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Exploiting Robust Optimization for Interval

Probabilistic Bisimulation
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Abstract. Veri�cation of PCTL properties of MDPs with convex uncer-
tainties has been investigated recently by Puggelli et al. However, model
checking algorithms typically su�er from the state space explosion prob-
lem. In this paper, we discuss the use of probabilistic bisimulation to
reduce the size of such an MDP while preserving the PCTL properties it
satis�es. As a core part, we show that deciding bisimilarity of a pair of
states can be encoded as adjustable robust counterpart of an uncertain
LP. We show that using a�ne decision rules, probabilistic bisimulation
relation can be approximated in polynomial time. We have implemented
our approach and demonstrate its e�ectiveness on several case studies.

1 Introduction

Real world systems are usually too complex to be analyzed in full detail. To re-
duce the complexity of such an analysis, a simpli�ed but accurate enough model
of the system has to be constructed and then veri�ed with respect to a number of
properties the system is expected to satisfy. Among others, probability, nonde-
terminism, and uncertainty are core aspects of a real world system that are worth
considering in the model. Probability represents the fact that the behaviour of
the system is not uniquely determined by its status and the action it performs,
but depends on random choices as well; these choices may be present by design
(as the toss of a coin in a distributed algorithm so as to break symmetry) or
to represent general properties such as transmission errors during a communi-
cation. Nondeterminism can be used whenever a speci�c behavior is unknown
or it is left undetermined by purpose: an example of the former is the unknown
relative speed of several distributed systems interacting with each other while an
example of the latter is the possibility of leaving some behavior undetermined
so an implementation can �x it. Uncertainty appears when some information is
available but it is not precise enough to be represented as a probability.

A problem that may occur during the formal veri�cation of a system, for
instance by model checking it, is the notorious state-explosion problem. Such a
problem can be mitigated by reducing the size of the model to be veri�ed while
preserving its properties. This goal can by achieved by �nding another model
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that is smaller than the original one while behaving the same. Bisimulation allows
us to construct such a model; this strategy has been proven very e�ective [16,29]
in related settings.

Several models have been proposed in literature as frameworks for modelling
real world systems, frameworks equipped with bisimulation. Among others, there
are Labelled Transition Systems, Probabilistic Automata [42], and Markov De-
cision Processes (MDPs). In this work we focus on the Interval Markov Decision
Processes (IMDPs) model [27, 28, 38, 41, 45, 46], an extension of classical MDPs
where uncertainty is represented by intervals of probability values. It is known
that that bisimilar IMDPs satisfy the same PCTL properties [27]. As established
in [27, 28], computing the coarsest bisimulation on a given IMDP is a di�cult
problem; our aim is to provide a polynomial algorithm that returns a non-trivial
bisimulation for the given IMDP. We achieve this goal by taking advantage of
the results from the Operations Research community about robust optimization
and uncertain Linear Programming (LP) problems.

Summarizing, the main contributions of this paper are as follows.

� We build a bridge between Probabilistic Veri�cation and Robust Optimiza-
tion and establish a novel modelling of the probabilistic bisimulation problem
for interval MDPs as an instance of an uncertain LP problem.

� We show that, by using a�ne decision rules, the probabilistic bisimulation
problem for IMDPs can be approximately decided in polynomial time.

� We show promising results on a number of case studies, obtained by a pro-
totypical implementation of our algorithm.

Related work. We classify related works in four areas. Firstly, various probabilis-
tic modelling formalisms with uncertain transitions are studied in the literature.
Interval Markov chains [31, 35] or Abstract Markov chains [20] extend standard
discrete-time Markov chains (MCs) with interval uncertainties and thus do not
feature the non-deterministic choice of transitions. Uncertain MDPs [38, 40, 45]
allow for more general sets of distributions to be associated with each transition,
not only those described by intervals. Usually, this is restricted to rectangular
uncertainty sets requiring that the uncertainty is linear and independent for any
two transitions of any two states. Our general algorithm working with polytopes
can be easily adapted to this setting. Parametric MDPs [26] to the contrary al-
low for such dependencies as every probability is described as a rational function
of a �nite set of global parameters.

Secondly, computational complexity of the probabilistic bisimulation for un-
certain probabilistic models has been studied quite recently in [27, 28]. Among
similar concepts studied in the literature are simulation [22, 47] and re�ne-
ment [18,19,31] relations for previously mentioned models.

Thirdly, from model checking viewpoint, many new veri�cation algorithms
for interval models appeared in last few years. Reachability and expected total
reward is addressed for Interval MCs [15] as well as Interval MDPs [46]. PCTL
model checking and LTL model checking are studied for Interval MCs [9,14,15]
and also for Interval MDPs [41, 45]. Among other technical tools, all these ap-
proaches make use of (robust) dynamic programming relying on the fact that
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transition probability distributions are resolved dynamically: a probability dis-
tribution is chosen from interval restrictions each time the system enters a state.
For the static resolution of distributions, an adaptive discretization technique
for PCTL parameter synthesis is given in [26]. Uncertain models are also widely
studied in the control community [23, 38, 46], mainly interested in maximal ex-
pected �nite-horizon reward or maximal expected discounted reward.

Finally, as regards the application of Robust Optimization in Probabilistic
Veri�cation community, to the best of our knowledge, we are not aware of any
work in the literature. Therefore, the current contribution is novel in this matter.
On the other hand, the aforementioned theory has been adapted and applied
successfully in control theory realm. For instance, Abate et al. [5] developed a
robust modal predictive control using two-stage robust optimization.

2 Preliminaries

In this paper, the sets of all positive integers, rational numbers, real numbers
and non-negative real numbers are denoted by N, Q, R, and R≥0, respectively.
We denote by I the set of closed sub-intervals of [0, 1] and, for a given [a, b] ∈ I,
we denote by inf[a, b] the lower bound a and by sup[a, b] the upper bound b. We
denote by bk the k-th element of a vector b ∈ Rn. For a set X, we denote by
∆(X) the set of discrete probability distributions over X; given ρ ∈ ∆(X), we
denote by Supp(ρ) = {x ∈ X | ρ(x) > 0 } the support of ρ and we say that ρ
is Dirac, denoted δx, if Supp(ρ) = {x} with x ∈ X. For an equivalence relation
R on X and ρ1, ρ2 ∈ ∆(X), we write ρ1 L(R) ρ2 if for each C ∈ X/R, it holds
that ρ1(C) = ρ2(C). By abuse of notation, we extend L(R) to distributions over
X/R, i.e., for ρ1, ρ2 ∈ ∆(X/R), we write ρ1 L(R) ρ2 if for each C ∈ X/R, it
holds that ρ1(C) = ρ2(C).

2.1 Interval Markov Decision Processes

Let us formally de�ne Interval Markov Decision Processes.

De�nition 1 (IMDPs). An Interval Markov Decision Process (IMDP) M is
a tuple M = (S, s̄,A, AP, L, I ), where S is a �nite set of states, s̄ ∈ S is the
initial state, A is a �nite set of actions, AP is a �nite set of atomic propositions,
L : S → 2AP is a labeling function, and I : S×A×S → I is an interval transition
probability function.

Given s ∈ S and a ∈ A, we write s a−→ µs whenever µs ∈ ∆(S) is a feasible
distribution, i.e., for each s′ ∈ S we have µs(s

′) ∈ I (s, a, s′). Let Ps,a = {µs ∈
∆(S) | s a−→ µs }; we denote by A(s) = { a ∈ A | Ps,a 6= ∅ } the set of actions
that are enabled from s and we require that A(s) 6= ∅ for each s ∈ S.

We extend I to sets of states as follows: given S′ ⊆ S, we let

I (s, a, S′) =

[
min

{
1,
∑
s′∈S′

inf I (s, a, s′)

}
,min

{
1,
∑
s′∈S′

sup I (s, a, s′)

}]
.
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An interval MDP is initiated in some state s1 and then moves in discrete
steps from state to state forming an in�nite path s1s2s3 . . . . One step, say from
state si, is performed as follows. First, an action a ∈ A(si) is chosen proba-
bilistically by scheduler. Then, nature resolves the uncertainty and chooses non-
deterministically one corresponding feasible distribution µsi ∈ Psi,a. Finally, the
next state si+1 is chosen probabilistically according to the distribution µsi .

Let us de�ne the semantics of an IMDP formally. A path is a �nite or in�nite
sequence of states π = s1s2 . . . . For a �nite path π, we denote by last(π) the
last state of π. The set of all �nite and in�nite paths are denoted by Paths∗ and
Pathsω, respectively. Furthermore, let Cylπ = {π′ ∈ Pathsω | π 6 π′ } denote
the set of paths having π ∈ Paths∗ as pre�x.

De�nition 2 (Scheduler and Nature). Given an IMDP M, a scheduler is
a function σ : Paths∗ → ∆(A) such that for each π ∈ Paths∗, Supp(σ(π)) ⊆
A(last(π)). Further, a nature is a function ν : Paths∗×A → ∆(S) such that for
each π ∈ Paths∗ and a ∈ A(last(π)), ν(π, a) ∈ P last(π),a. We denote by S and
N the set of all schedulers and natures of M, respectively.

For an initial state s, a scheduler σ, and a nature ν, let Prσ,νs denote the unique
probability measure over (Pathsω,B)4 such that the probability Prσ,νs [Cyls′ ] of
starting in s′ equals 1 if s′ = s and 0 otherwise and the probability Prσ,νs [Cylπs′ ]
of traversing a �nite path πs′ equals Prσ,νs [Cylπ] ·

∑
a∈A σ(π)(a) · ν(π, a)(s′).

Observe that the scheduler does not choose an action but a distribution over
actions. It is well-known [42] that such a randomization is useful in the context of
bisimulations as it allows to de�ne coarser equivalence relations. To the contrary,
nature is not allowed to randomize over the set of feasible distributions Ps,a. This
is in fact not necessary, since the set Ps,a is closed under convex combinations.
Finally, we call a scheduler σ deterministic, or Dirac if, for each �nite path
π ∈ Paths∗, σ(π) is a Dirac distribution.

We determine the size of an IMDP M as follows. Let |S| denote the number
of states inM; each state has at most |A| actions and at most |A|·|S| transitions,
each of which is associated with a probability interval. Therefore, the overall size
ofM is |M| ∈ O(|S|2 · |A|).

2.2 Robust Optimization

Robust optimization is a new approach in mathematical optimization that is
concerned about optimization problems in which a certain level of robustness
is desirable against uncertainty [6,7]. This modelling methodology is integrated
with computational tools to treat optimization problems with uncertain data
that is only known to be included in some uncertainty set [3, 24, 37]. This ap-
proach has been shown to be very useful in real-world applications that are
entirely or to a certain extent a�ected by uncertainty [8, 10]. In this section, we

4 Here, B is the standard σ-algebra over Pathsω generated from the set of all cylin-
der sets {Cylπ | π ∈ Paths∗}. The unique probability measure is obtained by the
application of the extension theorem (see, e.g., [11]).
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introduce the concept of Uncertain Linear Programming problems (ULPs) and
afterwards, we provide an overview of the essential background required for the
rest of the paper. We refer the interested reader to [6, 10] for a comprehensive
reference on robust optimization.

Uncertain Linear Programming (ULPs) Linear Programming (LP) prob-
lems are problems that can be described in canonical form as:

Minx∈Rn

{
cTx : Ax ≤ b

}
where x ∈ Rn is the vector of decision variables, c ∈ Rn is the vector of coef-
�cients, A ∈ Rm×n is the constant coe�cient matrix and b ∈ Rm is the right
hand side vector.

The data of an LP problem, i.e., the collection of tuples [c, A, b], in general
are not known precisely when the LP encodes a real-world problem. This issue
reveals the need for an approach to produce LP solutions which are immune
against uncertainty.

De�nition 3 (cf. [6, 7]). An Uncertain Linear Program (ULP) is a family{
Minx∈Rn{cTx : Ax ≤ b}

}
[c,A,b]∈Z (1)

of LP problems Minx∈Rn{cTx : Ax ≤ b} with the same structure (i.e., same num-
ber of constraints and variables) in which the data range over a given nonempty
compact uncertainty set Z ⊂ Rn × Rm×n × Rm.

To simplify the notation, we may write
{

Min{cTx : Ax ≤ b}
}
Z .

In contrast to an usual single LP problem, it is not possible to associate the
notions of feasibility/optimal solutions and optimal objective value with a col-
lection of optimization problems like ULPs. In the setting of ULPs, the feasible
solutions are solutions which are robust feasible. Roughly speaking, feasible so-
lutions are those which satisfy the set of constraints whatever the realization of
uncertain data is. More precisely:

De�nition 4 (cf. [6,8]). A vector x ∈ Rn is robust feasible to an ULP with un-
certainty set Z if for each [c, A, b] ∈ Z, Ax ≤ b. Given a robust feasible solution
x, the robust value ẑ(x) of the objective function is ẑ(x) := sup[c,A,b]∈Z c

Tx.

After carefully de�ning the robust feasible/optimal solutions as well as their
robust objective value, we can describe the central concept in robust optimization
setting that is the robust counterpart (RC) of an uncertain LP problem.

De�nition 5 (cf. [8]). Given an ULP problem
{

Min{cTx : Ax ≤ b}
}
Z , the Ro-

bust Counterpart of ULP is the optimization problem

Minx∈Rn

{
ẑ(x) = sup

[c,A,b]∈Z
{cTx : Ax ≤ b}

}
that seeks for the best possible value of the objective function among all possible
robust feasible solutions to the ULP. Furthermore, the optimal solution/value to
the robust counterpart is called the robust optimal solution/value to the ULP.



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
16

-0
2

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
Q

E
S

T
20

16
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

In the robust counterpart (RC) approach, all the variables are � here and now
decisions�: they must be decided before the realization of unknown data. How-
ever, in some cases, some part of the variables are �wait and see decisions �, i.e.,
they might tune themselves to the varying parameters. In the rest of the paper,
we call the variables that may depend on the realizations of the uncertain data
as adjustable, while other variables are called non-adjustable. Therefore, we can
split the vector x of Eq. (1) from Def. 3 as x = (u, v)T where the sub-vectors u
and v indicate the non-adjustable and the adjustable variables, respectively.

Adjustable Robust Counterpart Splitting the decision variable x to the
adjustable and non-adjustable variables allows us to rewrite the uncertain LP (1)
as the following equivalent form:{

Minu,v{cTu : Uu+ V v ≤ b}
}
[c,U,V,b]∈Z (2)

In the above presentation, without loss of generality, we assume that the
objective function is normalized with respect to the non-adjustable variables.
Moreover, the matrix V is called recourse matrix [17] and when it is not uncer-
tain, we call the uncertain LP (2) a �xed recourse one. We can now de�ne the
RC and the Adjustable robust counterpart (ARC) as follows:

RC: Minu{cTu : ∃v : ∀[U, V, b] ∈ Z : Uu+ V v ≤ b}; (3)

ARC: Minu{cTu : ∀[U, V, b] ∈ Z : ∃v : Uu+ V v ≤ b}. (4)

It is not di�cult to see that ARC is less conservative than RC allowing for better
optimal values while still having all realizations of the constraints satis�ed. The
distinction between RC and ARC can be very signi�cant (see, e.g., [6, 7]).

The RC of an uncertain LP is a computationally tractable problem in gen-
eral [8]. On the contrary, this is not the case with ARC. This fact stimulates a
very good reason to introduce the notion of A�nely Adjustable Robust Coun-
terpart (AARC) of an uncertain LP in which we make a simpli�cation on how
the adjustable variables can tune themselves upon the uncertain data. By posing
v = w+Wξ, we consider an a�ne dependency between adjustable variables and
uncertain parameter. Therefore, the AARC of the uncertain LP (2) reads as:

Minu,w,W
{
cTu : Uu+ V (w +Wξ) ≤ b,∀(ξ ≡ [U, V, b] ∈ Z)

}
≡ Minu

{
cTu : ∀(ξ ≡ [U, V, b] ∈ Z) : ∃(w,W ) : Uu+ V (w +Wξ) ≤ b

}
.

(5)

3 Probabilistic Bisimulation for Interval MDPs

This section revisits required main results on probabilistic bisimulation for in-
terval MDPs, as developed in [27]. In the setting of this paper, we consider the
notion of probabilistic bisimulation for the cooperative interpretation of interval
MDPs. This semantics is very natural in the context of veri�cation of parallel
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systems with uncertain transition probabilities in which we assume that sched-
uler and nature are resolved cooperatively in the most adversarial way: in the
game view of the bisimulation, challenging scheduler and nature work together
in order to defeat the defender with a transition that can not be matched.

Besides the cooperative behaviour, the choice of a probability distribution
respecting the interval constraints can be done either statically [31], i.e., at the
beginning once for all, or dynamically [30, 43], i.e., independently at each com-
putation step. In this paper, we focus on the dynamic approach in resolving the
stochastic nondeterminism: it is easier to work with algorithmically and can be
seen as a relaxation of the static approach that is often intractable [9,14,19,23].

Let s −→ µs denote a transition from s to µs taken cooperatively, i.e., there
is a scheduler σ ∈ S and a nature ν ∈ N such that µs =

∑
a∈A σ(s)(a) · ν(s, a).

In other words, s −→ µs if µs ∈ CH(
⋃
a∈A(s) Ps,a) where CH(X) denotes the

convex hull of X.

De�nition 6 (cf. [27]). Given an IMDP M, let R ⊆ S × S be an equivalence
relation. We say that R is a probabilistic bisimulation if for each (s, t) ∈ R
we have that L(s) = L(t) and for each s −→ µs there exists t −→ µt such that
µs L(R) µt. Furthermore, we write s ∼c t if there is a probabilistic bisimulation
R such that (s, t) ∈ R.

Intuitively, each (cooperative) step of scheduler and nature from state s needs
to be matched by a (cooperative) step of scheduler and nature from state t;
symmetrically, s also needs to match t. It is shown in [27] that the bisimulation
∼c preserves the (cooperative) universally quanti�ed PCTL satisfaction |=c.

Theorem 7 (cf. [27]). For states s ∼c t and any PCTL formula ϕ, we have
s |=c ϕ if and only if t |=c ϕ.

Computation of probabilistic bisimulation for IMDPs follows the standard
partition re�nement approach [13,32,39]. However, the core part of the algorithm
is to �nd out whether two states �violate the de�nition of bisimulation�. Veri-
�cation of this violation amounts to checking inclusion of polytopes de�ned as
follows. For s ∈ S and a ∈ A(s), recall that Ps,a denotes the polytope of feasible
successor distributions over states with respect to taking the action a in the state
s. By Ps,aR , we denote the polytope of feasible successor distributions over equiv-
alence classes of R with respect to taking the action a in the state s. Formally,
for µ ∈ ∆(S/R) we set µ ∈ Ps,aR if, for each C ∈ S/R, we have µ(C) ∈ I (s, a, C).
Furthermore, we de�ne PsR = CH(

⋃
a∈A(s) P

s,a
R ). It is the set of feasible succes-

sor distributions over S/R with respect to taking an arbitrary distribution over
actions in state s. As speci�ed in [27], checking violation of a given pair of states,
amounts to check equality of the corresponding constructed polytopes for the
states. As regards the computational complexity of the proposed algorithm, the
following theorem indicates that it is �xed parameter tractable.

Theorem 8 (cf. [27]). Given an IMDP M, let f be the maximal fanout, i.e.,
f = maxs∈S,a∈A(s) |{ s′ ∈ S | I (s, a, s′) 6= [0, 0] }|. Computing ∼c can be done in

time |M|O(1) · 2O(f).
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The exact time complexity of deciding probabilistic bisimulation for IMDPs
has recently been explored in [28], leading to the following result.

Theorem 9. Given an IMDP M, computing ∼c is coNP-complete.

4 Computational Tractability

Def. 6 is the central de�nition around which the paper revolves. Given an IMDP,
the complexity of computing ∼c strictly depends on �nding t −→ µt: we show
how a �ner (sub-optimal) equivalence relation can be computed in polynomial
time. The bisimulation in Def. 6 can be reformulated equivalently as follows:

De�nition 10. Let R ⊆ S × S be an equivalence relation. We say that R is
a probabilistic bisimulation if (s, t) ∈ R implies that L(s) = L(t) and for each
a ∈ A(s) and each µs ∈ Ps,aR , there exists µt ∈ PtR such that µs L(R) µt.

Recall that a probabilistic bisimulation can be seen as a game between two
players: in each round, the challenger, or attacker, s proposes a transition, or step,
that has to be matched by the defender t. The two states s and t are bisimilar
if the defender is always able to match the challenging transitions proposed by
the attacker, that is, the game can be played forever. Correspondingly, in our
setting, probabilistic bisimulations require that each transition proposed by the
challenger s which is selected from the set Ps,aR , is matched by the defender t
via a single (combined) transition. The above de�nition essentially disallows the
state s to randomize over the set of its available actions. Therefore, instead of
allowing the challenger to pick a probability distribution from CH(

⋃
a∈A(s) P

s,a
R ),

we restrict his choice to select a distribution for an action from the polytope Ps,aR .
This restriction does not lead to any loss of generality, since it is routine to check
that the bisimulation R from Def. 10 satis�es the condition of Def. 6.

4.1 Robust Methodologies for Probabilistic Bisimulation

We now discuss the key elements of a decision algorithm for probabilistic bisimu-
lation on IMDPs. As we will see in Sec. 5, the core part�and the main source of
the exponential complexity of the decision algorithm in [27]�is the need to re-
peatedly verify the step condition, that is, given a challenging transition µ ∈ PsR
and (s, t) ∈ R, to check if there exists t −→ µt such that µ L(R) µt. We show
that, using some inspiration from network �ow problems, it is possible to treat a
transition t −→ µt of the IMDP M as a �ow where the initial probability mass
δt �ows and splits along transitions appropriately to the transition target distri-
butions and the resolution of the nondeterminism ful�lled by the scheduler and
nature. This intuition essentially enables us to model the probabilistic bisimu-
lation problem as an adjustable robust counterpart of an uncertain LP problem
that is intractable in general [6, 7].



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
16

-0
2

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
Q

E
S

T
20

16
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

4.2 Adjustable Robust Counterpart for Probabilistic Bisimulation

From now on, we assume that the IMDP M, the state t, the probability dis-
tribution µ, and the equivalence relation R on S are given. We intend to verify
or refute the existence of a transition t −→ µt of M satisfying µ L(R) µt via
the construction of a �ow through the network graph G(t,R) = (V,E) de-
�ned as follows: the set of vertices is V = {M,H, t} ∪ SA ∪ SR ∪ (S/R) where
SA = { ta | a ∈ A(t) } and SR = { sR | s ∈ S }, and the set of arcs is E =
{(M, t)}∪{ (vR, C), (C,H) | C ∈ S/R, v ∈ C }∪{ (t, ta), (ta, vR) | a ∈ A(t), v ∈ S }.
In the �ow network de�nition, M and H are the source node and the sink node
of the network, respectively. The set of transition nodes SA includes vertices
that represent the interval transitions of the IMDP M. More precisely, each
transition labelled by a enabled at state t is represented by a transition node
ta ∈ SA. The set SR is a copy of the state set S that is used to represent the
states reached after having performed the transition; for such states, we connect
them to the equivalence class they belong to so to verify the condition of the
lifting. The network construction can be seen as an adaptation to the strong
case of �ow networks used in [21,44].

We take advantage of the above transformation of the � IMDP into a net-
work graph� to generate an optimization problem. To this aim, we adopt the
same notation of the network optimization setting so we use fu,v to show the
��ow� through the arc from u to v. In formulating the optimization problem,
we use in addition the so-called balancing constraints [44] in order to re�ect the
probabilistic choices in the given IMDP M and to ensure the correct splitting
of outgoing �ows from the transition nodes in the set SA.

De�nition 11. The optimization problem associated to the network G(t,R) =
(V,E) is de�ned as follows:

Minf 0
subject to
fu,v ≥ 0 for each (u, v) ∈ E
fM,t = 1
fC,H = µ(C) for each C ∈ S/R∑
{u∈V |(u,v)∈E } fu,v −

∑
{w∈V |(v,w)∈E } fv,w = 0 for each v ∈ V \ {M,H}

fta,vR − pa,v · ft,ta = 0 for each a ∈ A(t) and v ∈ S
pa,v ∈ I (t, a, v) for each a ∈ A(t) and v ∈ S

It is not di�cult to see that the optimization problem just de�ned is not an
LP problem, as there are quadratic constraints where the �ow variable ft,ta is
multiplied with the �probability� variable pa,v. As a matter of fact, for a given a ∈
A(t), the variables pa,v have to lie in the interval de�ned by the interval transition
I (t, a, v) and they have to induce a probability distribution, i.e., pa,v ≥ 0 for each
v ∈ S and

∑
v∈S pa,v = 1. The non-negativity of the variables comes for free from

the constraints pa,v ∈ I (t, a, v) since I (t, a, v) ⊆ [0, 1];
∑
v∈S pa,v = 1 follows by

the �ow conservation constrain
∑
{u∈V |(u,v)∈E } fu,v −

∑
{w∈V |(v,w)∈E } fv,w =

0 for v = ta. Therefore, the optimization problem can be easily cast as an
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LP problem by replacing the pair of constraints fta,vR − pa,v · ft,ta = 0 and
pa,v ∈ I (t, a, v) with the pair of constraints fta,vR − inf I (t, a, v) · ft,ta ≥ 0 and
fta,vR−sup I (t, a, v) ·ft,ta ≤ 0, i.e., the state v is reached from t with probability

pa,v =
fta,vR
ft,ta

at least inf I (t, a, v) and at most sup I (t, a, v), as required. Taking

this modi�cation into account, we can reformulate the optimization problem in
Def. 11 as the following LP problem.

De�nition 12 (The LP(t, µ,R) LP problem). The LP(t, µ,R) LP problem
associated to the network graph G(t,R) = (V,E) is de�ned as follows:

Minf 0
subject to
fu,v ≥ 0 for each (u, v) ∈ E
fM,t = 1
fC,H = µ(C) for each C ∈ S/R∑
{u∈V |(u,v)∈E } fu,v −

∑
{w∈V |(v,w)∈E } fv,w = 0 for each v ∈ V \ {M,H}

fta,vR − inf I (t, a, v) · ft,ta ≥ 0 for each a ∈ A(t) and v ∈ S
fta,vR − sup I (t, a, v) · ft,ta ≤ 0 for each a ∈ A(t) and v ∈ S

The feasibility of the resulting LP problem can be seen as an oracle to verify
or refute the existence of a probabilistic transition t −→ µt. Formally,

Lemma 13. Given an IMDPM, t ∈ S, µ ∈ ∆(S), and an equivalence relation
R on S, the LP(t, µ,R) LP problem has a feasible solution if and only if there
exist σ ∈ S and ν ∈ N inducing t −→ µt such that µ L(R) µt.

It is worthwhile to be noted that the resulting scheduler and nature are
history-independent, i.e., they base their choice only on the current state (and
action, for nature). Moreover, solving the generated LP problem from Def. 11 can
be done in polynomial time [33, 34]. The polynomial time complexity, however,
is not preserved when uncertainty a�ects transition probabilities in the model.
In fact, in presence of uncertainty, the step condition needs to be checked for any
realization of the probability distribution µs ∈ Ps,aR . This fact is essentially the
main barrier in designing e�cient algorithms for probabilistic bisimulation on
such uncertain systems which particularly leads the problem to be intractable.
To this end, we �rst model the probabilistic bisimulation problem as the ARC
of the uncertain LP(t, µ,R) LP problem in which the uncertain data is the
probability distribution µ. More precisely, by Lem. 13, we can replace in Def. 10
the matching transition µt ∈ PtR for µs ∈ Ps,aR such that µs L(R) µt with the
check for feasibility of LP(t, µs,R).

Modelling this probabilistic bisimulation game as ARC of an uncertain LP
allows the adjustable �ow variables fi,j in the LP(t, µ,R) LP problem to tune
themselves to the uncertain probability distribution µ. However, the ARC is
in general computationally hard. On the other hand, restricting the adjustable
�ow variables fi,j to be a�nely dependent on the uncertain probability distribu-
tions µ allows us to model the bisimulation problem as a�nely adjustable robust
counterpart of an uncertain LP problem and thus to arrive at a polynomial time
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Minl,w 0
subject to
lu,v +

∑n
k=1 w

k · µ(Ck) ≥ 0 for each (u, v) ∈ E
lM,t +

∑n
k=1 w

k · µ(Ck) = 1

lC,H +
∑n
k=1 w

k · µ(Ck) = µ(Ci) for each Ci ∈ S/R, i = 1, . . . , n∑
{u|(u,v)∈E }(lu,v +

∑n
k=1 w

k · µ(Ck))−
∑
{u|(v,u)∈E }(lv,u +

∑n
k=1 w

k · µ(Ck)) = 0

for each v ∈ V \ {M,H}
lta,vR +

∑n
k=1 w

k · µ(Ck)− inf I (t, a, v) · (lt,ta +
∑n
k=1 w

k · µ(Ck)) ≥ 0
for each a ∈ A(t) and v ∈ S

lta,vR +
∑n
k=1 w

k · µ(Ck)− sup I (t, a, v) · (lt,ta +
∑n
k=1 w

k · µ(Ck)) ≤ 0
for each a ∈ A(t) and v ∈ S

∀µ = (µ(C1), . . . , µ(Cn)) ∈ Ps,aR

Fig. 1. A�nely adjustable robust counterpart of the ULP {LP(t, µ,R)}µ∈Ps,a
R

.

algorithm to compute the equivalence relation R. From the game semantics view-
point, such a�ne dependency restriction reduces the power of the defender to
match the challenger's choices and therefore, it leads to a �ner (sub-optimal)
equivalence relation.

4.3 A�nely Adjustable Robust Counterpart for Probabilistic
Bisimulation

In this section, we adapt the ARC theory presented in Sec. 2.2 to the setting of
probabilistic bisimulation by imposing a restriction on adjustable �ow variables
fi,j to tune themselves a�nely upon the uncertain probability distribution µ in
the challenger's uncertainty set Ps,aR . Without loss of generality, we let C1, . . . , Cn
be the equivalence classes induced by R. We encode the a�ne dependence in
the network graph G(t,R) = (V,E) by restricting, for each arch (i, j) ∈ E, the
�ow variable fi,j to be

fi,j = li,j +

n∑
k=1

wk · µ(Ck),

where the new optimization variables are considered in the vector l and the ma-
trixW . Plugging a�ne equivalences of �ow variables, we end up with the a�nely
adjustable robust counterpart (AARC) of the ULP problem {LP(t, µ,R)}µ∈Ps,a

R
shown in Fig. 1.

In order to show the computational tractability of the AARC, we need to
ensure that the uncertainty set Ps,aR is itself computationally tractable. Formally,
a set Ps,aR is computationally tractable [25] if for any vector µ, there is a tractable
�separation oracle� that either decides correctly µ ∈ Ps,aR or otherwise, generates
a separator, i.e., a non-zero vector r such that rTµ ≥ maxγ∈Ps,a

R
rT γ.

Proposition 14. For every state s ∈ S, action a ∈ A(s) and equivalence rela-
tion R, the polytopic uncertainty set Ps,aR is computationally tractable.
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Computational tractability of the polytopic uncertainty sets concludes im-
mediately tractability of the AARC. Formally,

Theorem 15. Given the �xed recourse ULP problem {LP(t, µ,R)}µ∈Ps,a
R

, the
AARC of {LP(t, µ,R)}µ∈Ps,a

R
is computationally tractable.

It is not di�cult to see that in the setting of probabilistic bisimulation, the
polytopic uncertainty sets PsR are closed, convex, and well structured, i.e., they
can be described by a list of linear inequalities. Thus in our setting, the resulting
AARC is also well structured and thus can be solved using highly e�cient LP
solvers (for instance, CPLEX [2] and Gurobi [1]) even for large-scale cases.

Theorem 16. Given the �xed recourse ULP problem {LP(t, µ,R)}µ∈Ps,a
R

, the
AARC of {LP(t, µ,R)}µ∈Ps,a

R
is equivalent to an explicit LP program.

The �a�ne decision rules� used to derive the AARC counterpart of the prob-
abilistic bisimulation problem allow us to compute a sub-optimal (�ner) proba-
bilistic bisimulation de�ned as follows.

De�nition 17. Let R ⊆ S × S be an equivalence relation. We say that R is an
AARC probabilistic bisimulation if (s, t) ∈ R implies that L(s) = L(t) and for
each a ∈ A(s), the AARC of the ULP problem {LP(t, µ,R)}µ∈Ps,a

R
is feasible.

Furthermore, we write s ∼AARC t if there exists an AARC probabilistic bisim-
ulation R such that (s, t) ∈ R.

An immediate result relating ∼AARC and ∼c is that the former is a re�nement
of the latter, as formalized by the following proposition.

Proposition 18. Given M, if s ∼AARC t, then s ∼c t, i.e., ∼AARC ⊆ ∼c.

5 Decision Algorithm

In this section, we give a polynomial algorithm computing the probabilis-
tic bisimulation ∼AARC . The general idea of the algorithm follows the one
of the algorithm in [27] and involves the construction of the polytopes of the
challenger's probability distributions. In order to compute ∼AARC an IMDP

M = (S, s̄,A, AP, L, I ), we follow the usual partition re�nement approach [12,21,
32, 39, 44], formalized by the Bisimulation procedure in Algorithm 1. Namely,
we start with R being the equivalence relation containing the pairs of states
with the same labels; then we iteratively re�ne R by splitting the states that vi-
olate the de�nition of bisimulation with respect to R. The core part is to check
whether two states �violate the de�nition of bisimulation�. This is where our
algorithm di�ers from the one proposed in [27].

The violation is checked by the procedure Violate. We show that this
amounts in solving the AARC of the uncertain LP problem {LP(t, µ,R)}µ∈Ps,a

R

as follows. Recall that for s ∈ S and an action a ∈ A(s), we denote by Ps,aR the
polytope of feasible successor distributions over equivalence classes of R with
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Bisimulation(M)

1: R← { (s, t) ∈ S × S | L(s) = L(t) };
2: repeat
3: R′ ←R;
4: for all s ∈ S do

5: D ← ∅;
6: for all t ∈ [s]R do

7: for all a ∈ A(s) do
8: if Violate(t,R,Ps,aR )
9: D ← D ∪ {t};
10: split [s]R in R into D and [s]R \D;
11: until R = R′;
12: return R;

Violate(t,R,Ps,aR )

1: Construct the AARC of the
ULP {LP(t, µ,R)}µ∈Ps,a

R
de-

�ned in Fig. 1
2: return is AARC not feasible?

Algorithm 1: Probabilistic bisimulation algorithm for IMDPs

respect to taking the action a in the state s, as discussed in Sec. 3. Note that we
require that the probability of each class C must be in the interval of the sum of
probabilities that can be assigned to states of C. As speci�ed in the procedure
Violate, we show that it su�ces to check the feasibility of the resulting AARC
of the constructed uncertain LP problem.

Given an IMDP M, let N = max{|S| , |A|}. It is not di�cult to see that the
procedure Violate is called at most N4 times. In every call to this procedure,
we need to generate and solve the explicit form of the AARC which is an LP
according to Thm. 16, solvable in polynomial time O(poly(N)) (see, e.g., [25,33]).

This means that computing ∼AARC can be done in time |M|O(1) · O(poly(N)).

Theorem 19. Algorithm 1 computes ∼AARC in time polynomial in |M|.

6 Case Studies

We have written a prototypical implementation for computing the bisimulation
presented in this paper. Our tool reads a model speci�cation in the input lan-
guage of the probabilistic model checker PRISM [36] (extended to support also
intervals in the transitions), and constructs an explicit-state representation of
the state space. Afterwards, it computes the quotient using Algorithm 1.

Table 1 shows the performance of our prototype on a number of case studies
taken from the PRISM website [4], where we have relaxed some of the proba-
bilistic choices to intervals. The machine we used for the experiments is a 3.6
GHz Intel Core i7-4790 with 16 GB 1600 MHz DDR3 RAM of which 12GB were
assigned to the tool. Despite using an explicit representation for the model, the
prototype is able to manage cases studies in the order of millions of states and
transitions (columns �Model�, � |Si|�, and � |Ii|�). The time in seconds required to
compute the bisimulation relation and the corresponding quotient IMDP, shown
in columns �t∼�, � |S∼|�, and � |I∼|�, is much less than the time expected from
the theoretical analysis of the algorithm: this is motivated by the fact that we
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Table 1. Experimental evaluation of the bisimulation computation

Model |Si| |Ii| S/L t∼ (s) |S∼| |I∼|

Consensus-Shared-Coin-3 5 216 13 380 2 0 787 1 770
Consensus-Shared-Coin-4 43 136 144 352 2 2 2 189 5 621
Consensus-Shared-Coin-5 327 936 1 363 120 2 23 5 025 14 192
Consensus-Shared-Coin-6 2 376 448 11 835 456 2 219 10 173 30 861

Crowds-5-10 111 294 261 444 2 1 107 153
Crowds-5-20 2 061 951 7 374 951 2 17 107 153
Crowds-5-30 12 816 233 61 511 033 2 116 107 153
Crowds-5-40 44 045 030 266 812 421 2 464 125 198

Mutual-Exclusion-PZ-3 3 008 10 868 2 0 1 123 3 939
Mutual-Exclusion-PZ-4 48 128 231 040 2 0 7 319 32 630
Mutual-Exclusion-PZ-5 770 048 4 611 072 2 7 32 053 168 151
Mutual-Exclusion-PZ-6 3 377 344 25 470 144 2 98 109 986 649 360

Dining-Phils-LR-nofair-4 9 440 40 120 4 0 1 232 5 037
Dining-Phils-LR-nofair-5 93 068 494 420 4 1 9 408 49 467
Dining-Phils-LR-nofair-6 917 424 5 848 524 4 14 76 925 487 620
Dining-Phils-LR-nofair-7 9 043 420 67 259 808 4 173 646 928 4 804 695

have implemented optimizations, such as caching equivalent LP problems, which
improve the runtime of our algorithm in practice. Because of this, we never had
to solve more than 30 LP problems in a single tool run, thereby avoiding the
potentially costly solution of LP problems from becoming a bottleneck.
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