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Effective Static and Dynamic Fault Tree Analysis

Ola Bäckström1, Yuliya Butkova2, Holger Hermanns2,
Jan Krčál2, and Pavel Krčál1

1 Lloyd’s Register Consulting, Stockholm, Sweden
2 Saarland University – Computer Science, Saarbrücken, Germany

Abstract. Fault trees constitute one of the essential formalisms for static safety anal-
ysis of various industrial systems. Dynamic fault trees (DFT) enrich the formalism
by support for time-dependent behaviour, e.g., repairs or dynamic dependencies. This
enables more realistic and more precise modelling, and can thereby avoid overly pes-
simistic analysis results. But analysis of DFT is so far limited to substantially smaller
models than those required for instance in the domain of nuclear power safety. This
paper considers so called SD fault trees, where the user is free to express each equip-
ment failure either statically, without modelling temporal information, or dynami-
cally, allowing repairs and other timed interdependencies. We introduce an analysis
algorithm for an important subclass of SD fault trees. The algorithm employs auto-
matic abstraction techniques effectively, and thereby scales similarly to static analysis
algorithms, albeit allowing for a more realistic modelling and analysis. We demon-
strate the applicability of the method by an experimental evaluation on fault trees of
nuclear power plants.

1 Introduction

Fault trees are a very prominent formalism for inductive failure modelling. They underly
safety assessments in a wide spectrum of technical systems, ranging from nuclear power
production [17,9], over chemical and process industry [7] to automotive and aerospace [14]
systems.

A fault tree decomposes the failure potential of a complete system into failures of its
subcomponents, sub-sub-components, and sub-sub-subcomponents, up to the level of so-
called basic events. The latter represent individual equipments, atomic external events, op-
erator errors, etc. These are assumed to be quantifiable wrt. estimates of failure frequen-
cies or probabilities, achieved by statistical methods from operation history or simulations
or even by engineering computations. Originally, fault trees describe a static view on a
system, we thus call them static fault trees (SFTs). Static fault trees pair simplicity in mod-
elling with efficiency in analysis techniques.

A particularly effective analysis technique characterises all fault combinations leading
to the complete failure of an SFT, and returns their minimal-sized representation, in the
form of so called minimal cutsets. Even though the number of minimal cutsets can be
exponential in the number of basic events, it is possible to appropriately employ the cutoff
on low probability cutsets to reduce the size of the problem. This minimal cutset analysis is
in daily use for instance in the safety analyses of nuclear power plants [17,9], where SFTs
with several thousands of basic events are routinely processed, supported by tools such as
SAPHIRE [18] or RISKSPECTRUM [13].

It has been argued [2,4,3,14,11] that the static system view supported by SFTs is often
very rough (though conservative), in the sense that a more precise analysis is possible if
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the fault tree formalism provides support for representation and analysis of the changes in
state of the system in operation. In the nuclear safety domain, this means that the dynamics
of an accident and possible countermeasures can be detailed. The promised gain in preci-
sion is of industrial relevance, for instance for analyses with longer mission time, such as
probabilistic Level 2 [10] (and consequently Level 3) studies in nuclear power plants. After
the Fukushima accident, the interest in analyses studying ’safe state’ rather than a fixed
mission time has increased. This will increase the need to properly treat long mission times
also within Level 1 [9] probabilistic safety assessment.

Over the years, several kinds of dynamic fault trees have been proposed, starting with
the work of Dugan [2]. However, dynamic analysis techniques need to implicitly or ex-
plicitly explore the state space spanned by the system dynamics. This space tends to be
prohibitively large; often it is of exponential size, relative to the number of basic events.
With previous techniques, models with more than a few hundred basic events are impossi-
ble to process. This means that these approaches cannot be directly applied to large scale
industrial fault tree models such as those of nuclear power plants.

SD fault trees [11] (SD-FTs) have lately been proposed to provide a potential way
forward. They extend SFTs with features to model some parts of the system dynamically,
without the need to construct the induced state space of the entire fault tree. This means that
it remains possible to utilize efficient solver technology for SFTs, and combine this with
less efficient, but focused analysis for the dynamic parts. The new features can capture (1)
sequential application of elementary safety functions and (2) repairs of failed components.
Basic events can be considered either static or dynamic. Dynamic dependencies are ex-
pressed via a triggering mechanism, whereby a safety function failure may activate other
safety functions and failed components can be repaired (and thus continue to perform their
function).

In this paper, we build on the SD-FT concept. We attack the problem that the focused
analysis needed for the dynamic parts may still suffer from state space explosion, expo-
nential in the amount of dynamic basic events. Indeed, the algorithm originally developed
for the SD-FT formalism [11] is efficient only if restricting the triggering logic severely in
expressiveness. This is rooted in the fact that the algorithm calculates the dynamic failure
probability exactly, which in turn requires considering all possible accident progression
scenarios, including consecutive failures and repairs of components. This becomes quickly
infeasible for increasingly intricate triggering patterns induced by a richer triggering logic.

However, our analysis of real-life safety analysis models has made apparent that most
of these scenarios turn out to be rather unrealistic. This is reflected by their relatively low
probability compared to a few dominating simple scenarios. The present paper exploits this
observation to leap to a generally applicable method. The crux of this leap lies in abstracting
away from unrealistic event sequences in a controlled manner. This allows us to obtain an
over- and under-approximation, safely bounding the exact value. As a result, the present
work lifts the triggering restrictions in their entirety, enabling efficient analysis of SD-FTs
with arbitrary triggering logic. We present this approach on a mildly restricted subclass
of SD-FTs that limits the shape of dynamic basic events, in contrast to restrictions on the
triggering logic.

As we will demonstrate by means of several examples, the resulting method scales
very well to industrial-size systems, even from the nuclear power domain, and with high
precision guarantees. The restrictions we need to impose on SD-FTs do not affect their
adequacy for the application context as they cover all standardly used reliability models of
basic events.
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2 Static and Dynamic Fault Trees

We focus our work on a class of static and dynamic (SD) fault trees, introduced in [11].
It allows the modelling of components of the system either statically or dynamically. The
behaviour of dynamic components are modelled via continuous-time Markov chains.

Definition 1. A failure continuous-time Markov chain (failure CTMC, or fCTMC) is a
tuple C = (S,R, ν, F ) where S is a finite state space, ν is the initial distribution over S,
R : S × S → R≥0 is the rate matrix, and F ⊆ S is the set of failed states.

At initialisation time, the system chooses a state according to initial distribution ν. The
amount of time the system spends in some state s is distributed exponentially (with the rate
parameter of the distribution λ =

∑
s′∈S R(s, s

′)). After this delay the system moves from
the current state to successor s′ with probability R(s, s′)/

∑
s′′∈S R(s, s

′′).
The set F of states of a fCTMC C corresponds to failed states of a component. The

complement set represents properly functioning ones. Failure of the component is modelled
by transitions from functioning to failed states, and repair - from failed to functioning. An
example fCTMC is depicted in Fig. 1.

The SD-FT formalism allows one to model redundant back-up components as well.
Whenever a component is failed, its back-up substitute can be used by the system until the
main component gets fixed. This feature is modelled with the help of triggered CTMCs:

Definition 2. A triggered CTMC (tCTMC) is a fCTMC with states partitioned into Soff ] Son

and with total functions on : Soff → Son and off : Son → Soff . We require F ⊆ Son

and {s ∈ S | ν(s) > 0} ⊆ Soff , i.e. only an on state can be considered failed, and only at
off states the system can be initialized.

ok

fail
10−30.05

off1 ok

failoff2

on

off
10−30.05

on

off

0.05

Fig. 1. An example fCTMC (left) and tCTMC
(right). Double circles indicate F states.
States ok (left) and off 1 (right) are initial.

A component represented by a tCTMC can
be either switched on or off. Fig. 1 displays an
example of a tCTMC. Dashed transitions, rep-
resenting the effect of functions on and off , are
called triggering transitions. Being currently in
an on or off state, a tCTMC behaves in the
same way as an fCTMC. Triggering transitions
are ignored unless an external event arrives (e.g. failure of another component). In this case
the tCTMC takes instantaneously the corresponding triggering off or on transition.

Definition 3 (SD fault trees [11]). A static and dynamic fault tree (SD-FT) is a finite di-
rected acyclic graph where its leaves are partitioned into setsBs, called static basic events,
and Bd, called dynamic basic events.Its inner nodes G are called gates where a distin-
guished root node is denoted gtop. Additionally,

– each gate is either of type AND or of type OR,
– each gate g has a set of dynamic basic events trig(g) that are triggered by g,
– each static basic event a is specified by its probability of failing p(a),
– each dynamic basic event a is specified by T (a) which is a tCTMC iff a is triggered by

some gate, and an ordinary fCTMC, otherwise.
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Pump system fails

Pump 1 fails

fails
to start

fails in
operation

Pump 2 fails

fails
to start

fails in
operation

A
N

D

O
R

O
R

a b c d

Fig. 2. An example of a SD fault tree.

SD-FT can be considered as a specific
subclass of BDMPs [4], albeit at the price of
dropping the distinction between static and
dynamic events. In fact it is this distinction
that we exploit to conquer and intertwine
static and dynamic analysis steps effectively.

Without loss of generality, we assume that
each dynamic basic event is triggered by at
most one gate. The case of multiple triggering
gates g1, g2, . . . gk can be reduced to only one
by adding an OR gate over g1, g2, . . . , gk, and
making only this OR gate triggering. We also
require that there are no cyclic dependencies in the triggering structure. Scenarios excluded
by this requirement are exactly “deadlocks” situations where none from a group of several
dynamic events can fail before all others have failed.

Example 1. Fig. 2 depicts an example SD-FT. Dynamic basic events b and d are denoted
by double circles, and their CTMCs are given in Fig. 1 (non-triggered for b and triggered
for d). Failure of pump 1 triggers the event d from the pump 2, depicted by the dashed edge.

Behaviour of a SD-FT. At time zero each static event a either fails with probability p(a)
or succeeds with probability 1− p(a). Dynamic events randomly choose their initial states
according to their initial distributions and proceed as described above. Failures and repairs
of basic events instantaneously propagate up through the SD fault tree according to the rules
of Boolean logic. We call a gate failed or functioning, if the logic beneath the gate is failed
or functioning. Whenever a triggering gate becomes failed, or gets repaired, it instanta-
neously triggers the corresponding triggered basic events, which each instantaneously take
a transition labelled by on or off , respectively.

Semantics. For the formal definition of the SD-FT semantics we refer to [11]. Informally,
it is given in terms of a product Markov chain CFT = (S,R, ν,F). To this end, first,
each static basic event a is represented as an equivalent Markov chain. It consists of only
two states ok and fail, has no transitions between them, and ν(fail) = p(a). Then, the
product Markov chain is built over the product state space of all its basic events. Transitions
between states occur according to parallel interleaving, i.e. only one basic event can transit
at a time. The failure state set F of the CFT is formed by those states in which failures of
the respective components jointly induce a failure of the top gate.

Probability of failure. We are interested in the probability of the top gate of the fault tree
FT to fail within some fixed time horizon t. We will denote this value as p(FT ). This
value corresponds to the reachability property [1] of the product Markov chain CFT , which
is the probability of the Markov chain to reach the set of goal states F within time t. Thus

p(FT ) = PrCFT

[
Reach6tF

]
3 SD-FT Analysis

Existing techniques. An effective computational method for SD-FT analysis has been pro-
posed in [11], albeit with restrictions: The price of the computation speed is paid by severe

4



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
16

-0
1

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
S

A
F

E
C

O
M

P
20

16
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

constraints on the triggering logic. These constraints exclude, for instance, multiple dy-
namic basic events in different subtrees below OR gates or any occurrence of dynamic
basic events in subtrees of AND gates. Furthermore, for nested triggering, they enforce that
all dynamic events under a (nested) triggering gate are triggered by the same trigger. Relin-
quishing any of these constraints makes the algorithm not scale well. For regular industrial
systems the application of this algorithm is therefore limited. However, the algorithm will
be our natural reference for comparison in the experimental evaluation in Section 4.

A more general and more efficient approach. In order to successfully apply SD-FTs to
real world applications we thus need a more general and more efficient approach. In this
section we present a new simple and efficient algorithm for solving SD-FTs. The approach
overcomes constraints on the triggering logic in their entirety. It uses abstractions so as to
cope with the state space explosion problem. In doing so, it introduces a reasonable and
controllable error margin, and comes at the price of mildly restricting tCTMCs appearing
as triggered basic event behaviours. These restrictions are not prohibitive at all with respect
to models currently used in practice. This is rooted in the lack of available statistical data.
Models of basic events that are used in real world application need the data of failure and/or
repair rates for a specific component. These values are gathered statistically and so far are
mostly available for very simple basic events, like those depicted in Fig. 1. Due to this,
designing a finer model of a basic event is in most cases not possible.

Our algorithm is built upon the ideas of static fault tree analysis and is centred around
the notion of minimal cutsets. A set of basic events C is a cutset if whenever all of the
basic events in C are simultaneously in a failed state then the top gate is failed as well. A
cutset C is minimal if there is no smaller cutset contained in C. For instance, in example 1
the set C = {a, b, c} is a cutset, while C = {a, c} is a minimal cutset (MCS). A failure

probability of a cutset p(C) := PrCFT

[
Reach6tF(C)

]
, where F(C) are those states of

the product CTMC CFT in which all events from C are failed. The set of minimal cutsets
L(FT ) of a tree FT represents exactly the failure scenarios of a system, i.e. Reach6tF =⋃

C∈L(FT ) Reach
6tF(C). Thus, p(FT ) = PrCFT

[⋃
C∈L(FT ) Reach

6tF(C)
]

and can be
computed via minimal cutsets and the inclusion-exclusion principle.

Due to the scale of systems, computation of the failure probability of a fault tree be-
comes rarely feasible. Instead, a value called rare event approximation [14] with a cutoff
is usually targeted. This quantity is defined by prea(FT ) :=

∑
p(C)>c∗ p(C). Here c∗ is

called a cutoff constant. In static fault tree analysis it is usually set to values in the order of
10−10. We call a MCS C relevant if p(C) > c∗. Following the best practices, we as well
approximate the value prea(FT ) rather than p(FT ) in our analysis.

We will introduce now a subclass of triggered CTMCs that allows efficient analysis. It
mildly restricts the structure of tCTMCs without sacrificing expressiveness.

Definition 4 (Simple SD-FT). A SD fault tree is simple if the tCTMC of each triggered
dynamic basic events satisfies the following:

– R(s, s′) > 0⇔ s, s′ ∈ Son or s, s′ ∈ Soff ;
– both on ◦ off and off ◦ on are identities;
– the projection of the tCTMC on Son (or equivalently Soff ) has one of the shapes de-

picted in Fig. 3 with k > 0 and l > 1;

5
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– for any two states soff and son , such that soff = off (son) (or equivalently son =
on(soff )):

soff , son ∈ S \ F → R(soff , succ(soff )) 6 R(son , succ(son))

soff , son ∈ F → R(soff , succ(soff )) > R(son , succ(son)),

i.e. the rate of failing is higher when the component is turned on, than when it is off,
and, analogously, the rate of repair is lower.

This definition in particular naturally allows for models that return to a stable configuration
(on repair or similar). An example of a simple SD-FT is the tCTMC depicted in Fig. 1.

· · ·

· · ·

λ1

λ2

λk

µ1
µ2

µ3

µ4

µ5

µl
λ

λ

λ
λ

λ

λ

· · ·

· · ·

λ1

λ2

λk

ν1

ν2

ν3

ν4
ν5

νl

µ

µ

µ

µ

µ

µ

Fig. 3. Two possible shapes of CTMCs of
triggered BE of a simple SD-FT. States filled
with black denote failed states and the non-
filled ones are functioning.

Remark. The correctness of our algorithm is
rooted in properties of open Interactive Markov
Chains (oIMCs) [5]. Nowadays, oIMC analysis
has scalability issues, but it might benefit from
recent advances in the field of Continuous Time
Markov Decision Processes [6]. In this way, our
approach can be lifted to the general class of
tCTMCs, possibly retaining its effectiveness.

3.1 Quantification of a SD-FT

Let FT be a simple SD-FT and c∗ be our cut-
off constant. As mentioned before, we target
the approximation of the value prea(FT ) :=∑

p(C)>c∗ p(C). To quantify this value we need
a list of relevant cutsets and a procedure to
quantify the value p(C) for each relevant cutset C. To efficiently obtain the list of rele-
vant cutsets we can proceed in the same way as presented in [11]. To this end we use the
MOCUS algorithm [8], which returns the set of relevant cutsets Lc∗ as well as the bound
ε on the error introduced by the cutoff c∗. We will thus skip this step and in the following
concentrate on the algorithm to quantify each relevant cutset.

Quantification of failure probability of a MCS. As observed in [11], the failure prob-
ability p(C) of a MCS C can be exactly expressed by the failure probability of a smaller
SD-FT FTC , which we will call representative tree for C. It is constructed as follows:

BuildRepTree(C)
1. Add to FTC a new top AND gate with all basic events from C as inputs.
2. To track which gates we model in FTC , label all gates of FT as missing.
3. While FTC has a basic event that is in FT triggered by a missing gate g:

(a) Calculate minimal cutsets C1, . . . , Ck of the subtree of g.
(b) Model in FTC the gate g by a new OR gate that has as inputs new gates g1, . . . , gk

where each gi is an AND gate over basic events from Ci.
(In this process, copy to FTC all the newly referred basic events.)

(c) Label g as not missing.
4. Finally, having modelled all triggering gates, add to FTC all the trigger edges, i.e.

between a basic event b and gate g if g triggers b in FT .

6
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Lemma 1. p(C) = p(FTC)

In order to quantify p(C) one can construct the semantical CTMC of the fault tree FTC

and apply a numerical algorithm for the reachability analysis on it [1]. However, the size
of the fault tree FTC depends on the triggering structure of FT and in the worst-case can
be as large as FT , rendering the direct analysis of the semantical CTMC infeasible. For
comparison, 100 dynamic basic events translates into 2100 states of the product CTMC,
when modern tools for CTMC analysis (e.g. PRISM) can handle up to 240 states at most.
We will later show in the experimental evaluation section that this growth problem is not an
exotic corner case, but is a real problem even for simple real world models. Our approach
instead avoids the explosion by building conservative over- and under-approximations of
the value p(C). In this way we sacrifice precision but retain expressiveness and efficiency.

Over- and under-approximations of the MCS failure probability. We aim at decreas-
ing the size of the state space by reducing the amount of basic events of FTC and sim-
plifying its triggering structure. Intuitively, we shall replace some of the dynamic basic
events with trivial static ones, which are failed either always or never (for over- and under-
approximations respectively). This will allow us to cancel out not only a number of dynamic
basic events, but also some of the triggering gates completely, thereby significantly simpli-
fying the analysis. We do so in a way that controls the error introduced by this replacement.

We need to differentiate between immediate and nested triggering gates, with respect
to a cutset C. Immediate gates are those that trigger some BE from C directly, while nested
gates trigger basic events indirectly through a sequence of failures and triggering of other
gates. We will also introduce two new static basic events: eslow with probability 0 and efast

with probability 1. Intuitively, eslow never fails, while efast is failed from the beginning.
We will now define the procedure that allows us to obtain an abstraction of the repre-

sentative tree of a cutset. Let C be a cutset, the variable dir ∈ {over ,under} denotes the
direction of abstraction (over- or under- approximation). The list of basic events to be can-
celled out is called an abstraction sequence. The procedure we present is applicable for an
arbitrary abstraction sequence. Later in this section we will present heuristics for obtaining
abstraction sequences for over and under-approximations, that we used in our experiments.
In the following, whenever we perform an operation on a cutset (or a list of cutsets) we
assume an equivalent operation to be performed on its representative tree and vice versa.

AbstractTree(C, c∗)

1. Using the BuildRepTree procedure, build the representative tree of C. In step 3(a) of
BuildRepTree instead of using the set of cutsets of a gate g, use the set of relevant
cutsets Lc∗(g). The value Lc∗(g) and the cutoff error bound εg can be obtained in the
same way as described above using the MOCUS algorithm;

2. If dir = over add to Lc∗(g) the set {bεg , efast} where bεg is a new static basic event
with probability εg3;

3. Choose an abstraction sequence A = (b1, G1)(b2, G2) . . . (bn, Gn), where bi is a non-
triggered basic event of FTC and Gi is a set of gates;

4. Repeatedly for i = 1..n:

3 This is to compensate for the cutoff error bound εg
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(a) for each gate g ∈ Gi, for each cutset Cg ∈ Lc∗(g) replace all occurrences of bi by
eslow if dir = under , and by efast if dir = over 4;

(b) remove fromLc∗(g) cutsets that have become non-minimal (propagate these changes
into the tree by removing respective gates);

Remark. Notably, after step 4(b) one can still perform a number of further reductions of
the state-space of FTC . For instance whenever an event b is replaced with eslow , all the
cutsets containing b can be immediately removed, since they will never fail. As a result of
this procedure we obtain new trees FTC and FTC for over- and under-approximations.

Lemma 2. p(FTC) 6 p(C) 6 p(FTC)

Depending on the chosen abstraction sequence, FTC and FTC can be of a much smaller
size than the original FTC , making it possible to apply the efficient CTMC analysis we
discussed above directly to product CTMCs constructed separately for FTC and FTC .
Let F and F be failed states of FTC and FTC , and let ε′ be the error bound used by the
CTMC algorithm. We thus define the over- and under-approximations as follows:

p
c∗
(C) := p(FTC) = PrCFTC

[
Reach6t(F)

]
pc∗(C) := p(FTC) + ε′ = PrCFTC

[
Reach6t(F)

]
+ ε′

The abstraction sequence heuristic. The abstraction sequence that one decides to use
in the above procedure affects directly the error introduced by the approximation. We will
now describe the heuristics for selecting an abstraction sequence that we find reasonable in
practice and that we used for the experiments.

For nested gates, we abstract all basic events in an arbitrary order yielding Lc∗(g) =
{{efast}} and Lc∗(g) = {{eslow}}5. As regards immediate gates, we use different heuris-
tics for over- and under- approximations. We first introduce two new measures εU (bi) > 1
and εO(bi) > 1 of the impact of abstracting event bi away. These measures are based
on the notions of risk increase(decrease) factor [16]. The closer these values are to 1 the
smaller is the loss of precision due to reduction of the respective event. We therefore aim
at abstracting such events.

Let err > 0 be an allowed error parameter, x ∈ {O,U}. We assign each Gi to be the
set of all immediate triggering gates. The following procedure applies to both over- and
under-approximation (by using respective x):

1. enumerate all the basic events b from FTC except for those in C by their ascending
εx(b). The εx(b) needs to be re-evaluated for every element in the sequence as abstract-
ing all previous events changes the FTC ;

2. stop once reducing the next basic event according to the given order would make the
error

∏
reduced b

εx(b) exceed err + 1;

4 Whenever the event bi belongs to a cutset of a gate g 6∈ Gi, we create a copy of bi and direct all
the transitions from gates g to bi to the new basic event. Thus whenever bi is abstracted in gates
g ∈ Gi, it is not abstracted away in gates g 6∈ Gi

5 Reduction of a triggered basic event is possible due to reduction of its triggering gate.
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Remark. As a result of applying these abstraction sequences one may obtain a lot of cutsets
of a specific shape. Those are either singleton cutsets, or pairs of the form {b, bi}, {b, bj}. In
order to further reduce the state space one can add another abstraction step that lumps such
cutsets together, while preserving the property of being an over- or under-approximation.
We indeed defined such a lumping procedure for the class of dynamic basic events whose
CTMC has one of the shapes depicted in Fig. 3, and used it in our experiments

4 Experimental Evaluation

This section presents the empirical evaluation of our approach. Since our focus is on an
efficient approach that integrates well with the industrial practice, we do not consider small
or medium-size synthetic examples whose homogeneous structure would enable to study
model size vs. solution time tradeoffs. Instead we prefer to present results for realistic
models from industrial practice, therefore serving as a proof of concept.

As an implementation of the MOCUS algorithm we use RISKSPECTRUM [13], and
resort to the PRISM tool [12] for the reachability analysis of the CTMCs. All the interme-
diate processing, mainly reductions and conversions, were implemented as Python scripts.
All experiments are carried out on a single Intel Core i7-4790 with 32GB of RAM. The
following abbreviations will appear throughout the section: BE, DynE and TrigE denote the
overall number of basic events, dynamic basic events, respectively triggered events in a
given SD-FT. The number of relevant minimal cutsets is denoted as RelMCS.

Models. We evaluate our approach on four simple and two larger reactor models. These
are derived from models representing analyses built by safety engineering experts with all
the modelling power that static fault trees offer. For each of these original models, a static
top value pstat can be computed (by RISKSPECTRUM) characterizing the state-of-the-art
failure frequency estimate of the analysed scenario. We obtained SD-FT models from these
static ones by adding dynamic features offered by SD-FT formalism in a realistic manner.
For all the dynamic basic events we use repair rate 0.1, which is approximately in the order
of magnitude of real component repair rates. We use the static values pstat as reference
values for comparison in our experiments.

BE DynE TrigE RelMCS
Simple Reactor 40 13 7 various

IND-1 3000 220 168 3164
IND-2 2215 599 12 96042

Table 1. Model characteristics.

Simple Reactor Models. These models are varia-
tions of a toy example of a probabilistic safety as-
sessment model of a boiling water reactor. We al-
ways calculate a core damage consequence, which
is a typical Level 1 analysis with a 24 hours time
horizon. The size of these models is tiny relative
to real-life models. Their common characteristics are presented in Table 1 (first row), the
variants differ in the triggering logic:

TWOTRAINS models a system with two redundant trains of separate equipment, such as
pumps, diesel engines, SWS (Service Water System), and CCW (Component Cooling
Water System). The second train is triggered whenever the first pump fails;

DIESEL is a system where the two diesel engines are redundant per train. One diesel engine
is enough to make the respective train function properly;

SWS+DIESEL adds redundancy for SWS systems in addition and similar to the diesel
engine redundancy;

CCW+SWS+DIESEL supports redundancy for CCW, SWS, and diesel engines.
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T TPRISM RelMCS AvDynE AvTrigE AvAdd MaxSet #Set>8 [11]

TWOTRAINS 07:01 06:49 15061 4.8 0.1 0.2 15 818 > 4 hours
DIESEL 30:04 29:53 10389 4.8 0.09 0.21 27 586 > 4 hours

SWS+DIESEL 23:16 23:07 8007 4.8 0.09 0.20 27 501 > 4 hours
CCW+SWS+DIESEL 15:42 15:34 5145 4.9 0.1 0.23 27 456 > 4 hours

Table 2. Runtime experiments for simple reactor models performed with err = 1.

Industrial-size Reactor Models. These are two slightly adapted core damage consequence
analysis cases from two different real-life probabilistic safety assessment models. We will
further refer to them as IND-1 and IND-2. Table 1 shows some of the core characteristics of
the models. The most significant adaptations concern (1) switching off the common cause
failure treatment and (2) updating failure data for some static basic events. We have added
dynamic dependencies between components which in reality represent redundant systems
(such as pumps) where only a subset of components has to run in order to guarantee the
safety function. Triggering gates were chosen in a way that can be considered induced by
a convenient modelling methodology. We chose gates corresponding to failures of com-
plete systems and we did not simplify the logic under triggering gates by remodelling.
All basic events with the mission time reliability model under the gates corresponding to
the triggered systems were considered dynamic and triggered. Such a modelling requires
only a high level understanding of dynamic relations between systems and components and
knowledge about which gates model failures of these systems.

Experiments. In all the experiments we analyse a mission time of 24 hours. The precision
of time bounded reachability (computed by the PRISM tool) is set to 10−7. In the tables
presented, AvDynE (respectively AvTrigE) denotes the average amount of dynamic (respec-
tively immediately triggered) events per cutset. When we report runtime, we use, unless
otherwise stated, min:sec as format, and use T for overall runtime, and TPRISM for the frag-
ment thereof needed by PRISM. Value AvAdd denotes the average amount (over all cutsets
C) of basic events, both static and dynamic, that have not been abstracted from FTC (ex-
cluding the events from C itself). MaxSet refers to the maximum (over all cutsets) amount
of basic events in a cutset tree that have been left after all abstractions, and #Set>8 shows
the amount of cutsets, whose representative trees contain more than 8 basic events.

In order to evaluate our approach we use three measures: runtime, achieved accuracy
and accuracy gain compared to a static analysis. To estimate the latter, we use the ratio of
over-approximation prea to the value pstat described above. This ratio can be expected to be
lower than 1, since modelling the dynamics brings more accuracy and thus less pessimism.
The runtime of the static analysis step is not reported. It was in the order of seconds for all
experiments performed, given that the cutsets were precomputed by RISKSPECTRUM.

Influence of model parameters. We first want to estimate the effect of different parameters
of the model itself on the running time of our algorithm. To do this we performed experi-
ments on all the simple reactor models. These models share the same value of parameters
BE, DynE and TrigE and differ mainly in their triggering logic. Each of the relevant cutsets
contains at least one dynamic event. Table 2 summarizes the results of this experiment. As
we can see, the existing algorithm from [11] is not competitive. The runtime of our algo-
rithm is influenced by the maximum size of cutsets as well as the amount of large cutsets.
More concretely, even though the amount of relevant cutsets for the model TWOTRAINS is
higher than for DIESEL, the runtime on the latter model is notably higher due to the values
MaxSet and #Set>8. As apparent from Table 2, the dominant portion of runtime is taken by
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err T p
rea
× 105 prea × 105 AvAdd MaxSet #Set>8 prea/pstat

3 06:46 4.5747 4.6017 0.19 15 755 0.78
2 06:52 4.5769 4.6017 0.20 15 764 0.78
1 07:01 4.5848 4.6017 0.20 15 818 0.78

0.1 12:05 4.5927 4.6016 0.21 15 818 0.78
0.01 24:30 4.5961 4.6012 0.27 15 818 0.78
10−3 38:10 4.5966 4.6012 0.34 15 818 0.78
10−4 38:47 4.5966 4.6012 0.34 15 818 0.78
10−5 38:46 4.5966 4.6012 0.34 15 818 0.78

Table 3. Experiments with varying parameter err on TWOTRAINS, where pstat = 5.836344 · 10−5.

err T p
rea
× 108 prea × 108 AvAdd MaxSet #Set>8 prea/pstat

20 05:50 2.4790 2.5760 0.26 16 306 0.84
10 06:58 2.4790 2.4915 0.34 16 531 0.82
5 07:01 2.4790 2.4915 0.35 16 589 0.82
2 27:54 2.4798 2.4847 0.43 23 846 0.81
1 > 6 hours 2.4802 N/A 0.58 63 870 N/A

Table 4. Experiments with varying parameter err for IND-1, where pstat = 3.037881 · 10−8.

err T (hrs:min:sec) p
rea
× 107 prea × 107 AvAdd MaxSet #Set>8 prea/pstat

20 02:16:10 4.8934 6.0541 0.05 14 103561 0.82
10 02:16:06 4.8934 6.0541 0.05 14 103561 0.82
5 03:01:27 4.8934 4.9301 0.1 14 107249 0.67
2 03:01:25 4.8934 4.9301 0.1 14 107249 0.67
1 03:01:27 4.8934 4.9301 0.1 14 107249 0.67

Table 5. Experiments with varying parameter err for IND-2, where pstat = 7.342436 · 10−7.

the PRISM processing. In further experiments we therefore do not report this value sepa-
rately, and instead show only the overall running time of the algorithm.

Influence of parameter err . Parameter err is the only parameter of the heuristic that we
use for reductions. We performed various experiments to evaluate the effect of it on the
running time and accuracy of our algorithm. Tables 3 to 5 show results of the experiments
on one of the simple models and on both the industrial-size models. One can see that, as
expected, with the increase of accuracy (decrease of err ) the amount of added basic events
increases as well. This in turn enlarges the state space of the product CTMC, what explains
the increase of the running time. On the other hand, the abstractions become more and
more precise. We achieved a gain of 22% on the simple model, 19% on IND-1 and 33%
on IND-2 compared to the static value pstat . In some cases higher precision seems to come
with slightly lower running time, e.g. in Table 5. This however is an artefact of runtime
measurement inaccuracy, the actual computations performed are identical.

5 Concluding Comparison with Related Work

We have presented a generic analysis and approximation scheme for fault trees combining
static and dynamic features. The key innovation is the use of bounding approximations for
the underlying dynamic behaviour. The method enables to trade precision against runtime
in an effective manner, so as to make it an industrial-scale dynamic safety analysis method.

Other available methods for solving fault trees with dynamic features suffer from ei-
ther scalability or expressiveness issues [11,15]. Approaches with comparable expressive-
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ness include Dynamic Fault Trees [2,3], Boolean Driven Markov Processes [4] and others.
Analysis support for these models is limited to fault trees with at most 300 dynamic basic
events, which is far from the sizes that one usually encounters in the nuclear safety domain.
We have reported here on successful experiments for models with up to 600 dynamic basic
events contained inside SD-FTs with several thousands of basic events in total.
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