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Multi-objective Robust Strategy Synthesis for
Interval Markov Decision Processes?

Ernst Moritz Hahn1,2, Vahid Hashemi1, Holger Hermanns1,
Morteza Lahijanian3, and Andrea Turrini2

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 State Key Laboratory of Computer Science, Institute of Software

Chinese Academy of Sciences, Beijing, China
3 Department of Computer Science, University of Oxford, Oxford, UK

Abstract. Interval Markov decision processes (IMDPs) generalise classi-
cal MDPs by having interval-valued transition probabilities. They provide
a powerful modelling tool for probabilistic systems with an additional vari-
ation or uncertainty that prevents the knowledge of the exact transition
probabilities. In this paper, we consider the problem of multi-objective
robust strategy synthesis for interval MDPs, where the aim is to find
a robust strategy that guarantees the satisfaction of multiple proper-
ties at the same time in face of the transition probability uncertainty.
We first show that this problem is PSPACE-hard. Then, we provide a
value iteration-based decision algorithm to approximate the Pareto set of
achievable points. We finally demonstrate the practical effectiveness of
our proposals by applying them on several real-world case studies.

1 Introduction

Interval Markov Decision Processes (IMDPs) extend the classical Markov Decision
Processes (MDPs) by including uncertainty over the transition probabilities.
Instead of a single value for the probability of taking a transition, IMDPs
allow ranges of probabilities given as closed intervals. IMDPs are thus a powerful
modelling tool for probabilistic systems with an additional variation or uncertainty
concerning the knowledge of exact transition probabilities. They are well suited
to represent realistic stochastic systems that, for instance, evolve in unknown
environments with bounded behaviour or do not preserve the Markov property.

Since their introduction (under the name of bounded-parameter MDPs) [15],
IMDPs have been receiving a lot of attention in the formal verification community.
They are particularly viewed as the appropriate abstraction model for uncertain

? This work is supported by the ERC Advanced Investigators Grant 695614 (POWVER),
by the CAS/SAFEA International Partnership Program for Creative Research Teams,
by the National Natural Science Foundation of China (Grants No. 61550110506 and
61650410658), by the Chinese Academy of Sciences Fellowship for International Young
Scientists, by the CDZ project CAP (GZ 1023), and by EPSRC Mobile Autonomy
Program Grant EP/M019918/1.
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2 E. M. Hahn et al.

systems with large state spaces, including continuous dynamical systems, for the
purpose of analysis, verification, and control synthesis. Several model checking and
control synthesis techniques have been developed [31,32,34] causing a boost in the
applications of IMDPs, ranging from verification of continuous stochastic systems
(e.g., [22]) to robust strategy synthesis for robotic systems (e.g., [24–26,34]).

In recent years, there has been an increasing interest in multi-objective
strategy synthesis for probabilistic systems [5,10,13,14,21,27,29,30,33]. The goal
is first to provide a complete trade-off analysis of several, possibly conflicting,
quantitative properties and then to synthesise a strategy that guarantees the
desired behaviour. Such properties, for instance, ask to “find a robot strategy
that maximises psafe, the probability of successfully completing a track by safely
maneuvering between obstacles, while minimising ttravel, the total expected travel
time”. This example has competing objectives: maximising psafe, which requires
the robot to be conservative, and minimising ttravel, which causes the robot to
be reckless. In such contexts, the interest is in the Pareto curve of the possible
solution points: the set of all pairs of (psafe, ttravel) for which an increase in the
value of psafe must induce an increase in the value of ttravel, and vice versa. Given
a point on the curve, the computation of the corresponding strategy is asked.

Existing multi-objective synthesis frameworks are limited to MDP models. The
algorithms use iterative methods (similar to value iteration) for the computation
of the Pareto curve and rely on reductions to linear programming for strategy
synthesis. As discussed above, MDPs, however, are constrained to single-valued
transition probabilities, posing severe limitations for many real-world systems.

In this paper, we present a novel technique for multi-objective strategy syn-
thesis for IMDPs. Our aim is to synthesise a robust strategy that guarantees the
satisfaction of the multi-objective property, despite the additional uncertainty
over the transition probabilities. Our approach views the uncertainty as making
adversarial choices among the available transition probability distributions in-
duced by the intervals, as the system evolves along state transitions. We refer to
this as the controller synthesis semantics. We first analyse the problem complex-
ity, proving that it is PSPACE-hard and then develop a value iteration-based
decision algorithm to approximate the Pareto curve. We present promising results
on a variety of case studies, obtained by prototypical implementations of all
algorithms, to show the effectiveness of our approach.

Related work. Related work can be grouped into two main categories: uncertain
Markov model formalisms and model checking/synthesis algorithms.

Firstly, regarding the modelling frameworks, various probabilistic modelling
formalisms with uncertain transitions are studied in the literature. Interval
Markov Chains (IMCs) [19,20] or abstract Markov chains [12] extend standard
discrete-time Markov Chains (MCs) with interval uncertainties. They do not
feature the non-deterministic choices of transitions. Uncertain MDPs [32] allow
more general sets of distributions to be associated with each transition, not
only those described by intervals. They usually are restricted to rectangular
uncertainty sets requiring that the uncertainty is linear and independent for any
two transitions of any two states. Parametric MDPs [16], to the contrary, allow
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Multi-objective Robust Strategy Synthesis for Interval MDPs 3

such dependencies as every probability is described as a rational function of a finite
set of global parameters. IMDPs extend IMCs by inclusion of nondeterminism
and are a subset of uncertain MDPs and parametric MDPs.

Secondly, regarding the algorithms, several verification methods for uncertain
Markov models have been proposed. The problems of computing reachability
probabilities and expected total reward for IMCs and IMDPs were first investi-
gated in [8,35]. Then, several of their PCTL and LTL model checking algorithms
were introduced in [2, 6, 8] and [22, 32, 34], respectively. As regards to strategy
synthesis algorithms, the work in [16, 28] considered synthesis for parametric
MDPs and MDPs with ellipsoidal uncertainty in the verification community. In
the control community, such synthesis problems were mostly studied for uncertain
Markov models in [15,28,35] with the aim to maximise expected finite-horizon
(un)discounted rewards. All these works, however, consider solely single objective
properties, and their extension to multi-objective synthesis is not trivial.

Multi-objective model checking of probabilistic models with respect to various
quantitative objectives has been recently investigated in a few works. The works
in [11, 13, 14, 21] focused on multi-objective verification of ordinary MDPs. In [7],
these algorithms were extended to the more general models of 2-player stochastic
games. These models, however, cannot capture the continuous uncertainty in the
transition probabilities as IMDPs do. For the purposes of synthesis though, it
is possible to transform an IMDP into a 2-player stochastic game; nevertheless,
such a transformation raises an extra exponential factor to the complexity of the
decision problem. This exponential blowup has been avoided in our setting.

2 Preliminaries

For a set X, denote by Disc(X) the sets of discrete probability distributions over
X. A discrete probability distribution ρ is a function ρ : X → R≥0 such that∑
x∈X ρ(x) = 1; for X ′ ⊆ X, we write ρ(X ′) for

∑
x∈X′ ρ(x). Given ρ ∈ Disc(X),

we denote by Supp(ρ) the set {x ∈ X | ρ(x) > 0 }, and by δx, where x ∈ X, the
Dirac distribution such that δx(y) = 1 for y = x, 0 otherwise. For a distribution
ρ, we also write ρ = { (x, px) | x ∈ X } where px is the probability of x.

For a vector x ∈ Rn we denote by xi, its i-th component, and we call x a
weight vector if xi ≥ 0 for all i and

∑n
i=1 xi = 1. The Euclidean inner product

x · y of two vectors x,y ∈ Rn is defined as
∑n
i=1 xi · yi. For a set of vectors

S = {s1, . . . , st} ⊆ Rn, we say that s ∈ Rn is a convex combination of elements
of S, if s =

∑t
i=1 wi · si for some weight vector w ∈ Rt≥0. Furthermore, we

denote by S↓ the downward closure of the convex hull of S which is defined as
S↓ = {y ∈ Rn | y ≤ z for some convex combination z of S }. For a given convex
set X, we say that a point x ∈ X is on the boundary of X, denoted by x ∈ ∂X, if
for every ε > 0 there is a point y /∈ X such that the Euclidean distance between
x and y is at most ε. Given a downward closed set X ∈ Rn, for any z ∈ Rn such
that z ∈ ∂X or z /∈ X, there is a weight vector w ∈ Rn such that w ·z ≥ w ·x for
all x ∈ X [3]. We say that w separates z from X↓. Given a set Y ⊆ Rk, we call a
vector y ∈ Y Pareto optimal in Y if there does not exist a vector z ∈ Y such that
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4 E. M. Hahn et al.

y ≤ z and y 6= z. We define the Pareto set or Pareto curve of Y to be the set of all
Pareto optimal vectors in Y , i.e., Pareto set Y = {y ∈ Y | y is Pareto optimal }.

2.1 Interval Markov Decision Processes

We now define Interval Markov Decision Processes (IMDPs) as an extension of
MDPs, which allows for the inclusion of transition probability uncertainties as
intervals. IMDPs belong to the family of uncertain MDPs and allow to describe
a set of MDPs with identical (graph) structures that differ in distributions
associated with transitions. Formally,

Definition 1 (IMDPs). An Interval Markov Decision Process (IMDP) M is
a tuple (S, s̄,A, I ), where S is a finite set of states, s̄ ∈ S is the initial state,
A is a finite set of actions, and I : S ×A× S → I ∪ {[0, 0]} is a total interval
transition probability function where I = { [a, b] | 0 < a ≤ b ≤ 1 }.

Given s ∈ S and a ∈ A, we call has ∈ Disc(S) a feasible distribution reachable from
s by a, denoted by s

a−→ has , if, for each state s′ ∈ S, we have has(s′) ∈ I (s, a, s′).
We denote the set of feasible distributions for state s and action a by Has , i.e.,
Has = { has ∈ Disc(S) | s a−→ has } and we denote the set of available actions at
state s ∈ S by A(s), i.e., A(s) = { a ∈ A | Has 6= ∅ }. We assume that A(s) 6= ∅ for
all s ∈ S. We define the size ofM, written |M|, as the number of non-zero entries

of I , i.e., |M| = |{ (s, a, s′, ι) ∈ S ×A× S × I | I (s, a, s′) = ι }| ∈ O(|S|2 · |A|).
A path ξ in M is a finite or infinite sequence of alternating states and

actions ξ = s0a0s1 . . . , ending with a state if finite, such that for each i ≥ 0,
I (si, ai, si+1) ∈ I. The i-th state (action) along the path ξ is denoted by ξ[i] (ξ(i))
and, if the path is finite, we denote by last(ξ) its last state. The sets of all finite
and infinite paths in M are denoted by FPaths and IPaths, respectively.

The nondeterministic choices between available actions and feasible distribu-
tions present in an IMDP are resolved by strategies and natures, respectively.

Definition 2 (Strategy and Nature in IMDPs). Given an IMDP M, a
strategy is a function σ : FPaths → Disc(A) such that for each ξ ∈ FPaths,
σ(ξ) ∈ Disc(A(last(ξ)). A nature is a function π : FPaths ×A → Disc(S) such
that for each ξ ∈ FPaths and a ∈ A(s), π(ξ, a) ∈ Has where s = last(ξ). The sets
of all strategies and all natures are denoted by Σ and Π, respectively.

Given a finite path ξ of an IMDP, a strategy σ, and a nature π, the system
evolution proceeds as follows: let s = last(ξ). First, an action a ∈ A(s) is
chosen probabilistically by σ. Then, π resolves the uncertainties and chooses one
feasible distribution has ∈ Has . Finally, the next state s′ is chosen according to
the distribution has , and the path ξ is extended by s′.

A strategy σ and a nature π induce a probability measure over paths as follows.
The basic measurable events are the cylinder sets of finite paths, where the
cylinder set of a finite path ξ is the set Cylξ = { ξ′ ∈ IPaths | ξ is a prefix of ξ′ }.
The probability Prσ,πM of a state s′ is defined to be Prσ,πM [Cyls′ ] = δs̄(s

′) and
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Multi-objective Robust Strategy Synthesis for Interval MDPs 5

the probability Prσ,πM [Cylξas′ ] of traversing a finite path ξas′ is defined to be
Prσ,πM [Cylξas′ ] = Prσ,πM [Cylξ] · σ(ξ)(a) · π(ξ, a)(s′). Then, Prσ,πM extends uniquely
to the σ-field generated by cylinder sets.

In order to model additional quantitative measures of an IMDP, we associate
rewards to the enabled actions. This is done by means of reward structures.

Definition 3 (Reward Structure). A reward structure for an IMDP is a
function r : S ×A → R that assigns to each state-action pair (s, a), where s ∈ S
and a ∈ A(s), a reward r(s, a) ∈ R. Given a path ξ and k ∈ N ∪ {∞}, the total

accumulated reward in k steps for ξ over r is r[k](ξ) =
∑k−1
i=0 r(ξ[i], ξ(i)).

Note that we allow negative rewards in this definition, but that due to later
assumptions their use is restricted.

s

t u

a, 3 b, 1

[
1

3
,

2
3

]

[ 1
10 , 1][

2
5
,
3
5
]

[ 1
4 ,

2
3 ]

a, 0

[1, 1] b, 0

[1, 1]

Fig. 1: An example of IMDP.

As an example of IMDP with a reward
structure, consider the IMDP M depicted in
Fig. 1. The set of states is S = {s, t, u} with s
being the initial one. The set of actions is A =
{a, b}, and the non-zero transition probability
intervals are I (s, a, t) = [ 1

3 ,
2
3 ], I (s, a, u) =

[ 1
10 , 1], I (s, b, t) = [ 2

5 ,
3
5 ], I (s, b, u) = [ 1

4 ,
2
3 ],

I (t, a, t) = I (u, b, u) = [1, 1], and I (t, b, t) =
I (u, a, u) = [0, 0]. The underlined numbers
indicate the reward structure r such that r(s, a) = 3, r(s, b) = 1, and r(t, a) =
r(u, b) = 0. Note that since Hbt = Hau = ∅, then r(t, b) and r(u, a) are undefined.

3 Multi-objective Robust Strategy Synthesis for IMDPs

In this paper, we consider two main classes of properties for IMDPs; the probability
of reaching a target and the expected total reward. The reason that we focus
on these properties is that their algorithms usually serve as the basis for more
complex properties. For instance, they can be easily extended to answer queries
with linear temporal logic properties as shown in [11]. To this aim, we lift the
satisfaction definitions of these two classes of properties from MDPs in [13,14] to
IMDPs by encoding the notion of robustness for strategies.

Note that all proofs are contained in the extended version of the paper [17].

Definition 4 (Reachability Predicate & its Robust Satisfaction). A
reachability predicate [T ]≤k∼p consists of a set of target states T ⊆ S, a rela-
tional operator ∼ ∈ {≤,≥}, a rational probability bound p ∈ [0, 1]∩Q and a time
bound k ∈ N ∪ {∞}. It indicates that the probability of reaching T within k time
steps satisfies ∼ p.

Robust satisfaction of [T ]≤k∼p by IMDPM under strategy σ ∈ Σ is denoted by

M�σ |=Π [T ]≤k∼p and indicates that the probability of the set of all paths that reach
T under σ satisfies the bound ∼ p for every choice of nature π ∈ Π. Formally,
M�σ |=Π [T ]≤k∼p iff PrσM(3≤k T ) ∼ p where PrσM(3≤k T ) = optπ∈Π Prσ,πM { ξ ∈
IPaths | ∃i ≤ k : ξ[i] ∈ T } and opt = min if ∼ = ≥ and opt = max if ∼ = ≤.
Furthermore, σ is referred to as a robust strategy.
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6 E. M. Hahn et al.

Definition 5 (Reward Predicate & its Robust Satisfaction). A reward
predicate [r]≤k∼r consists of a reward structure r, a time bound k ∈ N ∪ {∞}, a
relational operator ∼ ∈ {≤,≥} and a reward bound r ∈ Q. It indicates that the
expected total accumulated reward within k steps satisfies ∼ r.

Robust satisfaction of [r]≤k∼r by IMDP M under strategy σ ∈ Σ is de-
noted by M�σ |=Π [r]≤k∼r and indicates that the expected total reward over the
set of all paths under σ satisfies the bound ∼ r for every choice of nature
π ∈ Π. Formally, M�σ |=Π [r]≤k∼r iff ExpTotσ,kM [r] ∼ r where ExpTotσ,kM [r] =
optπ∈Π

∫
ξ
r[k](ξ) dPrσ,πM and opt = min if ∼ = ≥ and opt = max if ∼ = ≤.

Furthermore, σ is referred to as the robust strategy.

For the purpose of algorithm design, we also consider weighted sum of rewards.

Definition 6 (Weighted Reward Sum). Given a weight vector w ∈ Rn,
vector of time bounds k = (k1, . . . , kn) ∈ (N ∪ {∞})n and reward structures
r = (r1, . . . , rn) for IMDP M, the weighted reward sum w · r[k] over a path
ξ is defined as w · r[k](ξ) =

∑n
i=1 wi · ri[k](ξ). The expected total weighted

sum is defined as ExpTotσ,kM [w · r] = maxπ∈Π
∫
ξ
w · r[k](ξ) dPrσ,πM for bounds ≤

and accordingly minimises over natures for ≥; for a given strategy σ, we have:
ExpTotσ,kM [w · r] =

∑n
i=1 wi · ExpTotσ,kiM [ri].

3.1 Multi-objective Queries

Multi-objective properties for IMDPs essentially require multiple predicates to
be satisfied at the same time under the same strategy for every choice of the
nature. We now explain how to formalise multi-objective queries for IMDPs.

Definition 7 (Multi-objective Predicate). A multi-objective predicate is a
vector ϕ = (ϕ1, . . . , ϕn) of reachability or reward predicates. We say that ϕ is
satisfied by IMDPM under strategy σ for every choice of nature π ∈ Π, denoted
by M�σ |=Π ϕ if, for each 1 ≤ i ≤ n, it is M�σ |=Π ϕi. We refer to σ as a robust
strategy. Furthermore, we call ϕ a basic multi-objective predicate if it is of the
form ([r1]≤k1≥r1 , . . . , [rn]≤kn≥rn ), i.e., it includes only lower-bounded reward predicates.

We formulate multi-objective queries for IMDPs in three ways, namely syn-
thesis queries, quantitative queries and Pareto queries. Due to lack of space,
we only focus on the synthesis queries and discuss the other types of queries
in [17, Appendix C].

Definition 8 (Synthesis Query). Given an IMDP M and a multi-objective
predicate ϕ, the synthesis query asks if there exists a robust strategy σ ∈ Σ such
that M�σ |=Π ϕ.

Note that the synthesis queries check for the existence of a robust strategy that
satisfies a multi-objective predicate ϕ for every resolution of nature. In order to
avoid unusual behaviours in strategy synthesis such as infinite total expected
reward, we restrict the usage of rewards by assuming reward-finiteness for the
strategies that satisfy the reachability predicates in ϕ.
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Multi-objective Robust Strategy Synthesis for Interval MDPs 7

Assumption 1 (Reward-finiteness) Suppose that an IMDPM and a synthe-

sis query ϕ are given. Let ϕ = ([T1]≤k1∼p1 , . . . , [Tn]≤kn∼pn , [rn+1]
≤kn+1
∼rn+1 , . . . , [rm]≤km∼rm).

We say that ϕ is reward-finite if for each n + 1 ≤ i ≤ m such that ki = ∞,
sup{ExpTotσ,kiM [ri] | M�σ |=Π ([T1]≤k1∼p1 , . . . , [Tn]≤kn∼pn) } <∞.

Due to lack of space, we provide in [17, Appendix B] a method to check for
this assumption, a preprocessing procedure that removes actions with non-zero
rewards from the end components of the IMDP, and a proof for its correctness.
Therefore, in the rest of the paper, we assume that all queries are reward-
finite, and the IMDP does not include actions with non-zero rewards in its end
components. Furthermore, for the soundness of our analysis we also require that
for any IMDP M and ϕ given as in Assumption 1: (i) each reward structure
ri assigns only non-negative values; (ii) ϕ is reward-finite; and (iii) for indices
n+ 1 ≤ i ≤ m such that ki =∞, either all ∼is are ≤ or all are ≥.

3.2 Robust Strategy Synthesis

We first study the computational complexity of multi-objective robust strategy
synthesis problem for IMDPs. Formally,

Theorem 9. Given an IMDPM and a multi-objective predicate ϕ, the problem
of synthesising a strategy σ ∈ Σ such that M�σ |=Π ϕ is PSPACE-hard.

As the first step towards derivation of a solution approach for the robust
strategy synthesis problem, we need to convert all reachability predicates to
reward predicates and therefore, to transform an arbitrarily given query to a
query over a basic predicate on a modified IMDP. This can be simply done by
adding, once for all, a reward of one at the time of reaching the target set and
also negating the objective of predicates with upper-bounded relational operators.
We correct and extend the procedure in [14] to reduce a general multi-objective
predicate on an IMDP model to a basic form.

Proposition 10. Given an IMDP M = (S, s̄,A, I ) and a multi-objective

predicate ϕ = ([T1]≤k1∼1p1 , . . . , [Tn]≤kn∼npn , [rn+1]
≤kn+1
∼n+1rn+1 , . . . , [rm]≤km∼mrm), let M′ =

(S′, s̄′,A′, I ′) be the IMDP whose components are defined as follows: S′ =
S × 2{1,...,n}; s̄′ = (s̄, ∅); A′ = A × 2{1,...,n}; and for all s, s′ ∈ S, a ∈ A,
and v, v′, v′′ ⊆ {1, . . . , n},

I ′((s, v), (a, v′), (s′, v′′)) =

{
I (s, a, s′) if v′ = { i | s ∈ Ti } \ v and v′′ = v ∪ v′,
[0, 0] otherwise.

Now, let ϕ′ = ([rT1
]≤k1+1
≥p′1

, . . . , [rTn
]≤kn+1
≥p′n

, [r̄n+1]
≤kn+1

≥r′n+1
, . . . , [r̄m]≤km≥r′m ) where, for

each i ∈ {1, . . . , n},

p′i =

{
pi if ∼i = ≥,

−pi if ∼i = ≤;
and rTi((s, v), (a, v′)) =


1 if i ∈ v′ and ∼i = ≥,

−1 if i ∈ v′ and ∼i = ≤,

0 otherwise;
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8 E. M. Hahn et al.

(s, ∅) (s, {1})

(t, ∅) (u, ∅) (t, {1}) (u, {1})

(a, ∅), 3, 0 (b, ∅), 1, 0 (a, ∅), 3, 0 (b, ∅), 1, 0

[
1 3
,

2 3
]

[ 110 , 1][
2
5
,
3
5
]

[ 14 ,
23 ] [

1 3
,

2 3
]

[ 110 , 1]

[
2

5
,

3
5

]

[ 14 ,
23 ]

(a, {1}), 1, 1

(b, ∅), 1, 0
(a, ∅), 1, 0 (b, ∅), 1, 0

(a) The transformed IMDP M′
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(b) Pareto curve.

Fig. 2: Example of IMDP transformation. (a) The IMDP M′ generated from M
shown in Fig. 1. (b) Pareto curve for the property ([rT ]≤2

max, [r]≤1
max).

and, for each j ∈ {n+ 1, . . . ,m},

r′j =

{
rj if ∼j = ≥,

−rj if ∼j = ≤;
and r̄j((s, v), (a, v′)) =

{
rj(s, a) if ∼j = ≥,

−rj(s, a) if ∼j = ≤.

Then ϕ is satisfiable in M if and only if ϕ′ is satisfiable in M′.

We therefore need to only consider the basic multi-objective predicates of the
form ([r1]≤k1≥r1 , . . . , [rn]≤kn≥rn ) for the purpose of robust strategy synthesis. For a
basic multi-objective predicate, we define its Pareto curve as follows.

Definition 11 (Pareto Curve of a Multi-objective Predicate). Given an

IMDP M and a basic multi-objective predicate ϕ = ([r1]≤k1≥r1 , . . . , [rn]≤kn≥rn ), we
define the set of achievable values with respect to ϕ as AM,ϕ = { (r1, . . . , rn) ∈
Rn | ([r1]≤k1≥r1 , . . . , [rn]≤kn≥rn ) is satisfiable }. We define the Pareto curve of ϕ to be
the Pareto curve of AM,ϕ and denote it by PM,ϕ.

To illustrate the transformation presented in Proposition 10, consider again
the IMDP depicted in Fig. 1. Assume that the target set is T = {t} and consider

the property ϕ = ([T ]≤1

≥ 1
3

, [r]≤1

≥ 1
4

). The reduction converts ϕ to the property

ϕ′ = ([rT ]≤2

≥ 1
3

, [r]≤1

≥ 1
4

) on the modified M′ depicted in Fig. 2a. We show two

different reward structures r̄ and rT besides each action, respectively. In Fig. 2b
we show the Pareto curve for this property. As we see, until required probability
1
3 to reach T , the maximal reward value is 3. Afterwards, the reward obtainable
linearly decreases, until at required probability 2

5 it is just 1. For higher required
probabilities, the problem becomes infeasible. The reason for this behaviour is
that, up to minimal probability 1

3 , action a can be chosen in state s, because the
lower interval bound to reach t is 1

3 , which in turn leads to a reward of 3 being
obtained. For higher reachability probabilities required, choosing action b with a
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Multi-objective Robust Strategy Synthesis for Interval MDPs 9

Algorithm 1: Algorithm for solving robust synthesis queries

Input: An IMDP M, multi-objective predicate ϕ = ([r1]≤k1≥r1 , . . . , [rn]≤kn≥rn )
Output: true if there exists a strategy σ ∈ Σ such that M�σ |=Π ϕ, false if not.

1 begin
2 X := ∅; r := (r1, . . . , rn);
3 k := (k1, . . . , kn); r := (r1, . . . , rn);
4 while r /∈ X↓ do
5 Find w separating r from X↓;
6 Find strategy σ maximising ExpTotσ,kM [w · r];

7 g := (ExpTotσ,kiM [ri])1≤i≤n;
8 if w · g < w · r then
9 return false;

10 X := X ∪ {g};
11 return true;

certain probability is required, which however provides a lower reward. There is
no strategy with which t is reached with a probability larger than 2

5 .
It is not difficult to see that the Pareto curve is in general an infinite set,

and therefore, it is usually not possible to derive an exact representation of
it in polynomial time. However, it can be shown that an ε-approximation of
it can be computed efficiently [11]. In the rest of this section, we describe an
algorithm to solve the synthesis query. We follow the well-known normalisation
approach in order to solve the multi-objective predicate which is essentially based
on normalising multiple objectives into one single objective. It is known that the
optimal solution of the normalised (single-objective) predicate, if it exists, is the
Pareto optimal solution of the multi-objective predicate [9].

The robust synthesis procedure is detailed in Algorithm 1. It basically aims
to construct a sequential approximation to the Pareto curve PM,ϕ while the
quality of approximations gets better and more precise along the iterations. In
other words, along the course of Algorithm 1 a sequence of weight vectors w are
generated and corresponding to each of them, a w-weighted sum of n objectives
is optimised through lines 6-7. The optimal strategy σ is then used to generate a
point g on the Pareto curve PM,ϕ. We collect all these points in the set X. The
multi-objective predicate ϕ is satisfiable once we realise that r belongs to X↓.

The optimal strategies for the multi-objective robust synthesis queries are
constructed following the approach of [14] and as a result of termination of
Algorithm 1. In particular, when Algorithm 1 terminates, a sequence of points
g1, . . . ,gt on the Pareto curve PM,ϕ are generated each of which corresponds
to a deterministic strategy σgj for the current point gj . The resulting optimal
strategy σopt is subsequently constructed from these using a randomised weight

vector α ∈ Rt satisfying ri ≤
∑t
j=1 αi · gij [17, Appendix E].

Remark 12. It is worthwhile to mention that the synthesis query for IMDPs
cannot be solved on the MDPs generated from IMDPs by computing all feasible
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10 E. M. Hahn et al.

extreme transition probabilities and then applying the algorithm in [14]. The
latter is a valid approach provided the cooperative semantics is applied for
resolving the two sources of nondeterminism in IMDPs. With respect to the
competitive semantics needed here, one can instead transform IMDPs to 21

2 -
player games [1] and then along the lines of the previous approach apply the
algorithm in [7]. Unfortunately, the transformation to (MDPs or) 2 1

2 -player games
induces an exponential blowup, adding an exponential factor to the worst case
time complexity of the decision problem. Our algorithm avoids this by solving
the robust synthesis problem directly on the IMDP so that the core part, i.e.,
lines 6- 7 of Algorithm 1 can be solved with time complexity polynomial in |M|.

Algorithm 2 represents a value iteration-based algorithm which extends the value
iteration-based algorithm in [14] and adjusts it for IMDP models by encoding the
notion of robustness. The core difference is indicated in lines 6 and 16 where the
optimal strategy is computed so as to be robust against any choice of nature.

Theorem 13. Algorithm 1 is sound, complete and has runtime exponential in
|M|, k, and n.

Remark 14. It is worthwhile to mention that our robust strategy synthesis ap-
proach can also be applied to MDPs with richer formalisms for uncertainties
such as likelihood or ellipsoidal uncertainties while preserving the computational
complexity. In particular, in every inner optimisation problem in Algorithm 1,
the optimality of a Markovian deterministic strategy and nature is guaranteed as
long as the uncertainty set is convex, the set of actions is finite and the inner
optimisation problem which minimises/maximises the objective function over the
choices of nature achieves its optimum (cf. [31, Proposition 4.1]). Furthermore,
due to the convexity of the generated optimisation problems, the computational
complexity of our approach remains intact.

4 Case Studies

We implemented the proposed multi-objective robust strategy synthesis algorithm
and applied them to two case studies: (1) motion planning for a robot with noisy
continuous dynamics and (2) autonomous nondeterministic tour guides drawn
from [4,18]. All experiments completed in few seconds on a standard laptop PC.

4.1 Robot Motion Planning under Uncertainty

In robot motion planning, designers often seek a plan that simultaneously satisfies
multiple objectives [23], e.g., maximising the chances of reaching the target while
minimising the energy consumption. These objectives are usually in conflict with
each other; hence, presenting the Pareto curve, i.e., the set of achievable points
with optimal trade-off between the objectives, is helpful to the designers. They can
then choose a point on the curve according to their desired guarantees and obtain
the corresponding plan (strategy) for the robot. In this case study, we considered
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Multi-objective Robust Strategy Synthesis for Interval MDPs 11

Algorithm 2: Value iteration algorithm to solve lines 6-7 of Algorithm 1

Input: An IMDP M, weight vector w, reward structures r = (r1, . . . , rn),
time-bound vector k ∈ (N ∪ {∞})n, threshold ε

Output: strategy σ maximising ExpTotσ,kM [w · r], g := (ExpTotσ,kiM [ri])1≤i≤n
1 begin
2 x := 0; x1 := 0; . . . ; xn := 0; y := 0; y1 := 0; . . . ; yn := 0;
3 σ∞(s) := ⊥ for all s ∈ S
4 while δ > ε do
5 foreach s ∈ S do
6 ys := max

a∈A(s)
(
∑
{ i|ki=∞} wi · ri(s, a) + min

has∈Ha
s

∑
s′∈S has(s′) · xs′);

7 σ∞(s) := arg max
a∈A(s)

(
∑
{ i|ki=∞} wi ·ri(s, a)+ min

has∈Ha
s

∑
s′∈S has(s′) · xs′)

8 h̄
σ∞(s)
s (s′) := arg minhas∈Ha

s

∑
s′∈S has(s′) · xs′

9 δ := maxs∈S(ys − xs); x := y;

10 while δ > ε do
11 foreach s ∈ S and i ∈ {1, . . . , n} where ki =∞ do

12 yis := ri(s, σ
∞(s)) +

∑
s′∈S h̄

σ∞(s)
s (s′) · xis′ ;

13 δ := maxni=1 maxs∈S(yis − xis); x1 := y1; . . . ; xn := yn;

14 for j = max{ kb <∞ | b ∈ {1, . . . , n} } down to 1 do
15 foreach s ∈ S do
16 ys := maxa∈A(s)(

∑
{ i|ki≥j } wi ·ri(s, a)+minhas∈Ha

s

∑
s′∈S has(s′) · xs′);

17 σj(s) := arg max
a∈A(s)

(
∑
{ i|ki≥j } wi · ri(s, a) + min

has∈Ha
s

∑
s′∈S has(s′) · xs′);

18 h̄
σj(s)
s (s′) := arg minhas∈Ha

s

∑
s′∈S has(s′) · xs′ ;

19 foreach i ∈ {1, . . . , n} where ki ≥ j do

20 yis := ri(s, σ
j(s)) +

∑
s′∈S h̄

σj(s)
s (s′) · xis′ ;

21 x := y; x1 := y1; . . . ; xn := yn;

22 for i = 1 to n do
23 gi := yis̄;

24 σ acts as σj in jth step when j < maxi∈{1,...,n} ki and as σ∞ afterwards;
25 return σ,g

such a motion planning problem for a noisy robot with continuous dynamics
in an environment with obstacles and a target region, as depicted in Fig. 3a.
The robot’s motion model was a single integrator with additive Gaussian noise.
The initial state of the robot was on the bottom-left of the environment. The
objectives were to reach the target safely while reducing the energy consumption,
which is proportional to the travelled distance.

We approached this problem by first abstracting the motion of the noisy
robot in the environment as an IMDP M and then computing strategies on M
as in [24–26]. The abstraction was achieved by partitioning the environment into
a grid and computing local (continuous) controllers to allow transitions from
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12 E. M. Hahn et al.

(a) Robot Environment (b) Pareto Curve

Fig. 3: Robotic Scenario. (a) Environment map, with black obstacles and gray

target area. (b) Pareto curve for the property ([rp]
≤∞
max, [rd]

≤∞
min ).

(a) ϕ1 (b) ϕ2 (c) ϕ3

Fig. 4: Robot sample paths under strategies for ϕ1, ϕ2, and ϕ3

every cell to each of its neighbours. The cells and the local controllers were then
associated to the states and actions of the IMDP, respectively, resulting in 204
states (cells) and 4 actions per state. The boundaries of the environment were
also associated with a state. Note that the transition probabilities between cells
were raised by the noise in the dynamics and their ranges were due to variation
of the possible initial robot (continuous) state within each cell.

The IMDP states corresponding to obstacles (including boundaries) were
given deterministic self-transitions, modelling robot termination as the result of
a collision. To allow for the computation of the probability of reaching target, we
included an extra state in the IMDP with a deterministic self-transition and then
added incoming deterministic transitions to this state from the target states. A
reward structure rp, which assigns a reward of 1 to these transitions and 0 to all
the others, in fact, computes the probability of reaching the target. To capture
the travelled distance, we defined a reward structure rd assigning a reward of 0
to the state-action pairs with self-transitions and 1 to the other pairs.
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Multi-objective Robust Strategy Synthesis for Interval MDPs 13

The two robot objectives then can be expressed as: ([rp]
≤∞
max, [rd]

≤∞
min ) – see [17,

Appendix C] for Pareto queries. We first computed the Pareto curve for the
property, which is shown in Fig. 3b, to find the set of all achievable values (optimal
trade-offs) for the reachability probability and expected travelled distance. The
Pareto curve shows that there is clearly a trade-off between the two objectives.
To achieve high probability of reaching target safely, the robot needs to travel a
longer distance, i.e., spend more energy, and vice versa. We chose three points
on the curve and computed the corresponding robust strategies for

ϕ1 = ([rp]
≤∞
≥0.95, [rd]

≤∞
≤50), ϕ2 = ([rp]

≤∞
≥0.90, [rd]

≤∞
≤45), ϕ3 = ([rp]

≤∞
≥0.66, [rd]

≤∞
≤25).

We then simulated the robot under each strategy 500 times. The statistical
results of these simulations are consistent with the bounds in ϕ1, ϕ2, and ϕ3. The
collision-free robot trajectories are shown in Fig. 4. These trajectories illustrate
that the robot is conservative under ϕ1 and takes a longer route with open spaces
around it to go to target in order to be safe (Fig. 4a), while it becomes reckless
under ϕ3 and tries to go through a narrow passage with the knowledge that
its motion is noisy and could collide with the obstacles (Fig. 4c). This risky
behaviour, however, is required in order to meet the bound on the expected
travelled distance in ϕ3. The sample trajectories for ϕ2 (Fig. 4b) demonstrate
the stochastic nature of the strategy. That is, the robot probabilistically chooses
between being safe and reckless in order to satisfy the bounds in ϕ2.

4.2 The Model of Autonomous Nondeterministic Tour Guides

Our second case study is inspired by “Autonomous Nondeterministic Tour Guides”
(ANTG) in [4, 18], which models a complex museum with a variety of collections.
We note that the model introduced in [4] is an MDP. In this case study, we use an
IMDP model by inserting uncertainties into the MDP. Due to the popularity of
the museum, there are many visitors at the same time. Different visitors may have
different preferences of arts. We assume the museum divides all collections into
different categories so that visitors can choose what they would like to visit and
pay tickets according to their preferences. In order to obtain the best experience,
a visitor can first assign certain weights to all categories denoting their preferences
to the museum, and then design the best strategy for a target. However, the
preference of a sort of arts to a visitor may depend on many factors including
price or length of queue at that moment etc., hence it is hard to assign fixed
values to these preferences. In our model we allow uncertainties of preferences
such that their values may lie in an interval.

For simplicity we assume all collections are organised in an n× n square with
n ≥ 10, with (0, 0) being the south-west corner of the museum and (n− 1, n− 1)
the north-east one. Let c = n−1

2 ; note that (c, c) is at the centre of the museum.
We assume all collections at (x, y) are assigned with a weight interval [3, 4]
if max{|x − c|, |y − c|} ≤ n

10 , with a weight 2 if n
10 < max{|x − c|, |y − c|} ≤

n
5 , and a weight 1 if max{|x − c|, |y − c|} > n

5 . In other words, we expect
collections in the centre to be more popular and subject to more uncertainties
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14 E. M. Hahn et al.

(a) The ANTG model for n = 14. The
yellow, black and green cells represent
the entrance, closed and exit parts of
the museum, respectively. The red ar-
rows indicate an example strategy.
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(b) The Pareto Curve

Fig. 5: The ANTG case study: model and analysis

than others. Furthermore, we assume that people at each location (x, y) have four
nondeterministic choices of moving to (x′, y′) in the north east, south east, north
west, and south west of (x, y) (limited to the boundaries of the museum). The
outcome of these choices, however, is not deterministic. That is, deciding to go to
(x′, y′) takes the visitor to either (x, y′) or (x′, y) depending on the weight intervals
of (x, y′) and (x′, y). Thus, the actual outcome of the move is probabilistic to
north, south, east or west. To obtain an IMDP, weights are normalised. For
instance, if the visitor chooses to go to the north east and on (x, y + 1) there is
a weight interval of [3, 4] and on (x+ 1, y) there is a weight interval of [2, 2], it
will go to (x, y + 1) with probability interval [ 3

3+2 ,
4

4+2 ] and to (x + 1, y) with

probability interval [ 2
2+4 ,

2
2+3 ]. Therefore a model with parameter n has n2 states

in total and roughly 4n2 transitions, a few of which are associated with uncertain
transition probabilities. An instance of the museum model for n = 14 is depicted
in Fig. 5a. In this instantiation, we assume that the visitor starts in the lower
left corner (marked yellow) and wants to move to the upper right corner (marked
green) with as few steps as possible. On the other hand, it wants to avoid moving
to the black cells, because they correspond to exhibitions which are closed. For
closed exhibitions located at x = 2, the visitor receive a penalty of 2, for those
at x = 5 it receives a penalty of 4, for x = 8 one of 16 and for x = 11 one of
64. Therefore, there is a tradeoff between leaving the museum as fast as possible
and minimising the penalty received. With rs being the reward structure for
the number of steps and rp denoting the penalty accumulated, ([rs]

≤∞
≤40, [rp]

≤∞
≤70)

requires that we leave the museum within 40 steps but with a penalty of no
more than 70. The red arrows indicate a strategy which has been used when
computing the Pareto curve by our tool. Here, the tourist mostly ignores closed
exhibitions at x = 2 but avoids them later. In [17, Appendix D], we provide a
few more strategies occurring during the computation. We provide the Pareto
curve for this situation in Fig. 5b. With an increasing step bound considered
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acceptable, the optimal accumulated penalty decreases. This is expected, since
with a larger step bound, the visitor has more time to walk around more of the
closed exhibitions, thus facing a lower penalty.

5 Concluding Remarks

In this paper, we have analysed IMDPs under controller synthesis semantics in
a dynamic setting; we discussed the multi-objective robust strategy synthesis
problem for IMDPs, aiming for strategies that satisfy a given multi-objective
predicate under all resolutions of the uncertainty in the transition probabilities.
We showed that this problem is PSPACE-hard and introduced a value iteration-
based decision algorithm to approximate the Pareto set. We finally presented the
effectiveness of the proposed algorithms on several real-world case studies.

Even though we focused here on IMDPs with multi-objective reachability
and reward properties, the proposed robust synthesis algorithm can also handle
MDPs with convex uncertain sets and any ω-regular properties such as LTL. For
future work, we aim to explore the upper bound of the time complexity of the
multi-objective robust strategy synthesis which is left open in this paper.
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