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ABSTRACT
Cyber-physical systems are notoriously hard to verify due to the

complex interaction between continuous physical behavior and dis-

crete control. A widespread and important class is formed by digital

controllers that operate on fixed control cycles to interact with the

physical environment they are embedded in. This paper presents

a case study for integrating such controllers into a rigorous verifi-

cation method for cyber-physical systems, using flowpipe-based

verification methods to verify legally binding requirements for elec-

trified vehicles to a custom bike design. The controller is integrated

in the underlying model in a way that correctly represents the input

discretization performed by any digital controller.

CCS CONCEPTS
•Computer systems organization→ Embedded and cyber-physical
systems; • Theory of computation → Timed and hybrid models;
Verification by model checking; • Software and its engineering
→ Software verification; Formal software verification; • Computing
methodologies→ Model verification and validation.

KEYWORDS
Controller, hybrid automata, verification

ACM Reference Format:
Felix Freiberger, Stefan Schupp, Holger Hermanns, and Erika Ábrahám.

2021. Controller Verification meets Controller Code: A Case Study. In 19th
ACM-IEEE International Conference on Formal Methods andModels for System
Design (MEMOCODE ’21), November 20–22, 2021, Beijing, China. ACM, New

York, NY, USA, 7 pages. https://doi.org/10.1145/3487212.3487337

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MEMOCODE ’21, November 20–22, 2021, Beijing, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9127-6/21/11. . . $15.00

https://doi.org/10.1145/3487212.3487337

ACKNOWLEDGMENTS
This work was partially funded by the ERC Advanced Investiga-

tors Grant 695614 (POWVER) and by the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation) – project number

389792660 – TRR 248 – CPEC, see https://perspicuous-computing.

science).

1 INTRODUCTION
Cyber-physical systems are taking over ever more tasks. Their ac-

cumulated effect on our daily life and especially in mission- or

safety-critical contexts grows massively. Despite an obvious need

for establishing rigorous safety guarantees across many such con-

texts, cyber-physical systems out there have mostly eluded formal

verification attempts thus far.

Many controllers act periodically, executing the same control

logic repeatedly after a fixed time interval, mapping the sensor

values and some controller-internal state to actuator commands

and updates to the controller state. For instance, programmable

logic controllers (PLCs) operate in this manner by default.

In this paper, we look at a real-world electrified dandy horse

as an example of such a system. This is a custom-made, bicycle-

like vehicle, but without pedals, so it is accelerated by the rider

pushing her feet along the ground. In the actual prototype we are

considering, an on-board controller senses the pushes and amplifies

them by means of an electric motor, similar to how a traditional

pedelec amplifies the force applied to the pedals.

In our case study, we verify legal requirements as well as practi-

cally relevant safety constraints for our dandy horse. Our approach

is based on well-established verification techniques for hybrid au-

tomata, but is distinguished by its improved handling of the discrete

controller. Here, the discrete behavior of the controller is extracted

automatically from the controller code for direct inclusion in the

model, eliminating the risk of errors introduced by modelling con-

trollers manually.

The verification algorithm we use is rooted in state-of-the art

methods for hybrid systems, namely reachability analysis based

on flowpipe construction [1, 2, 4, 6, 10]. It is tailored to models

combining continuous physical behavior and discrete controller

behavior applied at fixed, recurring time points.

In contrast to related approaches, our method is automated and

does not require explicit modelling of the controller. The controller

https://doi.org/10.1145/3487212.3487337
https://doi.org/10.1145/3487212.3487337
https://perspicuous-computing.science
https://perspicuous-computing.science
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Figure 1: Draisine 200.0, a wooden dandy horse

can be treated as a black box, merely requiring knowledge of the

inputs, outputs, and state variables which are preserved across con-

trol cycles. This considerably reduces modelling effort and, more

importantly, sets the basis for verifying almost arbitrary controllers

in the loop. This approach also opens a path towards analysis across

intellectual property boundaries, requiring only the interface and

controller state to be handled explicitly, without requiring disclo-

sure of controller source code.

2 DRAISINE 200.0
In this paper, we focus on Draisine 200.0

1
, a prototype human-

powered and engine-assisted vehicle similar to a bicycle, shown in

Figure 1. It is made of wood and has been built as a demonstrator

for various scientific projects on the occasion of the 200
th

birthday

of the original dandy horse.

The vehicle features a bicycle frame but is not equipped with

pedals. Instead, a rider accelerates it by pushing herself forward

with her feet on the ground. Braking force can be applied either by

a traditional friction brake or by the rider’s feet directly.

The vehicle is equipped with an electric motor in the rear wheel

for the purpose of providing assistance to the rider, similar to a

pedelec (an electrified bicycle that provides assistance when the

rider pedals), which is powered by a battery mounted in the frame.

A freewheel assembly ensures the wheel can turn faster than the

motor, avoiding resistance while the motor is not powered. The

low-level control of the motor (including all high-wattage power

lines) is handled by a Vedder VESC 4.12, an off-the-shelf driver. The

motor can be actuated via pulse width modulation: It expects to be

given a target duty signal, i.e., a signal specifying the percentage of

time during which the motor should be powered.

Determining the proper duty signal is the task of a dedicated

controller. The overall goal of the controller system is to provide

an experience analogous to a pedelec to the rider: She should be

able to use the dandy horse normally, i.e., accelerate it by pushing,

1
see https://www.powver.org/draisine-200-0/

but receive assistance proportional to the pushes, such that higher

speeds and larger distances are possible, without impacting the

handling of the vehicle too much. Similar to a PLC, the controller

is executed periodically after passage of Δ𝑡 time units.

On the demonstrator, for flexibility, the controller is run on a

Raspberry Pi computer powered by an additional battery (in a mass-

produced vehicle, a dedicated microprocessor, powered by the main

battery, would be used instead).

The controller is attached to a motion processing unit containing,

amongst others, an accelerometer. This accelerometer can sense the

longitudinal acceleration caused by the rider pushing or braking the

vehicle, and will provide this information as input to the controller.

Then, the controller has the task of briefly powering the engine to

amplify that push.

In addition, the dandy horse contains a Hall-effect sensor which

is mounted close to the rear wheel and wired to GPIO ports on the

Raspberry Pi and four magnets mounted equidistantly along the

perimeter of the rear wheel, allowing the controller to approximate

the speed of the wheel with high accuracy. This enables the con-

troller to determine the vehicle speed, so as to prevent accidental

acceleration when the speed is near zero, and to ensure that the

vehicle does adhere to regulations limiting the maximum speed up

to which electrical assistance is allowed (25 km/h for pedelecs).

The objective is to verify the digital controller responsible for

converting sensor readings into a duty signal. In this work, the

driver is out of scope for verification and will instead be modelled

as part of the physical system. Similarly, as a simplification, the

speed estimation logic is also not verified (although our verification

method could in general be used for that, at the cost of increased

verification execution time). To this end, in the model, we assume

the vehicle is equippedwith a perfect speed sensor, while in practice,

estimating the speed is handled by an external component that

receives the Hall sensor events and passes an estimated speed to the

controller core. The same component also handles communication

with the hardware through the GPIO pins.

The to-be-verified core controller logic is implemented in C++.
It is a stateful algorithm that uses the accelerometer input, speed,

and a limited history of previous values of the accelerometer and

duty signal stored in the controller state to compute the duty signal.

The historic values of the accelerometer help to smooth out noise

(caused by vibrations of the vehicle or uneven ground), providing

an estimate of the current amount of acceleration caused by the

user pushing the vehicle. The estimated speed is then used to shape

this signal into a target duty signal, providing no motor support at

very slow speeds (to prevent unwanted acceleration of a standing

vehicle) or above the legal speed limit. At the same time, high

motor support should be given at intermediate speeds, with smooth

transitions between the different modes for increased rider comfort.

The previous duty signal is used to limit the speed with which

the actual duty signal can change. This not only serves to smooth

out uncomfortable spikes in acceleration, but also ensures that a

strong but short push by the user yields a slightly longer push by

the motor, providing an acceptable support level overall.

https://www.powver.org/draisine-200-0/
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Listing 1: The control algorithm of Draisine 200.0. Some sub-functions and declarations have been removed to save space.
1 double Controller ::sig( double x ) const {
2 return 1.0 / ( 1.0 + exp( -x ) );
3 }
4

5 double Controller ::sig1( double x ) const {
6 return sig( 2 * x * exp( 2 ) );
7 }
8

9 ControllerOutput control( const ControllerState state , const ControllerInput input ) const {
10 constexpr int precision = 10;
11

12 constexpr double threshold = 0.3;
13 constexpr double accMax = 3.5;
14

15 constexpr double maxDutyIncrease = 20.0 / precision;
16 constexpr double maxDutyDecrease = 1.0 / precision;
17

18 double speed = decodeSpeed( input.speedValue );
19 double oldDuty = ( (double)state.dutySignal ) / 31;
20

21 double lowPassedAcceleration = lowPassFilter(state.accelerometerHistory , input.accelerometerValue); // details↰

skipped here
22

23 double dutyPercentage = std::min( 1.0, ( 1.0 / ( 1.0 - threshold ) ) * std::max( 0.0, lowPassedAcceleration / accMax↰

- threshold ) );
24

25 // modulate duty signal to speed using constants v1 through v4
26 const double modulationFactor = ( speed <= ( v2 + v3 ) / 2 )
27 ? sig1( ( speed - ( v1 + v2 ) / 2 ) / ( v2 - v1 ) )
28 : sig1( ( -speed + ( v3 + v4 ) / 2 ) / ( v4 - v3 ) );
29 dutyPercentage *= modulationFactor;
30

31 // limit changes in duty signal
32 dutyPercentage = std::min( std::max( dutyPercentage , oldDuty - maxDutyDecrease )
33 oldDuty + maxDutyIncrease );
34 DutySignalType duty = std::max( 0, std::min( 31, int( 31 * dutyPercentage ) ) );
35

36 ControllerState newState( duty , accelerometerHistory );
37 shiftAccelerometerHistory(accelerometerHistory , input.accelerometerValue); // details skipped here
38

39 return ControllerOutput( newState , duty );
40 }

Note that the accelerometer not only measures the acceleration

caused by the user, but also the acceleration caused by the motor.
2

This creates a potential for run-off acceleration that is countered by

carefully tuning the parameters of the controller (a property which

we will verify later on). The controller’s source code is shown in

Listing 1.

2.1 Properties
For this case study, we focus on properties of the form “When

𝜑 (scenario) is true continuously for 𝑡grace (grace period), then 𝜓

(requirement)”.
This form of property is very relevant in practice, especially in

legal safety requirements. For example, in many countries, pedelecs

are only allowed to provide electric assistance up to a certain speed

limit, often 25 km/h [3]. Normally, such rules do not require the

device to cut off assistance instantaneously after the speed limit is

hit, but provide some leeway (i.e., a grace period), allowing devices

to detect the event and react smoothly.

2
In contrast, acceleration caused by gravity while riding downhill (on a smooth surface)

is not measured by the longitudinal accelerometer.

In this case study, we have identified three properties relevant for

operation of the dandy horse, derived from the current regulations

for pedelecs which we aim to verify:

• No duty above speed limit.When the speed of the vehicle

has been higher than a certain threshold (here: 25 km/h) for
one second, the duty signal must be zero.

• No duty without rider input. When the rider has not

accelerated the vehicle beyond a certain threshold within

the past second, the duty signal must be zero.

• Braking stops the vehicle. When the rider does not accel-

erate and engages the brakes for a certain amount of time,

the speed must be zero.

Whether these properties hold is less obvious than it may appear.

For instance, as the controller limits the rate withwhich the duty sig-

nal decreases, the former two properties cannot be verified without

considering the controller state (as high speeds or lack of acceler-

ation will only cause the controller to return a duty signal that is

lower than before, but not necessarily zero).
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2.2 Model
2.2.1 Plant. We model Draisine 200.0 with a hybrid automaton [5]

H = (Loc,Var, Flow, Inv, Edge, Init)
with a single location Loc = {running} and Var being:

• 𝑣 : (longitudinal) velocity of the vehicle,

• 𝑎
rider

: acceleration applied by the rider’s feet,

• j
rider

: jerk (change of acceleration) from the rider’s feet,

• 𝑎terrain: acceleration resulting from uneven terrain,

• jterrain: jerk resulting from uneven terrain,

• 𝑝
brake

: percentage of the available braking force currently

being applied,

• ∆p
brake

: change rate of braking force,

• ds: last duty signal output from the controller,

• 𝑎
history

: variable used by the controller to store previous

measurements from the accelerometer, and

• 𝑡 : time passed since the last control cycle.

For the single location running, the dynamics are set to

¤𝑣 = ds · 𝑐motor + 𝑎
rider

+ 𝑎terrain + 𝑝
brake

· 𝑐
brake

(where 𝑐motor and 𝑐brake are constants describing the power of the

motor and brake, respectively), ¤𝑎
rider

= j
rider

, ¤𝑎terrain = jterrain, and
¤𝑝

brake
= ∆p

brake
.

Inv assigns the single location running a predicate constrain-

ing 𝑎
rider

, j
rider

, 𝑎terrain, jterrain, and ∆p
brake

to specific reasonable

ranges describing our assumptions on the user’s behavior and ter-

rain, 𝑝
brake

to the interval [0, 1] and 𝑡 to the interval [0,Δ𝑡 ]. For
practical reasons, we also restrict 𝑣 to a reasonable range. The set

of initial states Init is set depending on the property that needs to

be verified. For instance, if a property requires the initial velocity

to be larger than a certain value (here for instance 25 km/h), the
initial condition for this property considers any state with velocity

larger than the threshold which also satisfies the invariant.

2.2.2 Controller. Draisine 200.0 features a digital controllers that
operates periodically: at equidistant time points (Δ𝑡 ), a controller
execution reads sensor inputs, computes the implemented control

function, and passes the computed values to the actuators.

The real-world implementation of such a controller implies two

types of inherent discretization: The periodic execution causes the

controller to act at discrete time points, and the interaction with

the plant through digital actuators and sensors uses discrete values.

When it comes to verification, there are two methods to embed

a controller into a hybrid automaton:

• The controller’s influence can be integrated into the con-

tinuous behavior, i.e., the plant is directly and continuously

influenced by the controller output, which in turn is directly

and continuously influenced by the plant (see, e.g., [8, 9]).

However, this method requires a model of the controller and

for a digital controller, the continuous version in the model

can only approximate the real system.

• Alternatively, the control function of the digital controller

can be expressed through discrete jumps (see, e.g., [7]).

In our case study, we follow the second approach, and set Edge
to be the set of edges that exactly describe our digital controller:

For every combination of values the controller can read from its

input and state variable, Edge contains exactly one jump (guarded

plant

controller

𝑥
1
∈ [1,2) ∧ · · ·
𝑜′ = 7

𝑥
1
∈ [2,3) ∧ · · ·
𝑜′ = 7

𝑥
1
∈ [3,4) ∧ · · ·
𝑜′ = 5

𝑥
1
∈ [4,5) ∧ · · ·
𝑜′ = 3

Figure 3: Structure of a hybrid automaton for a cyber-
physical system with a discrete controller

to the appropriate ranges of input and controller state variables)

describing the controller behavior for this input. The resulting

structure of the hybrid automaton is sketched in Figure 3.

In practice, the set Edge is not specified manually, but derived

automatically from the controller source code by executing the

controller with every possible input with respect to the controller-

resolution.

2.3 Code Simplifications
To keep verification feasible within reasonable time bounds, it is

crucial to reduce the resolution of the controller input, state, and

output variables, i.e., to use a coarse discretization (corresponding

to variables with few bits) and to keep as few state variables as

possible. The controller used in Draisine 200.0 was designed to

follow this principle from the start, empirically evaluating different

resolutions and number of variables. The controller chosen for de-

ployment to the vehicle was the one having the lowest resolution

and variable count while still producing both sufficient support

(maxing out the available motor power briefly when the rider ac-

celerates quickly) and a subjectively smooth experience (avoiding

sudden or unexpected changes in acceleration). This results in a

controller with 5-bit unsigned speed values (input), 5-bit signed

accelerometer values (input & state), and a 5-bit unsigned duty

signal (output & input).

Similarly to minimizing variable resolution, the time resolution

has also been minimized by running only 10 control cycles per sec-

ond (Δ𝑡 = 0.1). This helps in two ways: Not only does it reduce the

number of controller applications the verifier has to reason about,

but it also means that the controller has to store fewer previous

accelerometer values to reason about the same time frame. With

this low cycle rate, keeping a single previous accelerometer reading

has been empirically shown to reliably prevent accelerometer noise

from causing unintended accelerations.

With these optimizations, the controller is a function that maps

984064 distinct pairs of inputs and states to the corresponding out-

puts and new states, i.e. the number of jumps required to represent

the controller is |Edge | = 984064.



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
21

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
M

E
M

O
C

O
D

E
’2

1.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Controller Verification meets Controller Code: A Case Study MEMOCODE ’21, November 20–22, 2021, Beijing, China

3 VERIFICATION
To verify our properties, we use a verification algorithm based

on flowpipe construction [1, 2, 4, 6, 10]. Intuitively, the approach

over-approximates the set of reachable states of a given hybrid

system by sets of geometric shapes based on time discretization for

the continuous behavior. Note that different types of shapes yield

different properties with respect to execution time and precision.

Commonly used shapes include boxes, convex polyhedra, support

functions, and zonotopes.

The structure of our model and properties pose two main prob-

lems for verification:

(1) Despite the optimizations described in Section 2.3, ourmethod

of embedding the controller into the plant, while preserving

the real-world value discretization, created a high number

of jumps.

As processing the jumps requires computing an intersection

with the guard of every single jump, this severely affects the

execution time of a naïve verifier implementation.

(2) As the scenario condition may become satisfied at any point

in time, including at any point in between controller applica-

tions, the controller applications are not “aligned” relative

to the start of the grace period 𝑡grace.

This means that a naïve verification algorithm cannot merely

process the controller jumps

𝑡grace
Δ𝑡

times, but needs to con-

sider them for every flowpipe segment.

Solving these problems is crucial to keep verification times fea-

sible. We counter the first problem by computing an optimized

internal representation of the jumps to use during verification. To

represent controller jumps based on the discretization described

in Section 2.2.2 while keeping execution time reasonable, we pre-

process the discretization obtained from a full sampling of the

controller and group neighboring controller inputs which yield

the same output into so-called chunks. This effectively reduces the

number of transitions which are required to model the controller.

These chunks also lay the groundwork for a state set representa-

tion method based on sets of boxes (each of which is a sub-box of a

chunk) that allows high efficiency while keeping the representation-

induced overapproximations within boundaries with limited impact

on the overall verification result.

The second problem is solved by an overapproximation based

on the observation that independently of the initial state of the

system (and the internal clock 𝑡 triggering a controller application),

a controller application is hit after passage of at most Δ𝑡 time

units. After this first controller application, the value of the clock

is known, and state space exploration needs to consider the jumps

only once per time segment of Δ𝑡 . This is valid as the behavior of

the draisine itself is purely dynamical, i.e. no other discrete jumps

may happen in-between two controller applications. Therefore, the

verification algorithm can be structured to only apply the controller

at these intervals by overapproximating the time spent in the first

control cycle to align controller applications. Due to the added

overapproximation on the initial clock valuation, the last control

cycle needs to be overapproximated, too, to compensate for the

missing information on the actual clock valuation (and therefore

missing information on when the grace period expires), which can

range up to Δ𝑡 . Consequently, the intersection with bad states must

Δ𝑡 Δ𝑡 Δ𝑡 Δ𝑡 Δ𝑡 Δ𝑡 Δ𝑡

scenario condition first met bad statescontroller application

Figure 4: Overview of state space during verification. Analy-
sis begins when the scenario condition is first met, starting
the grace period. Overapproximations ensure the controller
only needs to be applied at discrete time points (thin vertical
lines). The behavior of the plant may change at these points
due to changes to actuator values. Verification is successful
if no bad states are encountered after the grace period has
passed (which, due to overapproximation, must be assumed
to be possible at any point within the last cycle).

be checked during the whole last control cycle, not just at the time

horizon.

The evolution of the sets of reachable states in the resulting

verification algorithm is sketched in Figure 4.

4 EVALUATION
To verify the properties for Draisine 200.0 discussed in Section 2,

we implemented a verification approach in C++ as described in

Section 3. For the reachability analysis and state set representa-

tion, we used HyPro [10], a C++ programming library for hybrid

systems safety verification via flowpipe-construction-based reacha-

bility analysis. All experiments were performed on an Intel® Core™

i7-4790 CPU (3.60GHz) (with 4 physical / 8 logical threads) running

Ubuntu 20.04 with 32GB of memory.

4.1 Experimental Results
Our goal was to analyze the three properties in Section 2.1.

As described in Section 3, our verification algorithm uses a pre-

processed representation of the set Edge. This preprocessing step
only needs to be run once when the controller code is changed and

is not considered in the following discussion. This process takes

about 30 s on our test machine. As the controller outputs are pre-

computed and stored in this step, all execution times discussed in

the following no longer depend on the complexity of the control

algorithm itself, only on the chunks describing it.

In addition to measuring the influence of the number of chunks

during our evaluation, we evaluate the influence of the time step

size for the time discretization and the used state set representation

during flowpipe construction with respect to overall execution time

and precision of the results. While the effect of the cycle time was

negligible in terms of precision and execution time when using

boxes as a state set representation, using support functions instead

resulted in infeasible execution times. The presented results thus

show execution times using a box-based representation and a time

discretization of 𝛿 = 0.01 =
Δ𝑡

10
for the flowpipe construction. In
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Figure 5: Execution time ( , in milliseconds, y axis) and number of chunks produced ( , y axis) per cycle (x axis). The
time in the first cycle is always low because the initial state is represented by a single box; the number of boxes generated
influences the number of intersections needed in the next cycle.

Table 1: Verification execution times for different properties
with different grace periods (GP).

Property GP [Δ𝑡 ] runtime [s]

no duty above speed limit 9 8.7

no duty without rider input 10 10.7

braking stops eventually 50 4.0

this setting, all properties take less than 15 s to verify, with exact

execution times shown in Table 1.

For our verifier, execution time is dominated by processing the

jumps induced by the controller. Consequently, the majority of the

execution time is spent in the first control loop cycles, and as the

scenario condition and the resulting behavior of the controller cut

off otherwise reachable states (cf. Figure 4), analysis speeds up,

shown in Figure 5. This also explains that properties with stricter

scenario conditions are analyzed faster as larger parts of the sets of

reachable states are discarded quickly during analysis as they do

no longer satisfy the scenario conditions.

4.1.1 Parallelization. Because execution time is dominated by pro-

cessing the jumps, a problem that lends itself to parallelization,

a parallelized verifier can achieve a significant speedup. In our

experiments, verification reached an overall speedup of 4.24, mea-

sured by comparing execution time between single-threaded and

multi-threaded runs. This speedup is higher than 4, the number

of physical cores of the test machine. (Restricting the number of

worker threads to 4 still yielded an overall speedup of 3.71.)

5 CONCLUSION AND FUTUREWORK
In this paper, we presented Draisine 200.0, a real-world cyberphys-

ical system with a digital controller. In our case study, we have

shown that while the interaction between the digital controller and

the plant makes verification difficult, a carefully crafted verifier

can yield feasible verification running times. As such, the Draisine

200.0 case presented here can be considered a valuable benchmark

for the verification of real-world cyberphysical systems.
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