively expect the contract to be satisfiable in the sense that it never

enforces a single input sequence of the implementation to keep outputs close enough to two

different executions of the specification while their outputs stretch too far apart. We show such a

problematic case in the following example.

S𝛿
𝑖−^i 𝑖+^i

𝛿 𝑜

𝛿

𝛿𝛿

L
𝑖−^i 𝑖+^i

𝛿 𝑜

𝑖

𝑥

Example 2. On the right a quiescence-closed standard LTS S𝛿 for an imple-

mentation L (shown below) is depicted. For simplicity some input transitions

are omitted. AssumeOut = {𝑜} and In = {𝑖, 𝑖−^i, 𝑖+^i}. Consider the transition
labelled 𝑥 of L. This must be one of either 𝑜 or 𝛿 , but we will see that either

choice leads to a contradiction w.r.t. the output distances induced. The input

projection of the middle path inL is 𝑖 –𝑖 and the input distance to (𝑖−^i) –𝑖 and
(𝑖 + ^i) –𝑖 is exactly ^i, so both branches (𝑖 + ^i) 𝑜 and (𝑖 − ^i) 𝛿 of S𝛿 must be

considered to determine 𝑥 . For 𝑥 = 𝑜 , the output distance of –𝑜 𝑥 to –𝑜 𝑜 in the

right branch of S𝛿 is 0, i.e. less than ^o. However, 𝑑Out𝛿 (–𝑜 𝛿, –𝑜 𝑜) = ∞ > ^o.

Thus the output distance to the left branch of S𝛿 is too high if picking 𝑜 . Instead
picking 𝑥 = 𝛿 does not work either, for the symmetric reasons, the problem

switches sides. Thus, neither picking 𝑜 nor 𝛿 for 𝑥 satisfies robust cleanness

here. Indeed, no implementation satisfying robust cleanness exists for the given contract.
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Doping Tests for Cyber-Physical Systems 16:9

We would expect that a correct implementation fully entails the standard behaviour. So, to satisfy

a contract, the standard behaviour itself must be robustly clean. This and the need for satisfiability

of particular inputs lead to Def. 4.1.

Definition 4.1 (Satisfiable Contract). Let C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩ be a contract and let 𝜎𝑖 ∈ (In ∪
{–𝑖 })𝜔 be the input projection of some trace. 𝜎𝑖 is satisfiable for C if and only if for every standard

trace 𝜎𝑆 ∈ traces𝜔 (S𝛿 ) and 𝑘 > 0 such that for all 𝑗 ≤ 𝑘 𝑑In (𝜎𝑖 [.. 𝑗], 𝜎𝑆 [.. 𝑗]↓𝑖 ) ≤ ^i there is some

implementationL that satisfies Def. 3.4.2 w.r.t. C and has some trace 𝜎 ∈ traces𝜔 (L𝛿 ) with 𝜎↓𝑖 = 𝜎𝑖
and 𝑑Out𝛿 (𝜎 [..𝑘]↓𝑜 , 𝜎𝑆 [..𝑘]↓𝑜 ) ≤ ^o.

C is satisfiable if and only if all inputs 𝜎𝑖 ∈ (In∪ {–𝑖 })𝜔 are satisfiable for C and S is robustly clean

w.r.t. C. A contract that is not satisfiable is called unsatisfiable.

Given a satisfiable contract it is always possible to construct an implementation that is robustly

clean w.r.t. to this contract. Furthermore, for every contract there is exactly one implementation

(modulo trace equivalence) that contains all possible outputs that satisfy robust cleanness. Such an

implementation is called the largest implementation.

Definition 4.2 (Largest Implementation). Let C be a contract and L an implementation that is

robustly clean w.r.t. C. L is the largest implementation within C if and only if for every L′ that is
robustly clean w.r.t. C it holds that traces𝜔 (L′𝛿 ) ⊆ traces𝜔 (L𝛿 ).

In the following, we will focus on the fragment of satisfiable contracts with standard behaviour

defined by finite LTS. For unsatisfiable contracts, testing is not necessary, because every implemen-

tation is not robustly clean w.r.t. to C. Finiteness of S will be necessary to make testing feasible in

practice. For simplicity we will further assume past-forgetful output distance functions. That is,
𝑑Out (𝜎1, 𝜎2) = 𝑑Out (𝜎 ′1, 𝜎 ′2) whenever last(𝜎1) = last(𝜎 ′

1
) and last(𝜎2) = last(𝜎 ′

2
). Thus, we simply

assume that 𝑑Out : (Out∪{–𝑜 } × Out∪{–𝑜 }) → R≥0, i.e., the output distances are determined by

the last output only. We remark that 𝑑Out𝛿 (𝛿, 𝑜) = ∞ for all 𝑜 ≠ 𝛿 .

Reference implementation. We will now show how to construct the largest implementation for

any contract (of the fragment we consider), which we name reference implementation R. It is derived
from S𝛿 by adding inputs and outputs in such a way that whenever the input sequence leading

to a particular state is within ^i distance of an input sequence 𝜎𝑖 of S𝛿 , then the outputs possible

in such a state should be at most ^o distant from those outputs possible in the unique state on S𝛿
reached through 𝜎𝑖 . This ensures that R will satisfy condition 2) in Def. 3.4. For inputs beyond the

^i radius of all standard inputs, all outputs in Out𝛿 are possible in the respective state in R.
To construct the reference implementation R we decide to model the quiescence transitions

explicitly instead of using the quiescence closure. We preserve the property, that in each state of

the LTS it is possible to do an output or a quiescence transition. The construction of R proceeds by

adding all transitions that satisfy Def. 3.4.2.

Definition 4.3. Let C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩ be a contract. The reference implementation R for

contract C is the LTS ⟨(In ∪Out𝛿 )∗, In,Out𝛿 ,→R, 𝜖⟩ where→R is defined by

∀𝜎𝑖 ∈ traces𝜔 (S𝛿 )↓𝑖 :
(∀𝑗 ≤ |𝜎 | + 1 : 𝑑In ((𝜎 · 𝑎)↓𝑖 [.. 𝑗], 𝜎𝑖 [.. 𝑗]) ≤ ^i)
⇒ ∃𝜎𝑆 ∈ traces𝜔 (S𝛿 ) : 𝜎𝑆↓𝑖 = 𝜎𝑖 ∧ 𝑑Out𝛿 (𝑎↓𝑜 , 𝜎𝑆 [|𝜎 | + 1]↓𝑜 ) ≤ ^o

𝜎
𝑎−→R 𝜎 · 𝑎

Notably, R is deterministic, since only transitions of the form 𝜎
𝑎−→R 𝜎 ·𝑎 are added. Even further,

the construction of R is such that we are always able to identify for each trace the (unique) state

which can be reached by that trace. This is also expressed formally in Lemma 4.4 and Corollary 4.5.
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𝜖

𝑖+[0, 2^i]𝑖+[−^i, 0) other_𝑖

𝑖+[−^i, 0) 𝑜+[−^o, 2^o]𝑖+[−^i, 0) any_𝑖 𝑖+[0, 2^i] any_𝑖 𝑖+[0, 2^i] 𝑜+[0, 2^o] other_𝑖 any_𝑜 other_𝑖 any_𝑖

𝑖+[−^i,0)
𝑖+[0,2^i ]

other_𝑖

any_𝑖 𝑜+[−^o,2^o ] any_𝑖 𝑜+[0,2^o ] any_𝑜 any_𝑖

Fig. 1. The reference implementation R of S in Example 3.

𝑠0

𝑠2𝑠1 𝑠3

𝑠4 𝑠5 𝑠6

S
𝑖 𝑖 𝑖+^i

𝑜 𝑜+^o 𝑜+^o

Example 3. Fig. 1 gives a schematic representation of the reference

implementation R for the LTS S on the right. Input (output) actions are

denoted with letter 𝑖 (𝑜 , respectively), quiescence transitions are omitted.

We use the absolute difference of the values, so that 𝑑In (𝑖, 𝑖′) B |𝑖−𝑖′ | and
𝑑Out (𝑜, 𝑜 ′) B |𝑜 − 𝑜 ′ |. For this example, the quiescence closure S𝛿 looks

like S but with 𝛿-loops in states 𝑠0, 𝑠4, 𝑠5, and 𝑠6. Label 𝑟+[𝑎, 𝑏] should
be interpreted as any value 𝑟 ′ ∈ [𝑎 + 𝑟, 𝑏 + 𝑟 ] and similarly 𝑟+[𝑎, 𝑏) and
𝑟+(𝑎, 𝑏], appropriately considering closed and open boundaries; “other_𝑖” represents any other

input not explicitly considered leaving the same state; and “any_𝑖” and “any_𝑜” represent any

possible input and output (including 𝛿), respectively. In any case –𝑖 and –𝑜 are not considered since

they are not part of the alphabet of the LTS. Also, we note that any possible sequence of inputs

becomes enabled in the bottom states in R in Fig. 1 (omitted in the picture).

The reference implementation R is obtained according to Def. 4.3. In order to give an idea of its

construction we focus on the states 𝜎 such that |𝜎 | = 1 (i.e., 𝜎 ∈ In ∪ {𝛿})—other cases are simpler.

First, notice that

traces𝜔 (S𝛿 ) = 𝛿𝜔 + 𝛿∗ 𝑖 𝑜 𝛿𝜔 + 𝛿∗ 𝑖 (𝑜+^o) 𝛿𝜔 + 𝛿∗ (𝑖+^i) (𝑜+^o) 𝛿𝜔 .

Here we use 𝜔-regular notation to describe the set of traces. This means that traces𝜔 (S𝛿 ) contains
the trace that remains quiet indefininitely (namely 𝛿𝜔 ), all traces that may stay quiet for a while,

receive an input 𝑖 , produce and output 𝑜 , and remain quiet indefininitely (i.e., any trace in 𝛿∗ 𝑖 𝑜 𝛿𝜔 ),
and so on. Hence, the set traces𝜔 (S𝛿 )↓𝑖 is then

traces𝜔 (S𝛿 )↓𝑖 = –
𝜔
𝑖 + –

∗
𝑖 𝑖 –

𝜔
𝑖 + –

∗
𝑖 (𝑖+^i) –𝜔𝑖 .

Suppose 𝜎 ∈ 𝑖+[−^i, 0) and 𝑎 ∈ 𝑜 + [−^o, 2^o]. In this case, 𝜎𝑖 = 𝑖 –𝜔
𝑖
∈ traces𝜔 (S𝛿 )↓𝑖 is the only

standard trace satisfying ∀𝑗 ≤ 2 : 𝑑In ((𝜎 ·𝑎)↓𝑖 [.. 𝑗], 𝜎𝑖 [.. 𝑗]) ≤ ^i. If 𝑎 ∈ 𝑜 + [−^o, ^o] take 𝜎𝑆 = 𝑖 𝑜 𝛿𝜔

and then 𝜎𝑆↓𝑖 = 𝜎𝑖 ∧ 𝑑Out𝛿 (𝑎↓𝑜 , 𝜎𝑆 [|𝜎 | + 1]↓𝑜 ) ≤ ^o holds. If 𝑎 ∈ 𝑜 + [0, 2^o], then 𝜎𝑆 = 𝑖 (𝑜+^o) 𝛿𝜔

is the one that does the job. Therefore 𝜎
𝑎−→R 𝜎 · 𝑎. This case defines the schematic transition

𝑖+[−^i, 0)
𝑜+[−^o,2^o ]−−−−−−−−−→R 𝑖+[−^i, 0) 𝑜+[−^o, 2^o].

If instead 𝑎 ∈ Out but 𝑎 ∉ 𝑜 + [−^o, 2^o], then no 𝑎-outgoing transition from 𝜎 ∈ 𝑖+[−^i, 0) is
possible since no matching 𝜎𝑆 can be found. However, if 𝑎 ∈ In, no 𝜎𝑖 ∈ traces𝜔 (S𝛿 )↓𝑖 satisfies
∀𝑗 ≤ 2 : 𝑑In ((𝜎 · 𝑎)↓𝑖 [.. 𝑗], 𝜎𝑖 [.. 𝑗]) ≤ ^i. As the antecedent of the implication is false, any input

defines a valid outgoing transition from a state 𝜎 ∈ 𝑖+[−^i, 0). This yields the schematic transition

𝑖+[−^i, 0)
any_𝑖
−−−−→R 𝑖+[−^i, 0) any_𝑖 .

Suppose now 𝜎 ∈ 𝑖+[0, 2^i] and 𝑎 ∈ 𝑜 + [0, 2^o]. We consider the two subcases 𝜎 ∈ 𝑖+[0, ^i] and
𝜎 ∈ 𝑖+(^i, 2^i]. If 𝜎 ∈ 𝑖+(^i, 2^i] then 𝜎𝑖 = (𝑖+^i) –𝜔𝑖 ∈ traces𝜔 (S𝛿 )↓𝑖 is the only one satisfying

∀𝑗 ≤ 2 : 𝑑In ((𝜎 · 𝑎)↓𝑖 [.. 𝑗], 𝜎𝑖 [.. 𝑗]) ≤ ^i and the construction follows similarly as above. If instead

𝜎 ∈ 𝑖+[0, ^i], then every 𝜎𝑖 ∈ {𝑖 –𝜔𝑖 , (𝑖+^i) –𝜔𝑖 } satisfies ∀𝑗 ≤ 2 : 𝑑In ((𝜎 · 𝑎)↓𝑖 [.. 𝑗], 𝜎𝑖 [.. 𝑗]) ≤ ^i. If

𝜎𝑖 = 𝑖 –𝜔
𝑖
, choose 𝜎𝑆 = 𝑖 (𝑜+^o) 𝛿𝜔 , and if 𝜎𝑖 = (𝑖+^i) –𝜔𝑖 , choose 𝜎𝑆 = (𝑖+^i) (𝑜+^o) 𝛿𝜔 . In both of
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Doping Tests for Cyber-Physical Systems 16:11

these cases, 𝜎𝑆↓𝑖 = 𝜎𝑖 ∧ 𝑑Out𝛿 (𝑎↓𝑜 , 𝜎𝑆 [|𝜎 | + 1]↓𝑜 ) ≤ ^o is satisfied. Hence 𝜎
𝑎−→R 𝜎 · 𝑎. Putting both

subcases together yields the schematic transition 𝑖+[0, 2^i]
𝑜+[0,2^o ]−−−−−−−→R 𝑖+[0, 2^i] 𝑜 + [0, 2^o].

The case in which 𝜎 ∈ 𝑖+[0, 2^i] but 𝑎 ∉ 𝑜 + [0, 2^o] follows as before.
If 𝜎 ∉ 𝑖+[−^i, 2^i] (in other words, “𝜎 ∈ other_𝑖”), there is no 𝜎𝑖 ∈ traces𝜔 (S𝛿 )↓𝑖 such that

∀𝑗 ≤ 2 : 𝑑In ((𝜎 · 𝑎)↓𝑖 [.. 𝑗], 𝜎𝑖 [.. 𝑗]) ≤ ^i, so any transition is possible.

Finally, if 𝜎 = 𝛿 (omitted in Fig. 1) the construction would follow just like for the initial state 𝜖 .

Properties of the Reference Implementation R. In order to show that R is defined in a reasonable

way, we will establish some important properties of R. We start with a fundamental property, which

exploits the way R is constructed in order to serve as a basis for many of the following proofs.

Essentially, every state in R is “labelled” with the unique trace by which the state is reachable, if it

is reachable at all.

Lemma 4.4. Let C be a contract and R the reference implementation for C. Then, for all finite paths
𝑝 ∈ paths∗ (R) it holds that last(𝑝) = trace(𝑝).

Proof. We proceed by induction on the number of states in 𝑝 . If 𝑝 has only one state then

𝑝 = 𝜖 = last(𝑝) = trace(𝑝), since 𝜖 is the initial state in R.
Suppose now, that 𝑝 = (𝑝′ 𝑎 𝑠) ∈ paths∗ (R). By induction, last(𝑝′) = trace(𝑝′). By Def. 4.3,

last(𝑝′) 𝑎−−→R 𝑠 only if 𝑠 = last(𝑝′) · 𝑎. But last(𝑝) = 𝑠 = last(𝑝′) · 𝑎 = trace(𝑝′) · 𝑎 = trace(𝑝),
which proves the lemma. □

As a consequence, for every trace of R we can reconstruct the unique path with this trace.

Corollary 4.5. Let C be a contract, R the reference implementation for C, 𝑝 ∈ paths∗ (R) a finite
path ofR and𝜎 = trace(𝑝) its trace. Then𝑝 is exactly the path 𝜖 𝜎 [1] (𝜎 [..1]) 𝜎 [2] (𝜎 [..2]) · · · (𝜎 [..|𝜎 |−
1]) 𝜎 [|𝜎 |] (𝜎 [..|𝜎 |]).

One of the most desired properties of R that we will show is that it is the largest implementation

within the contract it is constructed from. The following lemma shows a similar property. It is

stronger in not assuming implementations to be IOTS (thus LTS are sufficient) and it considers

only the second condition of robust cleanness. It is also weaker in not concluding R to be robustly

clean. However, this Lemma will be central to many of the following proofs.

Lemma 4.6. Let C be a contract and R the reference implementation for C. Then, for every LTS L
satisfying Def. 3.4.2, it holds that traces𝜔 (L𝛿 ) ⊆ traces𝜔 (R).

Proof. For a proof by contradiction, suppose that there is someL satisfying Def. 3.4.2, but which

has some trace 𝜎 ∈ traces𝜔 (L𝛿 ) that is not a trace of R, i.e. 𝜎 ∉ traces𝜔 (R). Since 𝜎 ∉ traces𝜔 (R),
there must be some 𝑘 > 0 for which 𝜎 [..𝑘 − 1] ∈ traces∗ (R), but 𝜎 [..𝑘] ∉ traces∗ (R). Hence, there
is no transition 𝜎 [..𝑘 − 1]

𝜎 [𝑘 ]
−−−→R 𝜎 [..𝑘] in R. This can only be, because the premise of Def. 4.3 is

not satisfied, i.e., there is some 𝜎𝑖 ∈ traces𝜔 (S𝛿 )↓𝑖 , such that (1)V(𝑘, 𝜎, 𝜎𝑖 ) and (2) for all standard

traces 𝜎𝑆 ∈ traces𝜔 (S𝛿 ) with 𝜎𝑠↓𝑖 = 𝜎𝑖 it holds that 𝑑Out𝛿 (𝜎 [𝑘]↓𝑜 , 𝜎𝑆 [𝑘]↓𝑜 ) > ^o.

Let 𝜎𝑖𝑜 ∈ traces𝜔 (S𝛿 ) such that 𝜎𝑖𝑜↓𝑖 = 𝜎𝑖 . From Def. 3.4.2 we get for L, 𝜎𝑖𝑜 , 𝜎 and 𝑘 with (1)

a trace 𝜎 ′′ ∈ traces𝜔 (S𝛿 ) with 𝜎 ′′↓𝑖 = 𝜎𝑖𝑜↓𝑖 = 𝜎𝑖 and 𝑑Out𝛿 (𝜎 [..𝑘]↓𝑜 , 𝜎 ′′ [..𝑘]↓𝑜 ) ≤ ^o. From

the assumption that 𝑑Out𝛿 is past-forgetful, we get that 𝑑Out𝛿 (𝜎 [𝑘]↓𝑜 , 𝜎 ′′ [𝑘]↓𝑜 ) ≤ ^o, which is a

contradiction to (2). □

Def. 4.3 models an LTS that is deterministic and quiescence is added explicitly instead of relying

on the quiescence closure. As a consequence, outputs and quiescence may coexist as options in

a state, i.e., they are not mutually exclusive. Lemma 4.7 shows that this is done in the spirit of

model-based testing theory and ioco, that is, R𝛿 is identical to R.
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Lemma 4.7. Let C be a satisfiable contract and R the reference implementation for C. Then, the
quiescence closure R𝛿 of R is exactly R.

Proof. We have to show that for every state 𝜎 ∈ (In ∪ Out𝛿 )∗, there is a transition 𝜎
𝑜−→R 𝜎 · 𝑜

in R with 𝑜 ∈ Out𝛿 . Let 𝜎𝑖 = 𝜎↓𝑖 · (–𝑖 )𝜔 an infinite input trace. We proceed by case-distinction on

whether there is a trace 𝜎𝑆 ∈ traces𝜔 (S𝛿 ) such thatV(|𝜎 | + 1, 𝜎𝑖 , 𝜎𝑆 ) holds. If this is not the case,
the premise of Def. 4.3 does not hold and hence we get that for all 𝑜 ∈ Out𝛿 a transition 𝜎

𝑜−→R 𝜎 · 𝑜
in R.
In the case that the assumption does hold, we get from satisfiability of C and Def. 4.1 an implemen-

tation L and a trace 𝜎 ′′ ∈ traces𝜔 (L𝛿 ) with 𝜎 ′′↓𝑖 = 𝜎𝑖 and 𝑑Out𝛿 (𝜎 ′′ [|𝜎 | + 1]↓𝑜 , 𝜎𝑆 [|𝜎 | + 1]↓𝑜 ) ≤ ^o.

From Lemma 4.6 we get that 𝜎 ′′ ∈ traces𝜔 (R). For this trace to exist it is necessary that there is the
transition 𝜎 ′′ [..|𝜎 |]

𝜎 ′′ [ |𝜎 |+1]
−−−−−−−−→R 𝜎 ′′ [..|𝜎 | + 1] in R. Hence, we know (from Def. 4.3) that for every

trace 𝜎𝑆 ∈ traces𝜔 (S𝛿 )↓𝑖 for which V(|𝜎 | + 1, 𝜎 ′′, 𝜎𝑆 ) holds, there is some �̂� ∈ traces𝜔 (S𝛿 )
with �̂�↓𝑖 = 𝜎𝑆↓𝑖 and 𝑑Out𝛿 (𝜎 ′′ [|𝜎 | + 1], �̂� [|𝜎 | + 1]↓𝑜 ) ≤ ^o. Since 𝜎 ′′↓𝑖 = 𝜎𝑖 and in partic-

ular 𝜎↓𝑖 · –𝑖 = 𝜎 ′′ [..|𝜎 | + 1]↓𝑖 , we have that for every 𝜎𝑆 and 𝑗 ≤ |𝜎 | + 1, the equivalence

𝑑In (𝜎 ′′ [.. 𝑗]↓𝑖 , 𝜎𝑆 [.. 𝑗]↓𝑖 ) ≤ ^i ⇐⇒ 𝑑In ((𝜎 · 𝜎 ′′ [|𝜎 | + 1]) [.. 𝑗]↓𝑖 , 𝜎𝑆 [.. 𝑗]↓𝑖 ) ≤ ^i holds. Hence, for

every 𝜎𝑆 ∈ traces𝜔 (S𝛿 )↓𝑖 withV(|𝜎 | + 1, (𝜎 · 𝜎 ′′ [|𝜎 | + 1]), 𝜎𝑆 ), we can provide a �̂� ∈ traces𝜔 (S𝛿 )
with �̂�↓𝑖 = 𝜎𝑆↓𝑖 and 𝑑Out𝛿 (𝜎 ′′ [|𝜎 | + 1], �̂� [|𝜎 | + 1]↓𝑜 ) ≤ ^o. By Def. 4.3 we know that the transition

𝜎 [..|𝜎 |]
𝜎 ′′ [ |𝜎 |+1]
−−−−−−−−→R 𝜎 [..|𝜎 |] ·𝜎 ′′ [|𝜎 |+1] exists inR. Since 𝜎 ′′↓𝑖 = 𝜎𝑖 , we know that 𝜎 ′′↓𝑖 [|𝜎 |+1] = –𝑖

and hence 𝜎 ′′ [|𝜎 | + 1] ∈ Out𝛿 . □

The LTS R is supposed to serve as an implementation. To this end, Lemma 4.8 shows that R is

input-enabled and hence is an IOTS.

Lemma 4.8. Let C be a satisfiable contract with standard S and let R be constructed from C. Then
R is an input-output transition system.

Proof. By construction, R is a labelled transition system. By Def. 3.1 an LTS is an IOTS, if

it is input-enabled. Hence, we have to show that for every state 𝜎 ∈ (In ∪ Out)∗ it holds for
every 𝑖 ∈ In that there is a transition 𝜎

𝑖−→R 𝜎 · 𝑖 in R. To have this transition, the premise

of Def. 4.3 must be satisfied. Let 𝜎𝑖 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠∗ (S𝛿 )↓𝑖 and accordingly 𝜎𝑆 ∈ traces∗ (S𝛿 ) a trace

with 𝜎𝑆↓𝑖 = 𝜎𝑖 . Assume that V(|𝜎 | + 1, (𝜎 · 𝑖), 𝜎𝑖 ) holds (otherwise the lemma holds trivially).

We pick 𝜎𝑆 for the existential quantifier. By definition 𝜎𝑆↓𝑖 = 𝜎𝑖 , so it suffices to show that

𝑑Out𝛿 (𝑖↓𝑜 , 𝜎𝑆 [|𝜎 | +1]↓𝑜 ) = 𝑑Out𝛿 (–𝑜 , 𝜎𝑆 [|𝜎 | +1]↓𝑜 ) ≤ ^o. We continue by case distinction of whether

𝜎𝑆 [|𝜎 | + 1] ∈ In. If this is the case, we are immediately done, because 𝑑Out𝛿 (–𝑜 , –𝑜 ) = 0 ≤ ^o.

If instead 𝜎𝑆 [|𝜎 | +1] ∈ Out𝛿 , satisfiability of C with (𝜎 ·𝑖)↓𝑖 for 𝜎𝑖 , 𝜎𝑆 for 𝜎𝑆 and 𝑘 = |𝜎 | +1 provides
some implementation L satisfying Def. 3.4.2 and a trace �̂� ∈ traces𝜔 (L𝛿 ) with �̂�↓𝑖 = (𝜎 · 𝑖)↓𝑖 and
𝑑Out𝛿 (�̂� [|𝜎 | + 1]↓𝑜 , 𝜎𝑆 [|𝜎 | + 1]↓𝑜 ) ≤ ^o. From Lemma 4.6 we get that �̂� ∈ traces𝜔 (R). We get from

𝑑Out𝛿 (�̂� [|𝜎 | + 1]↓𝑜 , 𝜎𝑆 [|𝜎 | + 1]↓𝑜 ) ≤ ^o and �̂�↓𝑖 = (𝜎 · 𝑖)↓𝑖 that 𝑑Out𝛿 (–𝑜 , 𝜎𝑆 [|𝜎 | + 1]↓𝑜 ) ≤ ^o, which

concludes the proof. □

R is modelled by adding all transitions satisfying Def. 3.4.2. Lemma 4.9 confirms that, conversely,

R satisfies Def. 3.4.2. Then, Lemma 4.10 shows that R satisfies also the first condition of Def. 3.4.

Lemma 4.9. Let C be a contract and R the reference implementation for C. Then, for all 𝜎 ∈
traces𝜔 (S𝛿 ) and 𝜎 ′ ∈ traces𝜔 (R), it holds that for all 𝑘 ≥ 0 such that 𝑑In (𝜎 [.. 𝑗]↓𝑖 , 𝜎 ′ [.. 𝑗]↓𝑖 ) ≤ ^i
for all 𝑗 ≤ 𝑘 , there exists 𝜎 ′′ ∈ traces𝜔 (S𝛿 ) such that 𝜎↓𝑖 = 𝜎 ′′↓𝑖 and 𝑑Out𝛿 (𝜎 ′ [𝑘]↓𝑜 , 𝜎 ′′ [𝑘]↓𝑜 ) ≤ ^o.

Proof. Let 𝜎 ∈ traces𝜔 (S𝛿 ) and let 𝜎 ′ ∈ traces𝜔 (R). By Corollary 4.5, we get that there

must be some path 𝑝 = 𝜖 𝜎 ′ [1] (𝜎 ′ [..1]) . . . (𝜎 ′ [..𝑘 − 1])𝜎 ′ [𝑘] (𝜎 ′ [..𝑘]) ∈ paths∗ (R). In particular
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Doping Tests for Cyber-Physical Systems 16:13

𝜎 ′ [..𝑘 − 1]
𝜎 ′ [𝑘 ]
−−−−→ 𝜎 ′ [..𝑘] is a transition in R. By Def. 4.3, we know that for all 𝜎𝑖 ∈ traces(S𝛿 )↓𝑖

with V(𝑘, 𝜎 ′ [..𝑘], 𝜎𝑖 ) (which is equivalent to V(𝑘, 𝜎 ′, 𝜎𝑖 )), there is some 𝜎𝑆 ∈ traces𝜔 (S𝛿 ) with
𝜎𝑆↓𝑖 = 𝜎𝑖 and 𝑑Out𝛿 (𝜎 [𝑘]↓𝑜 , 𝜎𝑆 [𝑘]↓𝑜 ) ≤ ^o (*).

Since 𝜎 ∈ traces𝜔 (S𝛿 ) then 𝜎↓𝑖 ∈ traces𝜔 (S𝛿 )↓𝑖 . Suppose V(𝑘, 𝜎 ′, 𝜎) holds (otherwise the

lemma holds trivially). Then, by (*), there exists 𝜎𝑆 ∈ traces𝜔 (S𝛿 ) with 𝜎𝑆↓𝑖 = 𝜎↓𝑖 such that

𝑑Out𝛿 (𝜎 [𝑘]↓𝑜 , 𝜎𝑆 [𝑘]↓𝑜 ) ≤ ^o. □

Lemma 4.10. Let C be a satisfiable contract and R the reference implementation for C. Then, for all
𝜎, 𝜎 ′ ∈ traces𝜔 (R), if 𝜎 ∈ traces𝜔 (S𝛿 ), it holds that for all 𝑘 ≥ 0 such that 𝑑In (𝜎 [.. 𝑗]↓𝑖 , 𝜎 ′ [.. 𝑗]↓𝑖 ) ≤
^i for all 𝑗 ≤ 𝑘 , there exists 𝜎 ′′ ∈ traces𝜔 (R) such that 𝜎 ′↓𝑖 = 𝜎 ′′↓𝑖 and𝑑Out𝛿 (𝜎 [𝑘]↓𝑜 , 𝜎 ′′ [𝑘]↓𝑜 ) ≤ ^o.

Proof. Let 𝜎 ∈ traces𝜔 (S𝛿 ), 𝜎 ′ ∈ traces𝜔 (R) and 𝑘 ≥ 0. SupposeV(𝑘, 𝜎, 𝜎 ′) holds (otherwise,
the lemma holds trivially). From satisfiability of C we know that input 𝜎 ′↓𝑖 is satisfiable and, hence,
we get from Def. 4.1 for 𝜎 and 𝑘 an implementation L satisfying Def. 3.4.2 for which there is

𝜎 ′′ ∈ traces𝜔 (L𝛿 ) with 𝜎 ′′↓𝑖 = 𝜎 ′↓𝑖 and 𝑑Out𝛿 (𝜎 ′′ [𝑘]↓𝑜 , 𝜎 [𝑘]↓𝑜 ) ≤ ^o. From Lemma 4.6 we get that

traces𝜔 (L𝛿 ) ⊆ traces𝜔 (R), so we can conclude that 𝜎 ′′ ∈ traces𝜔 (R). Hence, 𝜎 ′′ is the desired
trace to conclude the proof. □

Each contract contains some standard behaviour as an LTS S. The reference implementation

for a contract should be constructed in a way such that S is a standard for the implementation

(according to Def. 3.3). Lemma 4.11 shows that this is the case for R. In this work, we have a

particular interest into practical applicability. Hence, we assume for the proof of this Lemma, that

S is finite. This enables us to make the proof by arguing about finite traces.

Lemma 4.11. LetS be a finite LTS, C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩ a satisfiable contract and R the reference
implementation for C. Then S is a standard for R.

Proof. We have to show that traces𝜔 (S𝛿 ) ⊆ traces𝜔 (R𝛿 ). Since traces𝜔 (R) = traces𝜔 (R𝛿 )
according to Lemma 4.7, it suffices to show that traces𝜔 (S𝛿 ) ⊆ traces𝜔 (R). Also, since S is finite

also S𝛿 is finite, so we can construct a deterministic (image-finite) LTS S𝛿 ′ (where states are finite
traces of the original) with traces𝜔 (S𝛿 ) = traces𝜔 (S𝛿 ′). With R being deterministic, too, we only

need to prove traces∗ (S𝛿 ) ⊆ traces∗ (R) (see [35] for a proof).
Let 𝜎 ∈ traces∗ (S𝛿 ). We proceed by induction on 𝑘 = |𝜎 |. If 𝑘 = 0 then 𝜎 = 𝜖 and hence

𝜎 ∈ traces∗ (R). If 𝑘 > 0, we know that 𝜎 [..𝑘 − 1] ∈ traces∗ (S𝛿 ) and from the inductive hypothesis

that 𝜎 [..𝑘 − 1] ∈ traces∗ (R). There is a path 𝑝 ∈ paths∗ (R) with trace(𝑝) = 𝜎 [..𝑘 − 1] and it

follows from Lemma 4.4, that last(𝑝) = 𝜎 [..𝑘 − 1]. To show that 𝜎 ∈ traces∗ (R), we need to

show that there is a transition 𝜎 [..𝑘 − 1]
𝜎 [𝑘 ]
−−−→R 𝜎 in R. By Def. 4.3, this holds if for any 𝜎𝑖 ∈

traces𝜔 (S𝛿 )↓𝑖 with ∀𝑗 ≤ 𝑘 : 𝑑In (𝜎 [.. 𝑗]↓𝑖 , 𝜎𝑖 [.. 𝑗]) ≤ ^i,V(𝑘, 𝜎, 𝜎𝑖 ), there is some 𝜎𝑆 ∈ traces𝜔 (S𝛿 )
with 𝜎𝑆↓𝑖 = 𝜎𝑖 for which 𝑑Out𝛿 (𝜎 [𝑘]↓𝑜 , 𝜎𝑆 [𝑘]↓𝑜 ) ≤ ^o. The existence of 𝜎𝑖 implies the existence

of some 𝜎𝑖𝑜 ∈ traces𝜔 (S𝛿 ) with 𝜎𝑖𝑜↓𝑖 = 𝜎𝑖 . Also, notice that 𝜎 can be extended to an infinite

trace 𝜎 ′ ∈ traces𝜔 (S𝛿 ) such that 𝜎 ′ [..𝑘] = 𝜎 . From satisfiability of C we know that S is robustly

clean w.r.t. C. Then, by Def. 3.4.2, there is some 𝜎 ′′ ∈ traces𝜔 (S𝛿 ) with 𝜎 ′′↓𝑖 = 𝜎𝑖𝑜↓𝑖 (= 𝜎𝑖 ) and
𝑑Out (𝜎 ′ [𝑘]↓𝑜 , 𝜎 ′′ [𝑘]↓𝑜 ) ≤ ^o. Taking 𝜎𝑆 = 𝜎 ′′ concludes the proof. □

With the properties of R established in this section it is easy to show that R is robustly clean

w.r.t. the contract it is constructed from.

Theorem 4.12. Let S be a finite LTS, C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩ a satisfiable contract and R the
reference implementation for C. Then R is robustly clean w.r.t. C.
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16:14 Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns

Proof. Def. 3.4 requires that R is an IOTS, which is shown in Lemma 4.8. Furthermore, from

Lemma 4.11 we get that S is a standard for R. With Lemmas 4.10, 4.9 and 4.7 we get that R satisfies

both conditions of Def. 3.4. □

Furthermore, it is not difficult to show that R is indeed the largest implementation that is allowed

by the contract it was constructed from.

Theorem 4.13. Let S be a finite LTS, C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩ a satisfiable contract and R the
reference implementation for C. Then R is the largest implementation within C.

Proof. We know from Theorem 4.12 that R is an IOTS, which is robustly clean w.r.t. C. It
remains to show that for every LTS L′ that is robustly clean w.r.t. C, traces𝜔 (L𝛿 ) ⊆ traces𝜔 (R).
Any such L′ satisfies in particular Def. 3.4.2, so it follows directly from Lemma 4.6 that R is the

largest implementation within C. □

5 MODEL-BASED DOPING TESTS
Following the conceptual ideas behind ioco, we need to construct a specification that is compatible

with our notion of robust cleanness in such a way that a test suite can be derived. Intuitively,

such a specification must be able to foresee every behaviour of the system that is allowed by the

contract. It turns out that we can take up the model-based testing theory right away with R as the

specification Spec. We get an algorithm that can generate doping test suites provided we are able

to prove that R is constructed in such a way that whenever an IUT I is robustly clean I ioco R
holds, i.e.,

∀𝜎 ∈ traces∗ (R𝛿 ) : out(I𝛿 after 𝜎) ⊆ out(R𝛿 after 𝜎). (1)

To work out this proof requires frequent reasoning about the functions out and after. However, there
is a strong connection between these functions and reasoning about traces, which is established in

Lemma 5.1. This enables us to use all the properties considering traces of R from Section 4.

Lemma 5.1. Let L be an LTS, 𝜎 ∈ traces∗ (L𝛿 ) a suspension trace of L and 𝑜 an output. Then,
𝑜 ∈ out(L𝛿 after 𝜎) if and only if 𝜎 · 𝑜 ∈ traces∗ (L𝛿 ).

Proof. By definition, 𝑜 ∈ out(L𝛿 after 𝜎) if and only if there is some 𝑞 ∈ (L𝛿 after 𝜎) for which
there is some 𝑞′ and a transition 𝑞

𝑜−→ 𝑞′. This holds if and only if there is a path 𝑝 ∈ paths∗ (L𝛿 )
with trace(𝑝) = 𝜎 , last(𝑝) = 𝑞 and 𝑞

𝑜−→ 𝑞′. Equivalently, there can be a path 𝑝′ ∈ paths∗ (L𝛿 ) with
trace(𝑝′) = 𝜎 · 𝑜 , which is the case if and only if 𝜎 · 𝑜 ∈ traces∗ (L𝛿 ). □

The following theorem shows that R, indeed, satisfies the conditions to serve as a specification

for model-based testing. Its proof translates the requirements enforced by ioco into trace properties

and exploits the properties of R established in Section 4.

Theorem 5.2. Let S be a finite LTS, C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩ a satisfiable contract, R the reference
implementation for C and let I be an IOTS, which is robustly clean w.r.t. C. Then, it holds that
I ioco R.

Proof. We have to show that for all 𝜎 ∈ traces∗ (R𝛿 ) it holds that out(I𝛿 after 𝜎) ⊆ out(R𝛿 after
𝜎). From Lemma 4.7 we know that 𝜎 ∈ traces∗ (R). If out(I𝛿 after 𝜎) = ∅ the theorem trivially

holds. Otherwise, there is some 𝑜 ∈ out(I𝛿 after 𝜎) ⊆ Out𝛿 and 𝜎 · 𝑜 ∈ traces∗ (I𝛿 ) follows with
Lemma 5.1. By Def. 3.2, every state in I𝛿 has an outgoing output or quiescence transition and hence

there is an infinite trace 𝜎 ′ ∈ traces𝜔 (I𝛿 ) with 𝜎 ′ [..|𝜎 | + 1] = 𝜎 · 𝑜 . By Def. 4.2, Theorem 4.12,

Theorem. 4.13 and robust cleanness ofI, we can conclude that𝜎 ′ ∈ traces𝜔 (R𝛿 ). Since𝜎 ·𝑜 is a finite
prefix of 𝜎 ′, we get that 𝜎 ·𝑜 ∈ traces∗ (R𝛿 ). Finally, Lemma 5.1 gives us that 𝑜 ∈ out(R𝛿 after 𝜎). □
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Doping Tests for Cyber-Physical Systems 16:15

Theorem 5.2 establishes that we can use Algorithm TG to generate doping tests (in the form

of LTS) by using R as the specification model. From a theoretical point of view, the problem of

finding doping tests is solved with Corollary 5.3, which follows directly from the completeness of

TG [32, 33].

Corollary 5.3. Let S be a finite LTS, C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩ a satisfiable contract and R the
reference implementation for C. Then I ioco R if and only if I passes TG({𝜖}).

However, there are several issues regarding the practicality of TG. Among them, to perform a

doping test for a given contract C, we first have to construct R. R is the largest implementation

within C and as such is infinite in size. Constructing R is necessary, because R serves as the

specification for model-based testing. In general, a specification LTS may not be computable on-

the-fly and hence TG assumes the availability of the full specification upon test case generation.

The following test generation algorithm DTG echoes Algorithm TG, however, it does not need R
as input but constructs on-the-fly only what is needed.

DTG(ℎ) B choose nondeterministically one of the following processes:

(1) pass
(2) 𝑖; 𝑡𝑖 where 𝑖 ∈ In and 𝑡𝑖 ∈ DTG(ℎ · 𝑖)
+ ∑{𝑜 ; fail | 𝑜 ∈ Out ∧ 𝑜 ∉ acc(ℎ)}
+ ∑{𝑜 𝑗 ; 𝑡𝑜 𝑗

| 𝑜 𝑗 ∈ Out ∧ 𝑜 𝑗 ∈ acc(ℎ)}, where for each 𝑜 𝑗 , 𝑡𝑜 𝑗
∈ DTG(ℎ · 𝑜 𝑗 )

(3)

∑{𝑜 ; fail | 𝑜 ∈ Out ∪ {𝛿} ∧ 𝑜 ∉ acc(ℎ)}
+ ∑{𝑜 𝑗 ; 𝑡𝑜 𝑗

| 𝑜 𝑗 ∈ Out ∪ {𝛿} ∧ 𝑜 𝑗 ∈ acc(ℎ)}, where for each 𝑜 𝑗 , 𝑡𝑜 𝑗
∈ DTG(ℎ · 𝑜 𝑗 )

There are two main differences between DTG and TG. First, the input ℎ to DTG is a single trace

instead of a set of states. That is because the construction of DTG follows the same ideas as the

construction of R, where a trace represents a state of the LTS. Moreover, R is deterministic, so

when using TG with R, the set 𝑆 always contains exactly one state of R, which is a trace. The

second difference is that DTG uses a function acc instead of out. Essentially, acc(ℎ) captures all
output transitions leaving state ℎ in R (i.e., out({ℎ})) without knowing (or constructing) R. Thus,
acc(ℎ) is precisely the set of outputs that satisfies the premise in the definition of R after the trace

ℎ, as stipulated in Def. 4.3. The definition of acc is shown in eq. (2).

acc(ℎ) B {𝑜 ∈Out𝛿 | (2)

∀𝜎𝑖 ∈ traces𝜔 (S𝛿 )↓𝑖 :
(∀𝑗 ≤ |ℎ |+1 : 𝑑In (𝜎𝑖 [.. 𝑗]↓𝑖 , (ℎ · 𝑜) [.. 𝑗]↓𝑖 ) ≤ ^i)

⇒ ∃𝜎 ∈ traces𝜔 (S𝛿 ) : 𝜎↓𝑖 = 𝜎𝑖↓𝑖 ∧ 𝑑Out𝛿 (𝑜, 𝜎 [|ℎ | + 1]↓𝑜 ) ≤ ^o}

The following lemma confirms that acc can be used to compute out without knowing R. Instead,
the definition of acc is defined directly for a contract C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩. We emphasize this

difference in Lemma 5.4 by annotating the functions appropriately, i.e., by acc(C) and out(R) .

Lemma 5.4. Let C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩ be a satisfiable contract andR the reference implementation
for C. For all ℎ ∈ (In ∪Out𝛿 )∗, acc(C) (ℎ) = out(R) ({ℎ}).

Proof. Let ℎ ∈ (In ∪ Out𝛿 )∗ and 𝑜 ∈ Out𝛿 . As per eq. (2), 𝑜 ∈ acc(C) (ℎ) if and only if for any

𝜎𝑖 ∈ traces𝜔 (S𝛿 )↓𝑖 withV(|ℎ | + 1, 𝜎𝑖 , ℎ · 𝑜) there exists 𝜎 ∈ traces𝜔 (S𝛿 ) such that 𝜎↓𝑖 = 𝜎𝑖↓𝑖 and
𝑑Out (𝑜, 𝜎 [|ℎ | + 1]↓𝑜 ) ≤ ^o. However, this is equivalent to the premise of the rule from Def. 4.3,

hence 𝑜 ∈ acc(C) (ℎ) if and only if there is a transition ℎ
𝑜−→R ℎ · 𝑜 in R. In turn, such transition

exists if and only if 𝑜 ∈ out(R) ({ℎ}). □
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Although Algorithm DTG does not require R as an input, R still is the specification for which

DTG is supposed to generate test cases. Hence, we have to show that I ioco R if and only if

I passes DTG(𝜖) (as in Corollary 5.3). For this, it is serviceable to realise that for every history

ℎ ∈ (In∪Out𝛿 )∗, the set of test cases TG andDTG generate are identical (i.e., the processes defining

the LTS are identical). This is expressed by the following Lemma.

Lemma 5.5. Let C be a satisfiable contract and R the reference implementation for C. Then, for every
process 𝑝 ∈ P and history ℎ ∈ (In ∪Out𝛿 )∗, it holds that 𝑝 ∈ TG({ℎ}) if and only if 𝑝 ∈ DTG(ℎ).

Proof. We prove the claim by structural induction on 𝑝 . If 𝑝 is a process name, then 𝑝 = fail or
𝑝 = pass. Neither TG nor DTG produce fail for any input, however, both can always produce pass.
If 𝑝 =

∑
𝑧∈𝑍 𝑎𝑧 ;𝑝𝑧 , both TG and DTG can use choices (2) and (3) to generate 𝑝 . We first show

𝑝 ∈ TG({ℎ}) ⇒ 𝑝 ∈ DTG(ℎ) and distinguish between whether 𝑝 is constructed by choice (2) or (3)

of TG.
For case (2), we fix some arbitrary 𝑖 ∈ In and 𝑡𝑖 ∈ TG({ℎ} after 𝑖). Notice that ({ℎ} after 𝑖)
is always non-empty, because R is input-enabled (Lemma 4.8). Furthermore, we fix a mapping

from accepted outputs to one of the possible recursively computed subprocess F B {(𝑜, 𝑡𝑜 ) | 𝑜 ∈
Out∩ out({ℎ}) ∧ 𝑡𝑜 ∈ TG({ℎ} after 𝑜)}. Then, choice (2) of TG produces exactly one test, which is

𝑝 = 𝑖; 𝑡𝑖+
∑{𝑜 ; fail | 𝑜 ∈ Out∧𝑜 ∉ out({ℎ})}+∑{𝑜 ;F (𝑜) | 𝑜 ∈ Out∧𝑜 ∈ out({ℎ})}. We can rewrite

the test case to 𝑝′ = 𝑖; 𝑡𝑖 +
∑{𝑜 ; fail | 𝑜 ∈ Out∧𝑜 ∉ acc(ℎ)} +∑{𝑜 ;F (𝑜) | 𝑜 ∈ Out∧𝑜 ∈ acc(ℎ)} by

using that out({ℎ}) = acc(ℎ) from Lemma 5.4. From Def. 4.3 it follows that for every 𝑜 ∈ out({ℎ}),
({ℎ} after 𝑜) = {ℎ · 𝑜}. Hence, F = {(𝑜, 𝑡𝑜 ) | 𝑜 ∈ Out ∩ acc(ℎ) ∧ 𝑡𝑜 ∈ TG({ℎ · 𝑜})} = {(𝑜, 𝑡𝑜 ) | 𝑜 ∈
Out ∩ acc(ℎ) ∧ 𝑡𝑜 ∈ DTG(ℎ · 𝑜)} with the inductive hypothesis. From Lemma 4.8 and Def. 4.3 we

know that 𝑡𝑖 ∈ TG({ℎ · 𝑖}) and hence by the inductive hypothesis 𝑡𝑖 ∈ DTG(ℎ · 𝑖). Now, for the
fixed 𝑖, 𝑡𝑖 and F , 𝑝′ is exactly the test that is generated by choice (2) of DTG(ℎ).
For case (3) of TG, we fix a mapping from accepted outputs to one of the possible recursively

computed subprocess F B {(𝑜, 𝑡𝑜 ) | 𝑜 ∈ Out𝛿 ∩ out({ℎ}) ∧ 𝑡𝑜 ∈ TG({ℎ} after 𝑜)}. Then, choice
(3) of TG produces exactly one test, which is

∑{𝑜 ; fail | 𝑜 ∈ Out𝛿 ∧ 𝑜 ∉ out({ℎ})} +∑{𝑜 ;F (𝑜) |
𝑜 ∈ Out𝛿 ∧ 𝑜 ∈ out({ℎ})}. We can rewrite the test case to 𝑝′ = 𝑖; 𝑡𝑖 +

∑{𝑜 ; fail | 𝑜 ∈ Out𝛿 ∧
𝑜 ∉ acc(ℎ)}+∑{𝑜 ;F (𝑜) | 𝑜 ∈ Out𝛿 ∧𝑜 ∈ acc(ℎ)} by using that out({ℎ}) = acc(ℎ) from Lemma 5.4.

From Def. 4.3 it follows that for every 𝑜 ∈ out({ℎ}), ({ℎ} after 𝑜) = {ℎ · 𝑜}. From this, we can

conclude F = {(𝑜, 𝑡𝑜 ) | 𝑜 ∈ Out𝛿 ∩ acc(ℎ) ∧ 𝑡𝑜 ∈ TG({ℎ · 𝑜})} and then F = {(𝑜, 𝑡𝑜 ) | 𝑜 ∈
Out𝛿 ∩ acc(ℎ) ∧ 𝑡𝑜 ∈ DTG(ℎ · 𝑜)} with the inductive hypothesis. Now, for the fixed F , 𝑝′ is exactly
the test that is generated by choice (3) of DTG(ℎ).
The proof for 𝑝 ∈ DTG(ℎ) ⇒ 𝑝 ∈ TG({ℎ}) is analogue. □

With Lemma 5.5 and Corollary 5.3 we get soundness and exhaustiveness ofDTG. Altogether,DTG
serves as an algorithm that can generate sound doping tests. If a test fails for some implementation,

we know that it is doped.

Theorem 5.6. Let S be a finite LTS, C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩ a satisfiable contract and I an
implementation. If I is robustly clean w.r.t. C, then I passes DTG(𝜖).

Proof. Let R be the reference implementation for C. With Lemma 5.5 and Corollary 5.3 we get

that I passes DTG(𝜖) if and only if I ioco R. According to Theorem 5.2 the latter holds if I is

robustly clean w.r.t. C. □

It is worth noting that this theorem does not imply that I is robustly clean if I always passes

DTG. This is due to the intricacies of actual hyperproperties. By testing, we will never be able

to verify the first condition of Def. 3.4 (even if we consider infinitely large test suites), because
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Doping Tests for Cyber-Physical Systems 16:17

this needs a simultaneous view on all possible execution traces of I. During testing, however, we

always can observe only a single trace.

Bounded-Depth Doping Tests. We developed and proved correct Algorithm DTG, which enables

model-based testing for some contract C w.r.t. ioco without the need to explicitly construct R,
which is infinite in size. Nevertheless, practical problems remain. First, it might still be the case that

a generated test case is an LTS of infinite size. Second, even for finite test cases a practitioner might

consider it a waste of computing resources if needing to construct a test covering all possible answers

of the implementation under test. Third, function acc, although independent of the availability of

R, can be hard to compute (in terms of finding an algorithm), as it involves infinite traces. So, in

light of the nature of testing, namely that every test eventually has to end, it seems reasonable

to modify the acceptance predicate acc so that it considers finite traces for its decision. Such a

bounded-depth construction is provided as eq. (3).

acc𝑏 (ℎ) B {𝑜 ∈Out𝛿 | (3)

∀𝜎𝑖 ∈ traces𝑏 (S𝛿 )↓𝑖 :
(∀𝑗 ≤ |ℎ |+1 : 𝑑In (𝜎𝑖 [.. 𝑗]↓𝑖 , (ℎ · 𝑜) [.. 𝑗]↓𝑖 ) ≤ ^i)

⇒ ∃𝜎 ∈ traces𝑏 (S𝛿 ) : 𝜎↓𝑖 = 𝜎𝑖↓𝑖 ∧ 𝑑Out𝛿 (𝑜, 𝜎 [|ℎ |+1]↓𝑜 ) ≤ ^o}
For test history of length at most 𝑏, acc𝑏 delivers all outputs that are accepted by some contract.

It is computable provided that In and Out are bounded and discretised. The only variation w.r.t.

acc in eq. (2) lies in the use of the set traces𝑏 (S𝛿 ), instead of traces𝜔 (S𝛿 ), so as to return all traces

of S𝛿 whose length is exactly 𝑏. Since S𝛿 is finite, acc𝑏 can indeed be implemented.

We get a bounded-depth test generation algorithm DTG𝑏 by replacing every occurrence of acc
in DTG by acc𝑏 and by forcing case 1 when and only when |ℎ | = 𝑏. Since acc𝑏 only considers finite

traces, it conservatively includes extra outputs thus making tests more permissive. This is due to

the existential quantifier in the last line of (3): it may be the case that the 𝑏-prefix of some infinite

trace satisfies this expression, but no infinite extension of such prefix in S𝛿 does. Therefore, we

have the following variation of Lemma 5.4.

Lemma 5.7. Let C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩ be a contract and R the reference implementation for C.
For all 𝑏 > 0 and ℎ ∈ (In ∪Out𝛿 )∗ with |ℎ | < 𝑏, acc(C)

𝑏
(ℎ) ⊇ out(R) ({ℎ}).

Proof. From Lemma 5.4 we get that acc(C) (ℎ) = out(R) ({ℎ}), hence it suffices to show that

acc(C) (ℎ) ⊆ acc(C)
𝑏
(ℎ). Let 𝑜 ∈ acc(C) (ℎ). To show that 𝑜 ∈ acc𝑏 (ℎ) we may assume an arbitrary

𝜎𝑖 ∈ traces𝑏 (S𝛿 )↓𝑖 with V(|ℎ + 1|, 𝜎𝑖 , ℎ · 𝑜) (notice that |ℎ | + 1 ≤ 𝑏). 𝜎𝑖 ∈ traces𝑏 (S𝛿 )↓𝑖 implies

that there is some 𝜎𝑖𝑜 ∈ traces𝑏 (S𝛿 ) with 𝜎𝑖𝑜↓𝑖 = 𝜎𝑖 . By Def. 3.2, there is an infinite trace �̂�𝑖𝑜 ∈
traces𝜔 (S𝛿 ) with �̂�𝑖𝑜 [..𝑏] = 𝜎𝑖𝑜 .V(|ℎ | + 1, �̂�𝑖𝑜 , ℎ · 𝑜) still holds, as |ℎ | + 1 ≤ 𝑏 = |𝜎𝑖𝑜 | and �̂�𝑖𝑜 [..|ℎ | +
1]↓𝑖 = 𝜎𝑖 . From 𝑜 ∈ acc(C) (ℎ) and eq. (2) we get for �̂�𝑖𝑜 and V(|ℎ + 1|, �̂�𝑖𝑜 , ℎ · 𝑜) a trace �̂� ∈
traces𝜔 (S𝛿 ) with �̂�↓𝑖 = �̂�𝑖𝑜↓𝑖 and 𝑑Out𝛿 (𝑜, �̂� [|ℎ | + 1]↓𝑜 ) ≤ ^o. Let 𝜎 = �̂� [..|ℎ | + 1], then 𝜎↓𝑖 = 𝜎𝑖
and 𝑑Out𝛿 (𝑜, 𝜎 [|ℎ | + 1]↓𝑜 ) ≤ ^o. This proves 𝑜 ∈ acc𝑏 (ℎ). □

As a consequence of Lemma 5.7, we have that any robustly clean implementation passes the test

suite generated by DTG𝑏 , or, expressed inversely, if an implementation fails a test generated by

DTG𝑏 , then it is doped. This is stated in the following lemma.

Lemma 5.8. Let S be a finite LTS, C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩ a satisfiable contract and I an imple-
mentation. Then, if I is robustly clean w.r.t. C, I passes DTG𝑏 (𝜖) for every positive integer 𝑏.

Proof. Let𝑏 ∈ N+.We prove the claim by contraposition, i.e., we show thatI is not robustly clean

w.r.t. C, if ¬(I passes DTG𝑏 (𝜖)). Let I = ⟨𝑄, In,Out,→, 𝑞0⟩. Assume, there is some 𝑡 ∈ DTG𝑏 (𝜖)
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16:18 Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns

and 𝑞′ ∈ 𝑄 , such that fail ∥ 𝑞′ is reachable from 𝑡 ∥ 𝑞0. Let 𝑃 = {𝑝 ∈ paths∗ (𝑡 ∥ 𝑞0) |
there is some 𝑞′ ∈ 𝑄, such that last(𝑝) = fail ∥ 𝑞′} the set of paths by which such a state can be

reached. Let (𝑡 ∥ 𝑞0) 𝑎0 · · · 𝑎𝑛−1 (𝑡𝑛 ∥ 𝑞𝑛) 𝑎𝑛 (fail ∥ 𝑞′) = 𝑝 ∈ 𝑃 be the shortest of these paths,

𝜎 = trace(𝑝) be its trace and let ℎ = 𝜎 [..|𝜎 | −1]. Since 𝑝 is the shortest path in 𝑃 , evidently 𝑡𝑛 ≠ fail
and hence 𝑡𝑛 ∈ DTG𝑏 (ℎ). By definition of DTG𝑏 , a transition from 𝑡𝑛 to fail is only possible in cases

(2) and (3) if 𝑎𝑛 ∈ Out𝛿 (notice that Out ⊂ Out𝛿 ) and 𝑎𝑛 ∉ acc𝑏 (𝑎𝑛). With Lemma 5.7, we get that

𝑎𝑛 ∉ acc(𝑎𝑛). Moreover, it is easy to see from the definition of 𝑃 , that if 𝜎 ∈ traces∗ (𝑡 ∥ 𝑞0), then
also 𝜎 ∈ traces∗ (𝑞0) and hence 𝜎 ∈ traces∗ (I𝛿 ). As 𝑎𝑛 ∉ acc(𝑎𝑛) (although 𝑎𝑛 ∈ Out𝛿 ), according
to eq. (2), there is some 𝜎𝑖 ∈ traces𝜔 (S𝛿 )↓𝑖 withV(𝑛 + 1, 𝜎𝑖 , 𝜎), such that for all 𝜎 ′′ ∈ traces𝜔 (S𝛿 )
with 𝜎 ′′↓𝑖 = 𝜎𝑖 , it is the case that 𝑑Out𝛿 (𝑎𝑛, 𝜎 ′′ [𝑛 + 1]↓𝑜 ) > ^o (*). Let 𝜎𝑖𝑜 ∈ traces𝜔 (S𝛿 ) be such
that 𝜎𝑖𝑜↓𝑖 = 𝜎𝑖 . By Def. 3.2, each state in I𝛿 can proceed by some output or quiescence. Hence, there

is some infinite suffix 𝜎+ ∈ Out𝛿𝜔 to 𝜎 , such that (𝜎 · 𝜎+) ∈ traces𝜔 (I𝛿 ).
Now, assume thatI is robustly cleanw.r.t. contract C. Thenwe get fromDef. 3.4.2 for𝜎𝑖𝑜 , (𝜎 ·𝜎+), (𝑛+
1) and withV(𝑛 + 1, 𝜎𝑖 , 𝜎) ⇐⇒ V(𝑛 + 1, 𝜎𝑖𝑜 , 𝜎 · 𝜎+), that there is some trace 𝜎 ′′ ∈ traces𝜔 (S𝛿 )
with 𝜎 ′′↓𝑖 = 𝜎𝑖𝑜↓𝑖 = 𝜎𝑖 and 𝑑Out𝛿 ((𝜎 · 𝜎+) [𝑛 + 1]↓𝑜 , 𝜎 ′′ [𝑛 + 1]↓𝑜 ) = 𝑑Out𝛿 (𝑎𝑛, 𝜎 ′′ [𝑛 + 1]↓𝑜 ) ≤ ^o.

However, this is a contradiction to (*), which concludes the proof. □

Since I passes DTG𝑏 (𝜖) implies I passes DTG𝑎 (𝜖) for any 𝑎 ≤ 𝑏, we have in summary arrived

at a computable algorithm DTG𝑏 that for sufficiently large 𝑏 (corresponding to the length of the

test) will be able to generate a doping test that will be a convicting witness for any IUT I that is not

robustly clean w.r.t. a given contract C. The transformation of the model-based testing algorithm

gets its finishing touch with Algorithm 1 presented below, which similar to the transformation

from TG to DTG, circumvents the need to construct the entire test LTS upfront by instead actively

reacting to the implementation under test. In this, DT𝑏 constructs on-the-fly only those parts of

the test LTS that are necessary at the given point of execution.

Algorithm 1 Bounded-Length Doping Test (DT𝑏 )

Input: history ℎ ∈ (In ∪Out ∪ {𝛿})∗
Output: pass or fail

1 c← Ωcase (ℎ) /* Pick from one of three cases */

2 if c = 1 or |ℎ | = 𝑏 then
3 return pass /* Finish test generation */

4 else if c = 2 and no output from I is available then
5 𝑖 ← ΩIn (ℎ) /* Pick next input */

6 𝑖 ↠ I /* Forward input to IUT */

7 return DT𝑏 (ℎ · 𝑖) /* Continue with next step */

8 else if c = 3 or output from I is available then
9 𝑜 ↞ I /* Receive output from IUT */

10 if 𝑜 ∈ acc𝑏 (ℎ) then
11 return DT𝑏 (ℎ · 𝑜) /* If o is foreseen by oracle continue with next step */

12 else
13 return fail /* Otherwise, report test failure */

14 end if
15 end if

The algorithm shares several characteristics with DTG𝑏 . Each call receives the current history

of the test as a finite trace of inputs and outputs. DTG𝑏 eventually reaches the fail or pass state,
whereas DT𝑏 explicitly returns either of two values fail or pass. It chooses one of three cases,
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Fig. 2. NEDC speed profile.

where the first case exactly imitates the first case ofDTG𝑏—the test terminates by indicating success.

Cases 2 and 3 are similar, however not identical since DT𝑏 explicitly resolves nondeterminism

when the IUT offers some output. Case 2 of DTG𝑏 allows to decide nondeterministically to either

process this output or to pass some input to the IUT. DT𝑏 instead gives priority to processing the

output. Hence, in this case DT𝑏 enforces to use the third case of the algorithm. Notice that we

consider DT𝑏 as an on-the-fly algorithm simulating the parallel composition of a test case LTS with

I. Consequently, we assume that one call of the algorithm executes atomically, i.e., if I does not

offer an output in line 4, it also does not offer outputs in line 5. Case 3 handles reception of outputs

or detects quiescence. Quiescence can be recognized by using a timeout mechanism that returns 𝛿

if no output has been received in a given amount of time, and DT𝑏 verifies whether the output (or

its absence) is valid by consulting acc𝑏 . In case the output is among those foreseen by acc𝑏 , the test
continues recursively. Otherwise, the algorithm terminates with a fail verdict. If instead the IUT is

not offering an output, it is legitimate (but not necessary) to choose Case 2 so as to pick some input,

pass it to the IUT and continue recursively to simulate a transition in the test LTS. DTG𝑏 chooses

the case to apply and the input to provide next nondeterministically. DT𝑏 is parameterized by Ωcase

and ΩIn which can be instantiated by either nondeterminism or some optimized test-case selection.

With Algorithm DT𝑏 , we complete a journey of transformations. The bounded-depth algorithm

effectively circumvents the fact that, except for S and S𝛿 , all other objects we need to deal with

are countably or uncountably infinite and that the property we need to check is a hyperproperty.

By furthermore relegating the construction of the test LTS and its parallel composition (with the

implementation under test) into an on-the-fly-algorithm, akin to [14], a practically usable and

elegant algorithm for real-world doping tests results.

6 DIESEL DOPING TESTS
The typical problems concerning the Diesel Emissions Scandal involve legally binding frameworks

for the admission of passenger cars. For Europe, this framework includes the normed emission test

NEDC (New European Driving Cycle) (see Fig. 2) [34]—at the time the scandal surfaced. It is to be

carried out on a chassis dynamometer and all relevant parameters are fixed by the norm, including

for instance the outside temperature at which it is run. We will explain in this section how our

theory and algorithm can be used in practice to detect tampered emission cleaning systems.

Inputs, Outputs, and Standard LTS. The input dimension In is spanned by (a subset of) the sensors

the car model is equipped with (among them e.g. temperature of the exhaust, outside temperature,

vertical and lateral acceleration, throttle position, time after engine start, engine rpm, possibly

height above ground level etc.). Most substances leaving the exhaust pipe are gases or small particles

that are a result of the chemical reactions in the engine. The processes inside the engine depends

to a very large extend on the amount of injected fuel, which is controlled by the position of the
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16:20 Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns

throttle. The typical way of defining how the throttle is supposed to be used is by means of a speed

trajectory. The vehicle speed is the decisive quantity specified to vary along the NEDC (cf. Fig. 2),

hence, we take In = R. Nevertheless, it is possible to add further dimensions of inputs; ambient air,

for example, is also part of the reactions in the engine, but has much less influence on the results

than the amount of fuel. Gear changes, on the other hand, naturally produce extreme variations on

the output. Therefore, following a pattern of gear changes different from that prescribed by the

NEDC should be considered as an extreme variation of the input value (i.e., causing exceedance

of ^i). Thus, in our experiments, we carefully follow the gear change instructions of the NEDC.

Gear information is omitted from our input domain. There are similar practical reasons why

other physical characteristics are neglected, but which our theory can handle easily. For every

input dimension added, there needs to be a technical counterpart that is able to measure the

appropriate values and that is synchronised with the speed and emissions sensors. To avoid this

technical overhead and for ease of presentation we do not consider additional input dimensions.

The outputs Out depend on the actual objective of the test. Most tests related to the scandal involve

the measurement of the amount of NO𝑥 per kilometre that has been emitted since engine start, but

it could also be the amount of CO2, any other gases or fuel consumption. Sometimes, the outputs of

interest are not accessible directly. For example, when using only the on-board diagnostics interface

of the car (which is standardised as OBD-II [30]) the values reported by the on-board NO𝑥 sensors

are expressed in parts-per-million (ppm). In this case, other sensor values (e.g. mass air flow, fuel

rate and others) [24] can be used to compute the amount of NO𝑥 emitted in mg/km. All sensor

values necessary for this computation are considered being part of Out, and 𝑑Out is assumed to

perform the needed conversions as part of the distance computation. In the following examples we

use an external emissions measurement system, that internally performs the computation of the

amount of NO𝑥 in mg/km. Hence, this is the decisive output quantity and thus Out = R.
A standard LTS S can be constructed from the results of driving the NEDC cycle several times on

a chassis dynamometer, and logging both input and output values. The specific setting we consider

is that of a trace 𝜎𝑆 recorded with an emissions measurement system which is attached to the

exhaust pipe and reports the accumulated amount of NO𝑥 gases during the entire test procedure

upon its termination. Each such experiment constitutes a trace with an infinite suffix of 𝛿s (because

the experiment is finite), say 𝜎𝑆 B 𝑖1 · · · 𝑖1180 𝑜𝑆 𝛿 𝛿 𝛿 · · · . The inputs 𝑖1, · · · 𝑖1180 are given by the

NEDC over its 20 minutes (1180 seconds), possibly deviating by up to 2km/h due to human driving

imprecision (as per the official NEDC regulations), and are followed by a single output 𝑜𝑆 reporting

the NO𝑥 amount. Thus, natural distance functions are past-forgetful and compute the absolute

difference of the speed of the car for 𝑑In and the discrepancy of the amount of gases (in mg/km) for

𝑑Out. Formally, we define 𝑑In (𝑎, 𝑏) = |𝑎 − 𝑏 | if 𝑎, 𝑏 ∈ In, 𝑑In (–𝑖 , –𝑖 ) = 0 and 𝑑In (𝑎, 𝑏) = ∞ otherwise.

Similarly, 𝑑Out (𝑎, 𝑏) = |𝑎 − 𝑏 | if 𝑎, 𝑏 ∈ Out, 𝑑Out (–𝑜 , –𝑜 ) = 𝑑Out (𝛿, 𝛿) = 0 and 𝑑Out (𝑎, 𝑏) = ∞
otherwise.

Contract. As discussed, absence or presence of software doping is understood relative to a contract
that is assumed to exist between all involved parties. From the above considerations regarding

input/output dimensions and distances we can piece up the blueprint of a contract, except that one

needs to fix the input and output distance thresholds. In our experimental evaluation, we instantiate

these with ^i = 15km/h, respectively ^o = 180mg/km. The input bound allows more variation than

foreseen within the NEDC itself (2km/h). Notably, the output bound is very generous. It is more

than the double of the currently allowed legal limit (80mg/km) of how much NO𝑥 a car is allowed

to emit at all. Ultimately, this induces a concrete contract C = ⟨S, 𝑑In, 𝑑Out, ^i, ^o⟩ that we are going
to use in the sequel. The contract is strictly speaking hypothetical (since no car manufacturer

ACM Trans. Model. Comput. Simul., Vol. 31, No. 3, Article 16. Publication date: August 2021.
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agreed on it), but from a common-sense perspective it appears generous enough to serve as a valid

discriminator to accuse any party violating it of software doping.

Testing and Monitoring Framework. Algorithm 1 serves as a basis for real-world doping tests. It is

the core of a testing framework we have implemented in Python. This implementation, the use case

decribed here, and further accompanying documentation is archived and publicly available at DOI

10.5281/zenodo.4709389 [7]. The framework defines the minimal requirements for implementations

of distance functions, value domains and the communication interface to the implementation

under test as abstract classes. We call the instantiation of the pair (Ωcase,ΩIn) test case selection,
which can also be implemented as desired, as long as it complies to the interface defined by the

framework. We want to remark that our framework implements Case 2 of DT𝑏 differently than

explained in Section 5. In practice, we cannot assume atomicity of one iteration of the test execution.

This is a well-known practical impediment of model-based testing [21]. The common approach to

circumvent this issue proceeds by delegating the decision of Algorithm 1 which case to pick to the

driver component [14] (connecting to the IUT), which is configured to be able to look one output

(or quiescence) ahead. We have adapted this approach, giving preference to Case 3 if the driver

holds some output. Except for the structural constraints explained above, there are no limitations

for the specification of concrete contracts or IUTs.

Software doping tests are typically executed physically rather than in simulation. When testing

passenger cars, the driver component is a human driver. Having a human in the loop has severe

consequences. In many cases, they will fail to pass designated test inputs accurately to the car

under test. To overcome this problem of human imprecisions, we will use a technique related to

testing, which is monitoring. A monitor can read the inputs and outputs of a system in order to

detect incorrect behaviour of the system. In contrast to testing, the inputs are not provided by

the test, but instead the system is monitored during normal operation. Monitors can be either

online (evaluation is done while inputs are still received) or offline (observed behaviour is evaluated

after the observation). A monitor can easily be extended to a test by controlling the environment

providing the inputs to the system. In contrast to classical testing, however, the monitor has the

flexibility to handle human imprecisions. We made offline monitoring explicitly part of our testing

framework. To this end, we use its flexibility to specify a virtual implementation under test with an

associated test case selection, that can run a recorded trace with the testing algorithm being in the

loop. We present two examples showing two different approaches of how our framework can be

used. Both examples consider the Diesel Emissions Scandal.

Volkswagen Case. The first example is based on a toy implementation of an emission cleaning

system that was found in several Volkswagen diesel cars [11]. To defeat the regulations, these

systems contain (as part of obfuscated code) pairs of piecewise linear functions that delineate

certain regions in the time-distance domain. Fig. 3 displays one of these pairs. The region of interest

is the white region enclosed by the grey areas, confined by the function pair. The dark line inside

this region represents the distance over time a car would have travelled according to the NEDC test

cycle. The logic of the emissions cleaning system is set up such that whenever the distance travelled

stays within the white region (as it is the case for the NEDC itself) the emission cleaning is carried

out as efficiently as possible. However, once a grey area is touched or entered, the effectiveness

of the cleaning system is reduced significantly [11], and stays like that until engine restart. We

implemented a toy version of this emission cleaning approach [7], together with an implementation

ACM Trans. Model. Comput. Simul., Vol. 31, No. 3, Article 16. Publication date: August 2021.
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Fig. 3. White region is encoded by a pair of piecewise linear functions found in several Volkswagen ECUs.
Black line represents the (imaginary) distance travelled when following the NEDC speed profile on a chassis
dynamometer.

of the standard NEDC, the contract as described above, and a test case selection according to

Ωcase (ℎ) =
{
2 if |ℎ | ≤ 1180

3 if |ℎ | = 1181

ΩIn (ℎ) = randunif [max(0, last(ℎ) − ^i) , last(ℎ) + ^i)]

which basically stops the test after 1181 steps and otherwise meanders randomly through the speed

variations possible (randunif implements uniform randomness). Running Algorithm DT𝑏 with these

parameters is extremely likely to lead to a fail, because the chance of entering a grey area early

during these test is very high. In our experiments, we had to take ^i ≤ 4 in order to see tests passing

with some perceivable chance.

Nissan Case. The Volkswagen example above shows how our testing framework works in theory.

In practice, if we test cyber-physical systems like cars, it is usually not possible (or at least very

difficult) to realise the interface between DT𝑏 and the IUT. Testing a car, for example, requires a

human driver who can drive the car as specified by DT𝑏 . However, the driver needs to be made

aware of the upcoming input values a few seconds in advance in order to be able to prepare for

changes. This is not in the spirit of our algorithm (and neither that of model-based testing), because

there is no support for look-ahead. Furthermore, human imprecisions must be taken into account.

Even well trained drivers will likely not be able to reach the prescribed speed values accurately

at precisely the right time points. Thus, for these kinds of experiments, we propose the following

three-step approach.

(1) Use the test case selection in order to generate a sequence of inputs that serve as a test case

instruction for a human driver. Considering a tolerance of [ for human imprecisions, the

input sequences should be generated for a contract where the input threshold is ^′i = ^i − [,
i.e., assuming the driver controls the car with an imprecision of at most tolerance [, the

actually driven input sequence will still be considered acceptable as per Def. 3.4.

(2) Utilize that test case to guide a human driver effectuating the test on the chassis dynamometer,

record the entire experiment, and store it as a trace.

(3) Use the monitoring capabilities of our framework to simulate the experiment with Algorithm

DT𝑏 analysing it. To this end, we provide an implementation to parse traces and to generate

ACM Trans. Model. Comput. Simul., Vol. 31, No. 3, Article 16. Publication date: August 2021.
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Fig. 4. Initial 200s of a SineNEDC (red, dotted), its test drive (green) and the NEDC driven (blue, dashed).

a virtual IUT and a test case selection, which, when used with DT𝑏 , simulate the recorded

experiment. Algorithm DT𝑏 will return either pass or fail (i.e., there are no inconclusive

tests).

It is worth mentioning that whatever happens during the execution of a test, the observable input

sequence is handled correctly by DT𝑏 . In particular, if the input deviates too much from a standard

input, the test is trivially passed. In this case our framework will additionally flag that the test

is passed due to inputs not covered by robust cleanness. In practice, we try to eliminate such

unproductive experiments by adequately configuring the human imprecision estimate [ upfront.

For the purpose of practically demonstrating this three-step approach, we picked a Renault 1.5

dci (110hp) (Diesel) engine. This engine runs, among others, inside a Nissan NV200 Evalia which is

classified as a Euro 6 car. The test cycle used in the original type approval of the car was NEDC

(which corresponds to Euro 6b). Emissions are cleaned using exhaust gas recirculation (EGR). The

technical core of EGR is a valve between the exhaust and intake pipe, controlled by software. EGR is

known to possibly cause performance losses, especially at higher speed. Car manufacturers might

be tempted to optimize EGR usage for engine performance unless facing a known test cycle such

as the NEDC.

We report here on two of the tests we executed apart from the NEDC reference. PowerNEDC is

a variation of the NEDC, where acceleration is increased from 0.94 m/s2 to 1.5 m/s2 in phase 6 of

the NEDC elementary urban cycle (i.e. after 56𝑠, 251𝑠, 446𝑠 and 641𝑠). It can be described by the

same Ωcase as for the Volkswagen example. ΩIn is easy to write, but we omit it here as it is rather

space consuming. The second test, called SineNEDC, defines the speed at time 𝑡 to be the speed of

the NEDC at time 𝑡 plus 5 · 𝑠𝑖𝑛(0.5𝑡) (but capped at 0). Again, Ωcase matches the Volkswagen one.

The input selection is given below.

ΩIn (ℎ) = max

{
0,

NEDC( |ℎ |) + 5 · sin(0.5|ℎ |))

}
Fig. 4 shows the initial 200s of SineNEDC (red, dotted). The car was fixed on a Maha LPS 2000
dynamometer and attached to an AVL M.O.V.E iS portable emissions measurement system (PEMS,

see Fig. 5) with speed data sampling at a rate of 20 Hz, averaged to match the 1 Hz rate of the

NEDC. The human driver effectuated the NEDC with a deviation of at most 9 km/h relative to the

reference (notably, the results obtained for NEDC are not consistent with the car data sheet, likely

caused by lacking calibration and absence of any further manufacturer-side optimisations).

ACM Trans. Model. Comput. Simul., Vol. 31, No. 3, Article 16. Publication date: August 2021.
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Fig. 5. Nissan NV200 Evalia on a dynamometer

NEDC Power Sine

Distance [𝑚] 11,029 11,081 11,171

Avg. Speed [km/h] 33 29 34

CO2 [g/km] 189 186 182

NO𝑥 [mg/km] 180 204 584

Table 1. Dynamometer measurements

The PowerNEDC test drive as well as the SineNEDC test drive both deviated by less than 15 km/h
from the NEDC test drive, and hence less than ^i, as per the contract described at the beginning of

this section. The green line in Fig. 4 shows SineNEDC driven. The test outcomes are summarised

in Table 1. They show that the amount of CO2 for the two tests is lower than for the NEDC driven.

The NO𝑥 emissions of PowerNEDC deviate by around 24 mg/km, which is clearly below ^o. But

the SineNEDC produces about 3.24 times the amount of NO𝑥 , that is 404 mg/km more than what

we measured for the NEDC, which is a violation of the contract.

7 DISCUSSION
Related Work. The present work complements white-box approaches to software doping, like

model-checking [12] or static code analysis [11] by a black-box testing approach, for which the

specification is given implicitly by a contract, and usable for on-the-fly testing. Existing test

frameworks like TGV [23] or TorX [14] provide support for the last step, however they fall short on

scenarios where (i) the specification is not at hand and, among others, (ii) the test input is distorted

in the testing process, e.g., by a human driving a car under test.

Our work is based on the definition of robust cleanness [12] which has conceptual similarities to

continuity properties [8, 22] of programs. However, continuity itself does not provide an adequate

guarantee of cleanness. This is because physical outputs (e.g. the amount of NO𝑥 gas in the

exhaust) usually do change continuously. For instance, a doped car may alter its emission cleaning

in a discrete way, but that induces a (rapid but) continuous change of NO𝑥 gas concentrations.

Established notions of stability and robustness [16, 25, 27, 29] differ from robust cleanness in that

the former assure the outputs (of a white-box system model) to stabilize despite transient input

disturbances. Robust cleanness does not consider perturbations but (intentionally) different inputs,

and needs a hyperproperty formulation.

Concluding Remarks. This work lays the theoretical foundations for black-box testing approaches
geared towards uncovering doped software. As in the diesel emissions scandal—where manufactur-

ers were forced to pay heavy fines [28] and where executives face lawsuits and possible prison

sentences [5, 17]—doped behaviour is typically related to illegal behaviour.

As we have discussed, software doping analysis comes with several challenges. It can be per-

formed (i) only after production time on the final embedded or cyber-physical product, (ii) no-

toriously without support by the manufacturer, and (iii) the property belongs to the class of

hyperproperties with alternating quantifiers. (iv) Nondeterminism and imprecision caused by a

human in-the-loop complicate doping analysis of CPS even further.

Conceptually central to the approach is a contract that is assumed to be explicitly offered by

the manufacturer. The contract itself is defined by very few parameters making it easy to form

an opinion about a concrete contract. And even if a manufacturer is not willing to provide such

ACM Trans. Model. Comput. Simul., Vol. 31, No. 3, Article 16. Publication date: August 2021.
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contractual guarantees, instead a contract with very generous parameters can provide convincing

evidence of doping if a test uncovers the contract violation. We showed this in a real automotive

example demonstrating how a legally binding reference behaviour and a contract altogether induce

a finite state LTS enabling to harvest input-output conformance testing for doping tests. We

developed an algorithm that can be attached directly to a system under test or in a three-step

process, first generating a valid test case, which is then used to guide a human interacting with

the system, thereby possibly adding distortions, followed by an a-posteriori validation of the

recorded trajectory. For more effective test case selection [13, 19] we are exploring different guiding

techniques [1, 2, 15] for cyber-physical systems.

Acknowledgements
We gratefully acknowledge Thomas Heinze, Michael Fries, and Peter Birtel (Automotive Powertrain

Institute of HTW Saar) for sharing their automotive engineering expertise with us, and for pro-

viding the automotive test infrastructure. This work is partly supported by the ERC Grant 695614

(POWVER), by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grant

389792660 as part of TRR 248, see https://perspicuous-computing.science, by the Saarbrücken Grad-

uate School of Computer Science, by the Sino-German CDZ project 1023 (CAP), by the Key-Area

Research and Development Program Grant 2018B010107004 of Guangdong Province, by ANPCyT

PICT-2017-3894 (RAFTSys), and by SeCyT-UNC 33620180100354CB (ARES).

REFERENCES
[1] Arvind S. Adimoolam, Thao Dang, Alexandre Donzé, James Kapinski, and Xiaoqing Jin. 2017. Classification and

Coverage-Based Falsification for Embedded Control Systems. In Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I (LNCS, Vol. 10426). Springer, 483–503.
https://doi.org/10.1007/978-3-319-63387-9_24

[2] Yashwanth Annpureddy, Che Liu, Georgios E. Fainekos, and Sriram Sankaranarayanan. 2011. S-TaLiRo: A Tool for

Temporal Logic Falsification for Hybrid Systems. In Tools and Algorithms for the Construction and Analysis of Systems -
17th International Conference, TACAS 2011, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings (LNCS, Vol. 6605). Springer, 254–257.
https://doi.org/10.1007/978-3-642-19835-9_21

[3] Gilles Barthe, Pedro R. D’Argenio, Bernd Finkbeiner, and Holger Hermanns. 2016. Facets of Software Doping, See [26],

601–608. http://dx.doi.org/10.1007/978-3-319-47169-3_46

[4] Kevin Baum. 2016. What the Hack Is Wrong with Software Doping?, See [26], 633–647. https://doi.org/10.1007/978-3-

319-47169-3_49

[5] BBC. 2018. Audi chief Rupert Stadler arrested in diesel emissions probe. BBC, https://www.bbc.com/news/business-

44517753. https://www.bbc.com/news/business-44517753 Online; accessed: 2019-01-28.

[6] Sebastian Biewer, Pedro D’Argenio, and Holger Hermanns. 2019. Doping Tests for Cyber-Physical Systems. In

Quantitative Evaluation of Systems, 16th International Conference, QEST 2019, Glasgow, UK, September 10-12, 2019,
Proceedings (Lecture Notes in Computer Science, Vol. 11785), David Parker and Verena Wolf (Eds.). Springer, 313–331.

https://doi.org/10.1007/978-3-030-30281-8_18

[7] Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns. 2021. Doping Tests for Cyber-Physical Systems – Tool.
https://doi.org/10.5281/zenodo.4709389

[8] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2010. Continuity analysis of programs. In Proceedings
of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain,
January 17-23, 2010. ACM, 57–70. http://doi.acm.org/10.1145/1706299.1706308

[9] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.

2014. Temporal Logics for Hyperproperties. In Principles of Security and Trust - Third International Conference, POST
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014, Proceedings (LNCS, Vol. 8414). Springer, 265–284. https://doi.org/10.1007/978-3-642-54792-8_15

[10] Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In CSF’08. 51–65. http://dx.doi.org/10.1109/CSF.

2008.7

[11] Moritz Contag, Guo Li, Andre Pawlowski, Felix Domke, Kirill Levchenko, Thorsten Holz, and Stefan Savage. 2017. How

They Did It: An Analysis of Emission Defeat Devices in Modern Automobiles. In 2017 IEEE Symposium on Security and

ACM Trans. Model. Comput. Simul., Vol. 31, No. 3, Article 16. Publication date: August 2021.

https://powver.org
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-319-63387-9_24
https://doi.org/10.1007/978-3-642-19835-9_21
http://dx.doi.org/10.1007/978-3-319-47169-3_46
https://doi.org/10.1007/978-3-319-47169-3_49
https://doi.org/10.1007/978-3-319-47169-3_49
https://www.bbc.com/news/business-44517753
https://www.bbc.com/news/business-44517753
https://www.bbc.com/news/business-44517753
https://doi.org/10.1007/978-3-030-30281-8_18
https://doi.org/10.5281/zenodo.4709389
http://doi.acm.org/10.1145/1706299.1706308
https://doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1109/CSF.2008.7
http://dx.doi.org/10.1109/CSF.2008.7


P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
21

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
A

C
M

TO
M

A
C

S
31

(3
).

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

16:26 Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns

Privacy, SP 2017, San Jose, CA, USA,May 22-26, 2017. IEEE Computer Society, 231–250. https://doi.org/10.1109/SP.2017.66

[12] Pedro R. D’Argenio, Gilles Barthe, Sebastian Biewer, Bernd Finkbeiner, and Holger Hermanns. 2017. Is Your Software

on Dope? - Formal Analysis of Surreptitiously "enhanced" Programs. In Programming Languages and Systems -
26th European Symposium on Programming, ESOP 2017, Proceedings (LNCS, Vol. 10201). Springer, 83–110. https:

//doi.org/10.1007/978-3-662-54434-1_4

[13] R.G. de Vries. 2001. Towards Formal Test Purposes. In Formal Approaches to Testing of Software 2001 (FATES’01) (BRICS
Notes Series, NS-01-4). BRICS, University of Aarhus, 61–76.

[14] René G. de Vries and Jan Tretmans. 2000. On-the-fly Conformance Testing using SPIN. STTT 2, 4 (2000), 382–393.

https://doi.org/10.1007/s100090050044

[15] Jyotirmoy V. Deshmukh, Xiaoqing Jin, James Kapinski, and Oded Maler. 2015. Stochastic Local Search for Falsification

of Hybrid Systems. In Automated Technology for Verification and Analysis - 13th International Symposium, ATVA 2015,
Shanghai, China, October 12-15, 2015, Proceedings (LNCS, Vol. 9364). Springer, 500–517. https://doi.org/10.1007/978-3-

319-24953-7_35

[16] Laurent Doyen, Thomas A. Henzinger, Axel Legay, and Dejan Nickovic. 2010. Robustness of Sequential Circuits. In

10th International Conference on Application of Concurrency to System Design, ACSD 2010, Braga, Portugal, 21-25 June
2010. IEEE Computer Society, 77–84. https://doi.org/10.1109/ACSD.2010.26

[17] Jack Ewing. 2018. Ex-Volkswagen C.E.O. Charged With Fraud Over Diesel Emissions. New York Times, https:

//www.nytimes.com/2018/05/03/business/volkswagen-ceo-diesel-fraud.html. https://www.nytimes.com/2018/05/03/

business/volkswagen-ceo-diesel-fraud.html Online; accessed: 2019-01-28.

[18] Georgios E. Fainekos and George J. Pappas. 2009. Robustness of temporal logic specifications for continuous-time

signals. Theor. Comput. Sci. 410, 42 (2009), 4262–4291. https://doi.org/10.1016/j.tcs.2009.06.021

[19] Loe M. G. Feijs, Nicolae Goga, Sjouke Mauw, and Jan Tretmans. 2002. Test Selection, Trace Distance and Heuristics. In

Testing of Communicating Systems XIV, Applications to Internet Technologies and Services, Proceedings of the IFIP 14th
International Conference on Testing Communicating Systems - TestCom 2002, Berlin, Germany, March 19-22, 2002 (IFIP
Conference Proceedings, Vol. 210). Kluwer, 267–282.

[20] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. 2015. Algorithms forModel CheckingHyperLTL andHyperCTL
∗
.

In CAV 2015 (LNCS, Vol. 9206). Springer, 30–48. http://dx.doi.org/10.1007/978-3-319-21690-4_3

[21] Alexander Graf-Brill and Holger Hermanns. 2017. Model-Based Testing for Asynchronous Systems. In Critical Systems:
Formal Methods and Automated Verification - Joint 22nd International Workshop on Formal Methods for Industrial Critical
Systems - and - 17th International Workshop on Automated Verification of Critical Systems, FMICS-AVoCS 2017, Turin, Italy,
September 18-20, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10471), Laure Petrucci, Cristina Seceleanu,
and Ana Cavalcanti (Eds.). Springer, 66–82. https://doi.org/10.1007/978-3-319-67113-0_5

[22] Dick Hamlet. 2002. Continuity in sofware systems. In Proceedings of the International Symposium on Software Testing
and Analysis, ISSTA 2002, Roma, Italy, July 22-24, 2002. ACM, 196–200. https://doi.org/10.1145/566172.566203

[23] Claude Jard and Thierry Jéron. 2005. TGV: theory, principles and algorithms. STTT 7, 4 (2005), 297–315. https:

//doi.org/10.1007/s10009-004-0153-x

[24] Maximilian A. Köhl, Holger Hermanns, and Sebastian Biewer. 2018. Efficient Monitoring of Real Driving Emissions.

In Runtime Verification - 18th International Conference, RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings
(Lecture Notes in Computer Science, Vol. 11237), Christian Colombo and Martin Leucker (Eds.). Springer, 299–315.

https://doi.org/10.1007/978-3-030-03769-7_17

[25] Rupak Majumdar and Indranil Saha. 2009. Symbolic Robustness Analysis. In Proceedings of the 30th IEEE Real-
Time Systems Symposium, RTSS 2009, Washington, DC, USA, 1-4 December 2009. IEEE Computer Society, 355–363.

https://doi.org/10.1109/RTSS.2009.17

[26] Tiziana Margaria and Bernhard Steffen (Eds.). 2016. Leveraging Applications of Formal Methods, Verification and
Validation: Discussion, Dissemination, Applications - 7th International Symposium, ISoLA 2016, Part II. LNCS, Vol. 9953.
http://dx.doi.org/10.1007/978-3-319-47169-3

[27] S. Pettersson and B. Lennartson. 1996. Stability and robustness for hybrid systems. In Proceedings of 35th IEEE Conference
on Decision and Control, Vol. 2. 1202–1207 vol.2.

[28] Charles Riley. 2018. Volkswagen’s diesel scandal costs hit $30 billion. CNN Business, https://money.cnn.com/2017/09/

29/investing/volkswagen-diesel-cost-30-billion/index.html. https://money.cnn.com/2017/09/29/investing/volkswagen-

diesel-cost-30-billion/index.html Online; accessed: 2019-01-28.

[29] Paulo Tabuada, Ayca Balkan, Sina Y. Caliskan, Yasser Shoukry, and Rupak Majumdar. 2012. Input-output robustness

for discrete systems. In Proceedings of the 12th International Conference on Embedded Software, EMSOFT 2012, part
of the Eighth Embedded Systems Week, ESWeek 2012, Tampere, Finland, October 7-12, 2012. ACM, 217–226. http:

//doi.acm.org/10.1145/2380356.2380396

[30] The European Parliament and the Council of the European Union. 1998. Directive 98/69/EC of the European Parliament

and of the Council. Official Journal of the European Communities (1998). http://eur-lex.europa.eu/LexUriServ/

ACM Trans. Model. Comput. Simul., Vol. 31, No. 3, Article 16. Publication date: August 2021.

https://doi.org/10.1109/SP.2017.66
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/s100090050044
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1007/978-3-319-24953-7_35
https://doi.org/10.1109/ACSD.2010.26
https://www.nytimes.com/2018/05/03/business/volkswagen-ceo-diesel-fraud.html
https://www.nytimes.com/2018/05/03/business/volkswagen-ceo-diesel-fraud.html
https://www.nytimes.com/2018/05/03/business/volkswagen-ceo-diesel-fraud.html
https://www.nytimes.com/2018/05/03/business/volkswagen-ceo-diesel-fraud.html
https://doi.org/10.1016/j.tcs.2009.06.021
http://dx.doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-67113-0_5
https://doi.org/10.1145/566172.566203
https://doi.org/10.1007/s10009-004-0153-x
https://doi.org/10.1007/s10009-004-0153-x
https://doi.org/10.1007/978-3-030-03769-7_17
https://doi.org/10.1109/RTSS.2009.17
http://dx.doi.org/10.1007/978-3-319-47169-3
https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-billion/index.html
https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-billion/index.html
https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-billion/index.html
https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-billion/index.html
http://doi.acm.org/10.1145/2380356.2380396
http://doi.acm.org/10.1145/2380356.2380396
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML


P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
21

-1
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
A

C
M

TO
M

A
C

S
31

(3
).

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

Doping Tests for Cyber-Physical Systems 16:27

LexUriServ.do?uri=CELEX:31998L0069:EN:HTML

[31] Jan Tretmans. 1992. A formal approach to conformance testing. Ph.D. Dissertation. University of Twente, Enschede,

Netherlands. http://purl.utwente.nl/publications/58114

[32] Jan Tretmans. 1996. Conformance Testing with Labelled Transition Systems: Implementation Relations and Test

Generation. Computer Networks and ISDN Systems 29, 1 (1996), 49–79. https://doi.org/10.1016/S0169-7552(96)00017-7

[33] Jan Tretmans. 2008. Model Based Testing with Labelled Transition Systems. In Formal Methods and Testing, An Outcome
of the FORTEST Network, Revised Selected Papers (LNCS, Vol. 4949). Springer, 1–38. https://doi.org/10.1007/978-3-540-

78917-8_1

[34] United Nations. 2013. UN Vehicle Regulations - 1958 Agreement, Revision 2, Addendum 100, Regulation No. 101,

Revision 3 — E/ECE/324/Rev.2/Add.100/Rev.3. http://www.unece.org/trans/main/wp29/wp29regs101-120.html

[35] Rob van Glabbeek. 2001. The Linear Time-Branching Time Spectrum I: The Semantics of Concrete, Sequential Processes.

In Handbook of Process Algebra. Elsevier, 3–99.

ACM Trans. Model. Comput. Simul., Vol. 31, No. 3, Article 16. Publication date: August 2021.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://purl.utwente.nl/publications/58114
https://doi.org/10.1016/S0169-7552(96)00017-7
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1
http://www.unece.org/trans/main/wp29/wp29regs101-120.html

	Abstract
	1 Introduction
	2 Software Doping on Reactive Programs
	3 Robustly Clean Labelled Transition Systems
	4 Reference Implementation for Contracts
	5 Model-Based Doping Tests
	6 Diesel Doping Tests
	7 Discussion
	References

