
POWER TO THE PEOPLE
VERIFIED

This report contains an author-generated version of a publication in VALUETOOLS 2016.

Please cite this publication as follows:

Carlos E. Budde, Pedro R. D’Argenio, Raúl E. Monti.
Compositional Construction of Importance Functions in Fully Automated Importance Splitting.
10th EAI International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2016,
Taormina, Italy, October 26–28, 2016, Proceedings. ICST 2017, ISBN 978-1-63190-141-6. 30–37.

POWVER
Technical Report 2016-08

Title: Compositional Construction of Importance Functions in Fully
Automated Importance Splitting

Authors: Carlos E. Budde, Pedro R. D’Argenio, Raúl E. Monti

Report Number: 2016-08

ERC Project: Power to the People. Verified.

ERC Project ID: 695614

Funded Under: H2020-EU.1.1. – EXCELLENT SCIENCE

Host Institution: Universität des Saarlandes, Dependable Systems and Software
Saarland Informatics Campus

Published In: VALUETOOLS 2016

http://www.powver.org/publications/TechRepRep/ERC-POWVER-TechRep-2016-08.pdf
http://www.powver.org/
http://cordis.europa.eu/project/rcn/203431_en.html
http://cordis.europa.eu/programme/rcn/664099_en.html
http://www.uni-saarland.de/nc/startseite.html
http://depend.cs.uni-saarland.de/
http://sic.saarland/
http://dx.doi.org/10.4108/eai.25-10-2016.2266501

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
16

-0
8

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
V

A
L

U
E

TO
O

L
S

20
16

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Compositional Construction of Importance Functions in
Fully Automated Importance Splitting

Carlos E. Budde, Pedro R. D’Argenio, and Raúl E. Monti
FAMAF, Universidad Nacional de Córdoba – CONICET
{cbudde,dargenio,rmonti}@famaf.unc.edu.ar

ABSTRACT
Importance splitting is a technique to accelerate discrete
event simulation when the value to estimate depends on the
occurrence of rare events. It requires a guiding importance
function typically defined in an ad hoc fashion by an expert
in the field, who could choose an inadequate function. In
this article we present a compositional and automatic tech-
nique to derive the importance function from the model de-
scription, and analyze different composition heuristics. This
technique is linear in the number of modules, in contrast to
the exponential nature of our previous proposal. This ap-
proach was compared to crude simulation and to importance
splitting using typical ad hoc importance functions. A pro-
totypical tool was developed and tested on several models,
showing the feasibility and efficiency of the technique.

1. INTRODUCTION
Nowadays, systems are required to have a high degree of

resilience and dependability. Determining properties that
fail with extremely small probability in complex models can
be computationally very demanding. Though such proper-
ties can be efficiently calculated using numerical tools, this
is limited to finite Markov models, and, moreover, the repre-
sentation through an adequate data structure needs to fit in
the computer memory. Beyond this class of models, calcula-
tions are limited to Monte Carlo simulation methods. How-
ever, standard Monte Carlo simulation is impractical when
the probability of the event under analysis is extremely low:
it will easily require an enormous amount of sampling to
obtain an acceptable confidence level of the estimated prob-
ability, in order to compensate for the high variance induced
by the rare occurrences of such event.

To reduce this considerable need for simulation runs, effi-
cient Monte Carlo simulation techniques have been tailored

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

VALUETOOLS ’16 October 26–28, 2016, Taormina, Italy
© 2018 ACM. ISBN 978-1-63190-141-6.

DOI: 10.4108/eai.25-10-2016.2266501

to deal with rare events. These can be largely divided into
two conceptually different techniques: importance sampling
and importance splitting methods. We focus on importance
splitting techniques, see e.g. [14, 18, 19]. Importance split-
ting works by decomposing the state space in multiple lev-
els where, ideally, the rare event is at the top level and a
level is higher as the probability of reaching the rare event
grows. The estimation of the rare probability is obtained as
the product of the estimates of the (not so rare) conditional
probabilities of moving one level up. As a consequence, the
effectiveness of this technique crucially depends on an ad-
equate grouping of states into levels. Importance functions
are the means to assign a value to each state so that, if
perfect, such value is directly related to the likelihood of
reaching the rare event. It is desirable that a state in the
rare set receives the highest importance and the importance
of a state decreases according to the probability of reaching
a rare state from it.

Usually, an expert in the area of the system provides the
importance function in an ad hoc manner. A badly chosen
function can deteriorate the effectiveness of the technique.
With some notable exceptions [1,8,11,15], automatic deriva-
tion of importance functions has received scarce attention.

In [1] we presented preliminary results on an effective tech-
nique to derive automatically an importance function. The
algorithm works by applying inverse breadth first search
(BFS) on the underlying graph of the stochastic process, la-
belling each state with the shortest distance to a rare state.
The importance of each state is then defined as the differ-
ence between the maximum distance and its actual distance.
Though this technique is not limited to Markov models, it
still requires a finite graph which fits in the computer mem-
ory. Unfortunately such graph grows exponentially with the
number of modules that conform the model of the system.

In this paper, we improve on this technique by obtain-
ing the importance function in a compositional manner. We
consider the system modelled as a network of interacting
modules, where each module is described in terms of an
input/output stochastic automaton (IOSA) and the inter-
action is defined through standard parallel composition [6].
The technique we propose works by applying the method
of [1] per module, previous analysis of how the local states
relate to the property under study, and the final importance
function is obtained by composing the modular functions.

10.4108/eai.25-10-2016.2266501

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
16

-0
8

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
V

A
L

U
E

TO
O

L
S

20
16

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Contrarily to the technique of [1], this way of calculating
the importance function grows linearly with the number of
modules that conform the system model.

The paper is organized as follows. Sec. 2 explains the
foundations of our specification language. Sec. 3 briefly
describes the importance splitting technique and the RES-
TART method. In Sec. 4 we introduce our technique for the
compositional derivation of importance functions. Sec. 5 re-
ports the performance of our technique on four different case
studies. The paper concludes in Sec. 6.

2. FORMAL SETTING

2.1 System models
We describe our models using input/output stochastic au-

tomata (IOSA) [6]. An IOSA is a variant of stochastic au-
tomata [4,5] which allows the description of stochastic deci-
sion processes in which the occurrence of events (or actions)
are governed by continuous random variables called clocks.
IOSA considers two disjoint type of actions: input actions
and output actions, which should synchronize when different
IOSAs interact in a parallel composition. Output actions
are locally controlled by the IOSA modelling a particular
module. Thus, the occurrence time of output actions is con-
trolled by a random variable. Instead, inputs are externally
controlled and hence their occurrence time can only depend
on their interaction with outputs in a parallel composition.

Definition 1. An input/output stochastic automaton
(IOSA for short) is a structure (S,A, C,−→, C0, s0), where S
is a finite set of states, A is a finite set of labels partitioned
into disjoint sets of input labels AI , and output labels AO, C
is a finite set of clocks such that each x ∈ C has associated
a continuous probability measure µx on R s.t. µx(R>0) = 1,
−→ ⊆ S×C×A×C×S is a transition relation (we generally

write s
C,a,C′
−−−−−→ s′ instead of (s, C, a, C′, s)′ ∈ −→), C0 is

the set of clocks that are initialized in the initial state, and
s0 ∈ S is the initial state. In addition an IOSA should
satisfy the following constraints:

1. If s
C,a,C′
−−−−−→ s′ and a ∈ AI , then C = ∅.

2. If s
C,a,C′
−−−−−→ s′ and a ∈ AO, then C is a singleton set.

3. If s
{x},a1,C1−−−−−−−→ s1 and s

{x},a2,C2−−−−−−−→ s2 then a1 = a2,
C1 = C2 and s1 = s2.

4. If s
{x},a,C−−−−−→ s′ then, for all t

C1,b,C2−−−−−→ s, either x ∈
C2, or x /∈ C1 and there exists t

{x},c,C3−−−−−−→ t′.

5. If s0
{x},a,C−−−−−→ s then x ∈ C0.

6. For every a ∈ AI and state s, there exists s
∅,a,C−−−−→ s′.

7. For every a ∈ AI , if s
∅,a,C1−−−−−→ s1 and s

∅,a,C2−−−−−→ s2,
C′1 = C′2 and s1 = s2.

The occurrence of an output action is controlled by the

expiration of clocks. Thus, whenever s
{x},a,C−−−−−→ s′ and the

system is in state s, output action a will occur once the
value of clock x reaches 0. At this point, the system moves
to state s′ setting the values of every clock y ∈ C to a value
sampled according to the distribution µy. An input tran-

sition s
∅,a,C−−−−→ s′, can potentially occur at any time which

will be defined once the action interacts with an output.
Restrictions 1-7 ensure that: 1. input and output behave

in reactive and generative fashion, respectively, 2. the class

Table 1: Parallel composition of IOSAs

s1
C,a,C′
−−−−−→1 s

′
1 a ∈ A1\A2

s1||s2
C,a,C′
−−−−−→ s′1||s2

s2
C,a,C′
−−−−−→2 s

′
2 a ∈ A2\A1

s1||s2
C,a,C′
−−−−−→ s1||s′2

s1
C1,a,C

′
1−−−−−−→1 s

′
1 s2

C2,a,C
′
2−−−−−−→2 s

′
2

s1||s2
C1∪C2,a,C

′
1∪C

′
2−−−−−−−−−−−→ s′1||s′2

of IOSAs is closed w.r.t. parallel composition, and 3. ev-
ery closed IOSA (i.e., an IOSA with no input actions), is
deterministic (or fully probabilistic) in the sense that it al-
most never reaches a state where two possible actions can be
taken at the same time. See [6] for detail explanations and
proofs. We remark that a closed IOSA defines a general-
ized semi-Markov process (GSMP). This is important since
fully probabilistic models, such as GSMPs, are amenable to
simulation in the general case.

Since we intend outputs to be autonomous (or locally con-
trolled), we do not allow synchronization between outputs.
Besides, we need to avoid name clashes on the clocks, so that
the intended behaviour of each component is preserved and
also to ensure that the resulting composed automata is in-
deed an IOSA. Thus we require to compose only compatible
IOSAs, and only compatible IOSAs are allowed to compose.

Definition 2. Two IOSAs I1 and I2 are said to be com-
patible if they do not share output actions nor clocks.

Given two compatible IOSAs I1 and I2, the parallel com-
position I1||I2 is a new IOSA (S1 × S2,A, C,−→, C0, s10||s20)
where (i) AO = AO1 ∪AO2 (ii) AI = (AI1∪AI2)\AO (iii) C =
C1 ∪ C2 (iv) C0 = C10 ∪ C20 and −→ is the smallest relation
defined by rules in Table 1 where we annotate s||t instead of
(s, t).

The parallel composition works as the usual CSP paral-
lel composition [10]: The two IOSAs should synchronize on
actions of equal name, but each component may execute
independently if the action belongs only to it in an inter-
leaving manner. Thus, the first two rules in Table 1 cor-
respond to the interleaving case in which each component
proceeds independently, while the third corresponds to the
synchronization case. Due to compatibility, synchronization
only happens between an input and an output. Moreover
the union C1 ∪ C2 of clocks in the conclusion of the third
rule let the input of one component inherit the clock of the
output from the other component, and moreover, this action
becomes an output in the resulting composed IOSA.

So far we gave an introduction to the fundamentals of
IOSA. However, our prototype tool actually implements a
more friendly syntax similar to that of PRISM [13], using
modules and integer and boolean variables, with guarded
expressions. Thus, a local state in a module is given by
particular valuations of the local variables, and a global state
is given by the union of local states (w.l.o.g. we assume that
different modules have different variables names).

2.2 Rare event properties
In this work we study transient and long run logical prop-

erties interpreted on the state space of an IOSA. Transient
properties are used to calculate the probability of reaching
a set G of goal states before visiting any reset state from the
(disjoint) set R. (For simulation purposes the probability of

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
16

-0
8

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
V

A
L

U
E

TO
O

L
S

20
16

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

reaching a state in G]R has to be 1.) Let bexp1 and bexp2 be
two propositional formulas which, when interpreted on the
states of an IOSA, identify the complement of R and the set
G respectively. Then the transient property is characterized
by the PCTL formula

P(bexp1 U bexp2) (1)

where U denotes the unbounded until operator from LTL
and P(Φ) denotes the probability of observing any state that
satisfies formula Φ.

We also study the behaviour of systems in the long run
or steady state situation. Long run analysis focuses on the
quantification of a property once the system has reached an
equilibrium. In particular, the steady state probability of a
set G of goal states, identified by some propositional formula
bexp in the state space of an IOSA, is the portion of time
in which any state in G is visited in the long run and is
characterized by the CSL property

S(bexp) (2)

Both types of properties are recurring in the literature
of rare event simulation, see e.g. [3, 7, 9, 19] for the case of
properties like (1), and [16,19] for properties like (2).

3. IMPORTANCE SPLITTING
When a parameter is estimated using Monte Carlo sim-

ulation, the speed and overall efficiency of the method is
highly dependent on the precision required for the estimate.
Confidence intervals are commonly used to convey a notion
of how far the produced estimate may be from the actual
value. As a general rule, whichever the confidence interval
construction method, the simulations “length” grows with
the tightness desired for the interval. In particular several
rare event scenarios are known to require a number of sam-
ples which grows exponentially on the model size [12].

Importance splitting (IS for short) aims to speed up the
occurrence of a rare event without modifications on the sys-
tem dynamics (see [14] and references therein.) The general
idea in IS is to favour the “promising runs” that approach
the rare event by saving the states they visit at certain pre-
defined checkpoints. Replicas of these runs are created from
those checkpoint states, which continue evolving indepen-
dently from then on. Contrarily, simulation runs deemed
to steer away from the rare event are identified and killed,
avoiding the use of computational power in fruitless calculi.
The likelihood of visiting a goal state from any other state s
is called the importance of s. Variations in such importance
determine when should a simulation run be split or killed,
as the importance value crosses some given thresholds up or
down, respectively. This procedural description of IS has a
sound statistical equivalent. For a comparison see [1].

We focus on the RESTART method, a version of IS with
multiple thresholds, fixed splitting and deterministic dis-
cards of unpromising simulations [16–20]. A RESTART run
can be depicted as in Fig. 1 where the horizontal axis rep-
resents the simulation progress and the vertical axis the im-
portance value of the current state. The run starts from an
initial state and evolves until the first threshold T1 is crossed
upwards. This takes the path from zone Z0 below threshold
T1 into zone Z1 between T1 and T2. As this happens the
state is saved and s1 − 1 replicas or offsprings of the path
are created. See A in Fig. 1, where the splitting for T1 is

RARE

tT0

T1

T2

A

B

CDZ 0

Z 1

Z 2

Figure 1: RESTART importance splitting

s1 = 3. This follows the idea of rewarding promising sim-
ulations: up-crossing a threshold suggests the path heads
towards a goal state. From then on the s1 simulations will
evolve independently. As they continue, one of them may
hit the upper threshold T2, activating the same procedure:
s2 − 1 offsprings are generated from it and set to evolve
independently. See B on T2; here, the splitting is s2 = 2.

However, it could also happen that some simulation hits
T1 again, meaning the path is leading downwards. This sim-
ulation steers away from the goal set and RESTART deals
with it discarding the run right away (see C in Fig. 1). In
each zone Zi there exists nonetheless an original simulation,
which crossed threshold Ti upwards generating the si − 1
offsprings. This run is allowed to survive a down-crossing of
threshold Ti (see D in Fig. 1).

In this setting all simulations reaching a goal state went
through the replication procedure, which stacked up on ev-
ery threshold crossed. Simply counting these hits would in-
troduce a bias, because the relative weight of the runs in up-
per zones decreases by an amount equivalent to the splitting
of the thresholds. In consequence, each rare event observed
is pondered by the relative weight of the simulation from
which it stemmed. If all the goal states exist beyond the up-
permost threshold like in Fig. 1, then it suffices to divide the
observed quantity of rare events by SPLITMAX

.
=
∏n
i=1 si.

Otherwise more involved labelling mechanisms are needed.

4. MODULAR COMPUTATION OF THE IM-
PORTANCE FUNCTION

It is clear from Sec. 3 that importance splitting simula-
tions are entirely guided by the importance function which
defines the importance of each state. This function conveys
the locations where the simulation effort should be intensi-
fied, and it is from its definition that many other settings
of IS are usually derived. Importance functions are defined
in most situations in an ad hoc fashion by an expert in the
field of the particular system model. With a few exceptions
in some specific areas ([8, 11, 15]) automatic derivation of
importance functions is still a novel field for general systems.

4.1 Basic importance function derivation
Consider a single-module system M described in e.g. the

IOSA language. The importance of each state s in M is
formally defined as the probability of observing the rare
event after visiting s. In the setting of the logical prop-
erties P(bexp1 U bexp2) and S(bexp) presented in Sec. 2, the
rare event is the set G of goal states, defined as the system
states satisfying the boolean expressions bexp2 and bexp re-
spectively. Therefore if one could track or at least conjecture
a path leading from s to a goal state, some notion of the dis-
tance between s and the rare event may be determined and

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
16

-0
8

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
V

A
L

U
E

TO
O

L
S

20
16

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

used to choose an appropriate importance for the state.
A simultaneous backwards-reachability analysis starting

from the set G serves this purpose. Each layer of states
visited is labelled with decreasing importance, computing
the shortest path leading from each state to G by means
of a Breadth-First Search routine of complexity O(k · n),
where n is the size of the state space and k is the branching
degree of the underlying graph of the model. Albeit k = n
in the worst case, k is normally several orders of magnitude
smaller than n. The pseudocode for this algorithm is shown
in Fig. 2, where s0 stands for the initial state of M.

Using this strategy one can indeed obtain in very short
computational time a good importance function to use with
the IS technique of choice [1]. The thresholds can then be
selected either arbitrarily, using e.g. some fixed approach
(“set one every three importance values”), or adaptively by
means of an algorithm that exercises the model dynamics.
Whenever feasible we prefer the later alternative due to its
flexibility and verified efficiency. Adaptive computation of
the thresholds has been observed to skip, for instance, the
lowermost importance values and place the first threshold at
importance T1 > 0, resulting in a decrease of the splitting
overflow and a consequent improvement in the estimation
times/precision. A few techniques have been devised in the
field of adaptive algorithms, most notably Adaptive Multi-
level Splitting and its successor Sequential Monte Carlo by
F. Cérou and A. Guyader in [2, 3].

4.2 The modular approach
One of the strengths of the IOSA language is the possibil-

ity to describe the system as a set of simpler disjoint modules
whose parallel composition captures the desired behaviour.
However, the algorithm from Fig. 2 works on a single mod-
ule. The question is how to apply that to a set of modules.

A simple monolithic solution is a straightforward appli-
cation of IOSA’s compositionality: since the parallel com-
position of compatible IOSA modules is itself an IOSA, we
could as well construct such global module (from now on re-
ferred to as the model) and derive the importance function
as previously described. This approach is, as a matter of
fact, not only feasible but also effective, as it will be shown
in Sec. 5. It is nonetheless also limited in scope since it does
not scale. The BFS algorithm requires an explicit represen-
tation of the state space of the composed IOSA (and actually

Input: module M
Input: goal state set G 6= ∅
g(G)← 0
queue.push(G)
repeat
s← queue.pop()
for all s′ ∈M.predecessors(s) do

if s′ not visited then
g(s′)← g(s) + 1
queue.push(s′)

end if
end for

until queue.is_empty() or s0 visited
g(s)← g(s0) for every non visited state s
f(s)← g(s0)− g(s) for every state s
return importance function f

Figure 2: Basic importance function derivation

of the whole adjacency matrix), which grows exponentially
with the number of modules involved in the composition.

In order to avoid this problem it is essential to find a
modular solution, some way to compute and store the im-
portance separately on each module. The goal is then to
build local importance functions, that is, local to each mod-
ule in the system, which will be used later to construct the
global importance function of the model.

The first challenge one finds in this direction is the iden-
tification of the rare event in the local state of each module.
Recall that the propositional formulas of the properties from
Sec. 2 (viz. bexp, bexp1 and bexp2) are interpreted on the
state space of the composed model. The names of variables
from any module can occur in the expressions of these for-
mulas. Since we need to identify, in every module taken in-
dividually, the local states corresponding to the global rare
event, the question is then how to interpret such “global
formulas” locally on each module.

To illustrate the issue consider the example of a tandem-
network whose queues q1 and q2 have capacity C <∞. De-
clare one module per queue, as it might come naturally, and
let us study the long-run property (2) for three definitions
of the rare event bexp: (a) q2 = C, (b) q1 = C ∧ q2 = C
and (c) q1 >

C
2
⇒ q2 = C. All three definitions speak of an

overflow in the second queue, but the role of the first queue
is harder to grasp. In (a) variable q1 is missing, so we ignore
the module of the first queue when deriving the local im-
portance functions, as it does not change the validity of the
formula q2 = C. In other words, for (a) the local importance
function of the module of the first queue should be null. In
(b) q1 does appear in bexp; more precisely one may define
the states satisfying q1 = C as the local rares, and apply the
backwards BFS from them. Finally, (c) should be analyzed
more carefully, since there bexp ≡ ¬

(
q1 >

C
2

)
∨ q2 = C.

Therefore the local rares in the module of the first queue are
exactly those which do not satisfy q1 >

C
2

.
The difficulty is hence, when standing on a single mod-

ule, how to interpret the occurrence of its local variables in
the atomic propositions from the formulas bexp, bexp1 and
bexp2. As we have seen, it is not necessarily clear whether
such occurrences should be taken positively or negatively.

To cope with this difficulty we ask for the formulas bexp,
bexp1 and bexp2 to be expressed in disjunctive normal form
(DNF), i.e. a disjunction of clauses, each of which is a con-
junction of literals (i.e. of atomic propositions or negated
atomic propositions). This approach imposes no restriction
on the description of the rare event, since any propositional
formula can be equivalently written in DNF. The difficulty
in the interpretation of the atomic propositions is however
solved since the literal clearly states if it should be inter-
preted positively or negatively.

The procedure to follow is now direct: first project, for the
current module under study, the rare event DNF formula
into the set of local variables. If the projection is empty
then this module plays no role in the rare event and ought
to be discarded for importance computation. Otherwise use
the resulting formula, also in DNF and containing solely
local variables names, to identify the local rare states in
this module. Once this set is known the basic importance
function derivation can be applied. The pseudocode of this
algorithm is presented in Fig. 3.

This way we compute and store the local state importance
in a per-module basis, which grows linearly with the number

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
16

-0
8

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
V

A
L

U
E

TO
O

L
S

20
16

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

of modules in the model. The result is a notion of local im-
portance functions, which still need to be combined amongst
modules to compute the global importance function.

4.3 Composition of local importance functions
In the description of RESTART (Sec. 3) the technique is

oblivious of the way in which the importance of the system
is computed or stored. RESTART simply needs the impor-
tance of the current state of the model after every transition
is taken. The same transparency is required by all known IS
techniques and even by the adaptive algorithms from [2, 3].
Hence if we are to use the modular approach described in
Sec. 4.2, we need a composition procedure or function to
decide the importance of each state of the composed model,
taking as input the local importance of each module.

One option is to let the user settle the matter via an
ad hoc choice. He would have to provide an algebraic ex-
pression using the local importance functions as variables,
which would be used at every step of the simulation to com-
bine the local importance values. Recall for instance the
tandem-network example from Sec. 4.2 and let Queue1 and
Queue2 be the local importance functions of the modules rep-
resenting the first and second queue respectively. The user
could specify composition functions such as Queue1+Queue2,
0.5 Queue1 + Queue2, or (1+Queue1)*(1+Queue2).

Alternatively, we could use an associative binary operator
to combine all local importance functions with. Natural can-
didates are addition, product, max and min. As an example
take the first definition of the rare event in the tandem-
network, q2 = C. Using + or max as compositional operand
would yield the same result, since the first queue has a null
local importance function. If on the other hand we take the
second rare event definition, q1 = C ∧ q2 = C, then max and
+ will behave differently, most likely in favour of the later.

The previous analysis shows the definition of the rare
event, or more generally the expression of the property, may
have a critical impact on the efficiency of the composition
function chosen. Furthermore, since we request the proper-
ties to be expressed in DNF, we could exploit the structure of
the formula to identify specific arithmetical operands or even
algebraic structures to associate to each logical operand. We
are currently investigating a way to automatically map the
disjunctions and conjunctions to their best-match arithmeti-
cal counterparts. Our last studies are leading us towards the
use of semi-rings such as (max,+) and (+,*), which could be
thought of as naturally corresponding to the (∨,∧) struc-
ture of DNF formulas. The results of these studies and also

Input: modules set {Mi}ni=1

Input: global rare event formula bexp
bexp.assert_DNF()
for all Mi do

bexpi ← bexp.project(Mi.variables())
if bexpi ≡ true then
fi ← null

else
Gi ←Mi.identify states (bexpi)
fi ← derive importance function (Mi, Gi)

end if
end for
return local importance functions set {fi}ni=1

Figure 3: Local importance functions computation

of the comparisons between the different ways to build the
importance function (ad hoc, automatic monolithic and au-
tomatic per-module) are presented in Sec. 5.

As a final remark notice that using the product to combine
local importance functions could lead to problems whenever
a null importance value is encountered. As a workaround
in such cases the functions where updated after construc-
tion, replacing every importance value i with 2i (e.g. the
values 0, 1, 2, . . . map into 1, 2, 4, . . .) This solved the issue
and set the computed importance values further apart, with
interesting consequences in the IS simulations.

5. EXPERIMENTAL VALIDATION
To validate our approach we selected four case studies

from the literature and analyzed them using a self-developed
software tool. We remark the tool is still in a prototypical
stage, accounting for the high timeouts chosen for the exe-
cutions. To validate correctness, the results estimated with
IS simulation were compared against the published results
in all cases where an exact IOSA reproduction of the model
could be devised. Otherwise, and restricted to markovian
systems, a numerical approximation by the model check-
ing tool PRISM was used as reference value. Our estimates
where also compared against the analytic solution of the
problem whenever this was available.

All estimates were computed together with a confidence
interval, i.e., the confidence level and precision of the esti-
mations were taken into account. Two methods were used to
build these intervals depending on the type of the property.
The standard interval

[
X−z1−α

2
· σ̂/√N , X+z1−α

2
· σ̂/√N

]
was used for estimates corresponding to the long run prop-
erties as in (2), where N is the number of independent sim-
ulation runs, X stands for the mean value of the sample,
100(1 − α)% is the confidence level and σ̂/

√
N · z1−α

2
is the

semi-precision or error margin. Transient properties like (1)
are inherently binomial, because every simulation almost
surely succeeds or fails to encounter a rare event, and one is
after the (weighed) number of successful simulations. Since
the samples are binomially distributed we can choose a con-
fidence interval construction method better fitted than the
standard method described above. The Wilson score inter-
val [21] is specially tailored for situations when the propor-
tion p

.
= #succ

N
takes extreme values, viz. p ≈ 0 or p ≈ 1,

which clearly fits our situation best.
The precision of the intervals was chosen relative to the

expected value of the estimate. This means that the smaller
the probability of the rare event, the tighter the confidence
interval built for the estimate. Even though this has an
obviously negative impact on the simulation times, the goal
was to generate as useful an interval as possible.

Simulations were requested to reach a specified confidence
level and precision within certain time limit. The precise
values of the three criteria (i.e. the confidence, the relative
precision and the timeout) are subject to each particular
experiment. Simulations reaching the wall time limit were
truncated; in these cases the data of interest is the preci-
sion achieved at truncation. For each experiment we varied
some model parameter, testing the performance of the sim-
ulation methods for decreasing values of the probability of
the rare event (henceforth “p”), which overall ranged from
p ≈ 1.02 · 10−2 to p ≈ 2.45 · 10−13. From now on ifun will
denote “importance function”. To validate the performance
of our approach, for each model and parameter value we

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
16

-0
8

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
V

A
L

U
E

TO
O

L
S

20
16

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

tested the following simulation strategies where applicable:
RESTART using the compositional ifun described in Sec. 4,
RESTART using the monolithic ifun built from the com-
posed model (the “monolithic solution” from Sec. 4.2), RES-
TART using any known or devised ad hoc ifun, and stan-
dard Monte Carlo. All RESTART simulations were tested
with different split values.

Experimentation was carried out in two computer set-
tings: the cluster Mendieta featuring 8-cores 2.7 GHz In-
tel Xeon E5-2680 processors, each with 32 GiB 1333MHz
of available DDR3 RAM; and the server Jupiterace, with a
12-cores 2.40GHz Intel Xeon E5-2620v3 processor and 128
GiB 2133MHz of available DDR4 RAM.

5.1 Tandem queue
Consider a tandem network consisting of two connected

queues where customers arrive at the first one following a
Poisson process with rate λ. After being served by server 1 at
rate µ1 they enter the second queue, where they are attended
by server 2 at rate µ2. The event of interest is an overflow in
the second queue for maximum capacity C <∞. This model
has received considerable attention in the literature [7–9,19].
We studied this model in [1] and use it here to validate the
correction of the tool used for experimentation.

We follow the setting from [7] which has an exact ana-
lytic solution. The first queue is initially empty and the
second has a single customer. We measured the probability
of full occupancy in the second queue before it emptied, i.e.
an instance of Property (1). The model was simulated for
(λ, µ1, µ2) = (3, 2, 6). The maximum capacities studied were
C = 8, 10, 12, 14, for which the corresponding probabilities
are 5.62e-6, 3.14e-7, 1.86e-8, and 1.14e-9. Simulations had to
reach a 90% confidence level with precision equal to 20% of
the estimate. Estimates were successfully validated against
the exact analytic solution. RESTART simulations were run
for split values 2, 3, 6, 9, 12. Experimentation was performed
in Mendieta, comparing standard MC and RESTART simu-
lations using the IS strategies compositional, monolithic, and
the ad hoc ‘q2’, viz. counting the second queue occupancy.

Standard Monte Carlo simulations were the slowest by a
factor of at least 5x and failed to meet the stopping criteria
for C > 10 within 2 hours of wall time execution. Contrar-
ily, none of the RESTART simulations timed-out and the
performance obtained with all ifuns is comparable. Over-
all RESTART simulations took 2 to 17 seconds for C = 8
(mean time of 8.7 s), 7 to 119 s for C = 10 (mean: 44.7 s),
20 to 550 s for C = 12 (mean: 171.2 s), and 88 to 3242 s
for C = 14 (mean: 33 m). Times varied significantly for the
different split values, with no best candidate for all queue
sizes and importance techniques. The automatic derivation
of the importance function never took longer than 30 ms.

There was a strong similarity in performance between the
automatically computed compositional ifun and the ad hoc
strategy ‘q2’. This was expected: since the property involves
a variable from the module of the second queue only, the
function derived by our algorithm ignores the module of the
first queue and yields something very much like counting the
elements of the second queue. Notice ‘q2’ is the best ad hoc
strategy reported in [1] for the tandem queue model.

We also studied the long run behaviour for the satura-
tion of the second queue. The maximum capacities stud-
ied were C = 10, 13, 16, 18, 21, for which the corresponding
long run probabilities are 7.25e-6, 2.86e-7, 1.12e-8, 1.28e-9,

Table 2: Simulation times on triple tandem queue

if
u
n

S
p
li
t a b c d e f

h:mm h:mm h:mm h:mm h:mm h:mm

m
o
n
o
. 3 0:18 0:08 0:33 0:19 *4.9e-10 0:16

6 0:21 0:04 0:04 0:52 0:29 1:17
11 0:11 0:02 0:04 0:05 0:02 0:08

co
m

p
. 3 0:58 0:11 0:28 1:22 1:12 1:19

6 0:24 0:03 0:05 0:06 0:30 0:10
11 0:15 0:03 0:09 2:28 3:41 1:51

ah
1

3 1:20 0:18 0:41 2:56 3:05 *7.4e-10
6 0:11 0:04 0:20 0:11 1:30 0:41
11 0:27 0:06 0:08 *1.3e-9 *4.3e-10 2:47

ah
2

3 1:15 0:10 0:57 0:36 0:58 3:45
6 0:26 0:18 0:04 1:06 3:12 1:29
11 0:10 0:22 0:13 0:13 0:34 3:13

MC *4.1e-9 1:37 *4.7e-8 *8.5e-9 *1.0e-9 *2.6e-9

and 4.94e-11. Simulations had to reach a 90% confidence
level with precision of 40%. Estimates were successfully val-
idated against a numerical approximation by PRISM. We
tested the same IS strategies mentioned above with the split
values 2, 3, 6, 11. Experiments were run in Mendieta.

Again standard Monte Carlo took always the longest, tim-
ing out after 6 hours for the two biggest queue sizes. For
C = 21 some RESTART simulations also timed out, depend-
ing non-uniformly on the split value. Overall RESTART
simulations took 1 to 4 s for C = 10 (mean: 2.33 s), 4 to 48 s
for C = 13 (mean: 24.1 s), 9 to 6702 s for C = 16 (mean:
20 m) 1 to 166 m for C = 18 (mean: 33 m), and for C = 21
the only successful simulations within the time bound where
the ad hoc strategy for splitting 6 and 11, the compositional
strategy for splitting 3 and 11, and the monolithic strategy
for splitting 6. As before the automatic derivation of the
importance function never took longer than 30 ms.

5.2 Triple tandem queue
Consider now a non-markovian tandem network operating

under the same principles but consisting of three queues with
Erlang-distributed service times. External arrivals follow a
Poisson process with rate λ = 1. The shape parameter α of
the service times is either 2 or 3 consistently in all queues.
The load at the third queue is always 1/3 , meaning the scale
parameter µ3 of the Erlang in the third queue takes the
values 1/6 and 1/9 when α is 2 and 3 respectively. The rare
event of interest is the long run saturation probability at the
third queue, i.e. an instance of Property (2).

This model was studied in [16] starting from initially empty
queues. The scale parameters µ1 and µ2 at the first and sec-
ond queues, as well as the threshold capacity C at the third
queue, were chosen to keep the steady state probability in
the same order of magnitude for all case studies. We chose
a rare event probability of the order of 5 · 10−9. The values
(α, µ1, µ2, C) for the case studies a–f are [(2, 1/3, 1/4, 10),
(3, 2/3, 1/6, 7), (2, 1/6, 1/4, 11), (3, 1/9, 1/6, 9), (2, 1/10, 1/8, 14),
(3, 1/15, 1/12, 12)] . Simulations had to reach a 90% confidence
level with precision equal to 20% of the estimated parameter
within 4 hours of wall time execution. Experimentation was
carried out in Jupiterace and the resulting simulation times
are in Table 2, where “mono.”, “comp.” and “ah” stand for
the IS strategies monolithic, compositional and ad hoc re-
spectively. Simulations which failed to meet the confidence
criteria within 4 hours are labelled ‘*’ and the achieved pre-
cision for a 90% confidence level is reported if available.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
16

-0
8

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
V

A
L

U
E

TO
O

L
S

20
16

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Table 3: Simulation times on queue with breakdowns
if
u
n

S
p
li
t K40 K60 K80 K100 K120 K140 K160

m:ss m:ss m:ss m:ss m:ss m:ss m:ss

m
o
n
o
. 3 0:03 0:18 6:50 315:54 2:43 *5.4e-11 6:44

6 0:01 0:10 0:14 46:55 *4.9e-11 *6.2e-12 *-
9 0:01 1:01 3:33 1:44 4:15 0:46 *1.5e-12
12 0:01 0:08 40:18 0:23 0:44 1:50 6:23

co
m

p
. 3 0:03 0:19 5:04 333:23 1:04 *5.4e-11 6:19

6 0:01 0:18 0:19 48:18 *4.9e-11 *6.2e-12 *-
9 0:01 1:01 3:17 0:39 8:04 0:42 *1.5e-12
12 0:01 0:09 54:42 0:39 1:22 2:30 5:58

a
d

h
o
c 3 0:03 0:18 4:51 311:15 1:04 *5.4e-11 5:51

6 0:00 0:16 0:17 43:57 *4.6e-11 *6.2e-12 *-
9 0:01 0:57 3:07 0:36 7:37 0:39 *1.5e-12
12 0:01 0:08 50:37 0:36 1:14 2:08 5:23

MC 0:17 10:26 317:56 *6.5e-9 *2.8e-9 *- *-

All but one of the standard Monte Carlo simulations failed
within the time bound imposed. Two ad hoc importance
strategies were tested: counting just the occupancy in q3
(ah1) and counting also the occupancy in the first two queues
with the weight coefficients proposed in [16] (ah2). Our re-
sults suggest their performance is strongly dependent on the
splitting used, with no clear optimal choice, see e.g. case
studies c and e. The general behaviour of the compositional
ifun resembles that of ah1 but proved better in most sce-
narios. In any case and letting aside a few outliers (e.g. d
and f for splitting 6 and e for splitting 3), the monolithic
global ifun was the fastest in all case studies. We believe
this is due to the amount of information available during the
iterations of the basic derivation algorithm (Fig. 2), which
spreads along the whole model and thus considers the state
of all three queues. The main advantage in comparison to
similar ad hoc approaches like ah2 is the automatization of
the method, here also crowned by an excellent performance.

5.3 Queue with breakdowns
This case study is taken from [12] and models a network

where the inputs come from several sources operating in
parallel, which are of type i ∈ {1, 2} and have exponential
on/off times with parameters αi and βi respectively. When-
ever a source of type i is active it sends packets at rate λi
to the only system buffer. Queued packets are handled by a
server which breaks down at rate γ and gets fixed at rate δ,
processing at rate µ when functional. We estimate the prob-
ability of the buffer reaching maximum capacity K before
emptying, i.e. an instance of Property (1).

The system starts with a single queued packet and a bro-
ken server. There are five sources of each type, all down ini-
tially except for one of type 2. The sources parameters are
(α1, β1, λ1) = (3, 2, 3) and (α2, β2, λ2) = (1, 4, 6), the server
parameters are (γ, δ, µ) = (3, 4, 100) and the queue capaci-
ties tested were K = 40, 60, 80, . . . , 160, for which the corre-
sponding probabilities are 4.59e-4, 1.25e-5, 3.72e-7, 9.59e-9,
2.86e-10, 8.44e-12, and 2.45e-13.

We set the confidence level at 90%, the precision at 40%
and the wall time limit at 6 hours. Results from computa-
tions performed in Mendieta are shown in Table 3. Stan-
dard Monte Carlo simulations timed-out for K > 80. The
importance strategies used in RESTART simulations were
the automatic ‘compositional’ and ‘monolithic’ variants, and
the best ad hoc approach reported in [1], namely counting

the number of queued packages. All three showed very sim-
ilar performance in spite of the high variance related to
the splitting value chosen. The best simulation times for
K = 40, 80, 160 were ∼1 s, 14 s, and 323 s respectively. The
corresponding ifun derivation times were below 4.4 s, 9.32 s,
and 23.11 s for the monolithic approach, and below 0.17 s,
0.34 s, 0.64 s for the compositional approach.

5.4 Database with redundancy
The final case study is a database system consisting of

disks arranged in clusters, disk controllers, and processors.
As it was studied in [19], for redundancy ‘R’ the system is
composed of two types of processors (with R copies of each
type), two types of controllers (with R copies of each type),
and six disk clusters (with R+ 2 disks each). Units lifetime
is exponentially distributed with failure rates µd, µc and µp
for disks, controllers and processors resp. A unit can fail,
with equal probability, in one of two modes, whose repair
rates are 1 per hour and 0.5 per hour. The system is op-
erational as long as less than R processors of each type, R
controllers of each type, and R disks on each cluster, have
failed. The property of interest is the steady state probabil-
ity of a system breakdown, i.e. an instance of Property (2).

From the point of view of IS this has a flat structure which
differs from all previous models: few discrete events produce
a breakdown despite the high number of system components.
This is aggravated by a low failure rate of disks w.r.t. pro-
cessors and controllers: a breakdown is likely to be caused
by broken proc./ctrl. of the same type, rather than by fail-
ures on the clusters. There is no trivially efficient way to
compute the importance.

We propose five compositional importance functions which
exercise the analysis from Sec. 4.3: AC1 is a simple addition
of the local ifun of every module; AC2 adds the product of
(the local ifuns of) all the disks in the database, the product
of all the controllers, and the product of all the processors;
AC3 follows a similar approach but is finer-grained, since it
multiplies (the local ifuns of) all components in every clus-
ter or processor/controller of the same type, adding these
together; finally AC4 and AC5 consider the DNF formulation
of the property. The first implements the (max,+) semi-ring,
so every failure configuration is a sum (e.g. disk6

3 + disk6
4 for

R = 2), and the resulting maximum is the global system
importance. AC5 implements (+,*), so every failure config-
uration is a product and all these are summed together. Lo-
cal importance was linear for {ACi}i=1,4 and exponential for
{ACi}i=2,3,5, e.g. a state at distance d from the rare event
had importance 2d. Interestingly, AC4 coincides with the
ad hoc approach followed in [19]. The monolithic approach
could not be tested due to the memory requirements.

Like in [19] simulations were run for increasing redun-
dancy values (we used R = 2, 3, 4, 5). However, a random-
ized policy of the repairman cannot be expressed in the
current IOSA syntax. For that reason the estimates pro-
duced are not comparable to those reported in the cited arti-
cle. Furthermore the failure rates chosen were (µp, µc, µd) =
(2e-2, 2e-2, 1e-2). The resulting long run probabilities esti-
mated with this setting were in the order of 1.10e-2, 8.68e-5,
4.47e-7, and 1.13e-9 for the indicated redundancies. Unlike
previous experiments simulations were run for fixed time
periods (3 s, 1 m, 1 h and 6 h, for the respective redundan-
cies). The goal was to build the narrowest possible interval
for each time budget. Simulations were run on Jupiterace

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
16

-0
8

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
V

A
L

U
E

TO
O

L
S

20
16

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Figure 4: Estimation precisions on database

1e
-10

1e
-09

1e
-08

1e
-07

1e
-06

1e
-05

1e
-04

1e
-03

2 3 4 5

MC
AC1
AC2
AC3
AC4
AC5

and the resulting precisions for a 90% confidence level are
shown in Fig. 4, where the x axis groups the different simu-
lations per redundancies and the y axis shows the achieved
interval widths. The plot shows the results using split = 3;
the outcomes for split ∈ {2, 5, 6} were similar.

As expected the benefits of RESTART pay off only for the
higher values of R: standard Monte Carlo (MC) competed
against IS for redundancies 2 and 3. However for R = 4 the
compositional ifuns performed better, and for R = 5 the
event is too rare for MC. Notice how in this last case the
semi-ring composition variants performed best. Derivation
times for all importance functions were below 2 s in all cases.

6. CONCLUSIONS
In this work we have presented a novel technique to au-

tomatically derive an importance function following a com-
positional construction. Though we focused on RESTART,
such function could be used with any IS technique.

We studied the performance of our algorithms in case
studies taken from the literature, matching or improving the
performance of the best ad hoc alternatives to our knowl-
edge. Overall and between the two automatic approaches
proposed, the monolithic variant outperformed the compo-
sitional one to a minor extent. This was to be expected
since it counts with global behaviour information, lost in
the modular projections of the compositional variant.

In contrast both the computation time and memory stor-
age requirements needed to compute the compositional im-
portance function are orders of magnitude lower than the
monolithic variant, which in particular could not be com-
puted for the database case study. Besides, the monolithic
method performs badly in graphs with high connectivity,
since any rare state is close to the initial state and hence the
ifun would have a small image. Contrarily, in the compo-
sitional method, the composition of local ifuns may yield a
composed ifun with a large image. This situation would be
precisely the case in the database case study.

Experimentation shows RESTART is extremely sensitive
to the split value chosen, even when measures are taken to
mitigate the starvation (resp. overhead) of choosing a split-
ting too small (resp. big). A possible workaround would be
to run the simulation tool parallelly for different splittings,
stopping at the first successful estimation. When clusters
like Mendieta are available this poses no major challenge.

Our research would also benefit from an extension of the
IOSA syntax. The repairman model is a typical agent in
rare event simulation, for which various repair policies exist.
Referring to the state of the modules by means of arrays or
similar constructs would help us implement such policies.

Acknowledgments
We thank José Villén-Altamirano for his help on the triple
tandem queue. This work was supported by grants AN-
PCyT PICT-2012-1823, SeCyT-UNC 05/BP12 and 05/B497,
and the ERC Advanced Grant 695614 (POWVER) while
the second author visited Saarland University. Experiments
were run on computers provided by CCAD and FAMAF-
UNC.

7. REFERENCES
[1] C. E. Budde, P. R. D’Argenio, and H. Hermanns. Rare

event simulation with fully automated importance splitting.
In EPEW 2015, LNCS 9272, pages 275–290. Springer, 2015.

[2] F. Cérou, P. Del Moral, T. Furon, and A. Guyader.
Sequential Monte Carlo for rare event estimation. Statistics
and Computing, 22(3):795–808, 2012.

[3] F. Cérou and A. Guyader. Adaptive multilevel splitting for
rare event analysis. Stochastic Analysis and Applications,
25(2):417–443, 2007.

[4] P. R. D’Argenio. Algebras and Automata for Timed and
Stochastic Systems. PhD thesis, University of Twente, 1999.

[5] P. R. D’Argenio and J.-P. Katoen. A theory of stochastic
systems part I: Stochastic automata. Inf. Comput.,
203(1):1–38, 2005.

[6] P. R. D’Argenio, M. D. Lee, and R. E. Monti.
Input/Output Stochastic Automata - Compositionality and
Determinism. In FORMATS 2016, LNCS 9884, pages
53–68. Springer, Springer, 2016.

[7] M. J. J. Garvels. The splitting method in rare event
simulation. PhD thesis, Department of Computer Science,
University of Twente, 2000.

[8] M. J. J. Garvels, J.-K. C. W. Van Ommeren, and D. P.
Kroese. On the importance function in splitting simulation.
European Transactions on Telecommunications,
13(4):363–371, 2002.

[9] P. Glasserman, P. Heidelberger, P. Shahabuddin, and
T. Zajic. Multilevel splitting for estimating rare event
probabilities. Operations Research, 47(4):585–600, 1999.

[10] C. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

[11] C. Jegourel, A. Legay, and S. Sedwards. Importance
splitting for statistical model checking rare properties. In
CAV 13, LNCS 8044, pages 576–591. Springer, 2013.

[12] D. P. Kroese and V. F. Nicola. Efficient estimation of
overflow probabilities in queues with breakdowns.
Performance Evaluation, 36:471–484, 1999.

[13] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0:
Verification of probabilistic real-time systems. In CAV’11,
LNCS 6806, pages 585–591. Springer, 2011.

[14] P. L’Ecuyer, F. Le Gland, P. Lezaud, and B. Tuffin.
Splitting techniques. In Rare Event Simulation using Monte
Carlo Methods, pages 39–61. John Wiley & Sons, Ltd, 2009.

[15] D. Reijsbergen, P.-T. de Boer, W. Scheinhardt, and
B. Haverkort. Automated rare event simulation for
stochastic Petri nets. In QEST 2013, LNCS 8054, pages
372–388. Springer, 2013.

[16] J. Villén-Altamirano. RESTART simulation of networks of
queues with erlang service times. In Winter Simulation
Conference, WSC ’09, pages 1146–1154. Winter Simulation
Conference, 2009.

[17] M. Villén-Altamirano, A. Mart́ınez-Marrón, J. Gamo, and
F. Fernández-Cuesta. Enhancement of the accelerated
simulation method RESTART by considering multiple
thresholds. In Proc. 14th Int. Teletraffic Congress, pages
797–810, 1994.

[18] M. Villén-Altamirano and J. Villén-Altamirano.
RESTART: a method for accelerating rare event
simulations. In Queueing, Performance and Control in
ATM (ITC-13), pages 71–76. Elsevier, 1991.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
16

-0
8

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
V

A
L

U
E

TO
O

L
S

20
16

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

[19] M. Villén-Altamirano and J. Villén-Altamirano. The rare
event simulation method RESTART: efficiency analysis and
guidelines for its application. In Network Performance
Engineering, LNCS 5233, pages 509–547. Springer, 2011.

[20] J. Villén-Altamirano. Asymptotic optimality of RESTART
estimators in highly dependable systems. Reliability
Engineering & System Safety, 130:115 – 124, 2014.

[21] E. B. Wilson. Probable inference, the law of succession, and
statistical inference. Journal of the American Statistical
Association, 22(158):209–212, 1927.

	Introduction
	Formal setting
	System models
	Rare event properties

	Importance splitting
	Modular computation of the importance function
	Basic importance function derivation
	The modular approach
	Composition of local importance functions

	Experimental validation
	Tandem queue
	Triple tandem queue
	Queue with breakdowns
	Database with redundancy

	Conclusions
	References

