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Polynomial-Time Alternating Probabilistic
Bisimulation for Interval MDPs?

Vahid Hashemi1, Andrea Turrini2, Ernst Moritz Hahn1,2,
Holger Hermanns1, and Khaled Elbassioni3

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 State Key Laboratory of Computer Science, ISCAS, Beijing, China

3 Masdar Institute of Science and Technology, Abu Dhabi, UAE

Abstract. Interval Markov decision processes (IMDPs) extend classical
MDPs by allowing intervals to be used as transition probabilities. They
provide a powerful modelling tool for probabilistic systems with an ad-
ditional variation or uncertainty that relaxes the need of knowing the
exact transition probabilities, which are usually difficult to get from real
systems. In this paper, we discuss a notion of alternating probabilistic
bisimulation to reduce the size of the IMDPs while preserving the prob-
abilistic CTL properties it satisfies from both computational complexity
and compositional reasoning perspectives. Our alternating probabilistic
bisimulation stands on the competitive way of resolving the IMDP nonde-
terminism which in turn finds applications in the settings of the controller
(parameter) synthesis for uncertain (parallel) probabilistic systems. By
using the theory of linear programming, we improve the complexity of
computing the bisimulation from the previously known EXPTIME to
PTIME. Moreover, we show that the bisimulation for IMDPs is a con-
gruence with respect to two facets of parallelism, namely synchronous
product and interleaving. We finally demonstrate the practical effective-
ness of our proposed approaches by applying them on several case studies
using a prototypical tool.

1 Introduction

Markov Decision Processes (MDPs) are a widely and commonly used mathe-
matical abstraction that permits to study properties of real world systems in a
rigorous way. The actual system is represented by means of a model subsuming
the states the system can be in and the transitions representing how the system
evolves from one state to another; the actual properties are encoded as logical
formulas that are then verified against the model.

? This work is supported by the ERC Advanced Investigators Grant 695614
(POWVER), by the CAS/SAFEA International Partnership Program for Creative
Research Teams, by the National Natural Science Foundation of China (Grants No.
61550110506 and 61650410658), by the Chinese Academy of Sciences Fellowship for
International Young Scientists, and by the CDZ project CAP (GZ 1023).
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2 V. Hashemi et al.

MDPs are suitable for modelling two core aspects of the behavior of the real
world systems: nondeterminism and probability. A nondeterministic behavior can
be introduced to model a behavior of the system that is just partially known (like
receiving an asynchronous message, of which it is known it can be received in the
current state but no information is available so to quantify its likelihood) or to
leave implementation details open. A probabilistic behavior occurs whenever the
successor state of the system is not uniquely determined by the current system
and the performed action, but depends on a random choice; such a choice can
be due to the design of the system, as it is required by the implementation
of a distributed consensus protocol with faulty processes [3, 14], or by physical
properties that need to be taken into account, like transmission errors.

Finding the exact probability values for the transitions is sometimes a dif-
ficult task: while probabilities introduced by design can be well known, prob-
abilities modelling physical properties are usually estimated by observing the
actual system. This means that the resulting MDP is a more or less appropriate
abstraction of the real system, depending on how close the estimated probability
values are to the actual values; as a consequence, the actual properties of the
real system are more or less reflected by the satisfaction of the formulas by the
model.

Interval Markov Decision Processes (IMDPs) extend the classical MDPs by
including uncertainty over the transition probabilities. Instead of a single value
for the probability of reaching a specific successor by taking a transition, IMDPs
allow ranges of possible probability values given as closed intervals of the reals.
Thereby, IMDPs provide a powerful modelling tool for probabilistic systems
with an additional variation or uncertainty concerning the knowledge of exact
transition probabilities. They are especially useful to represent realistic stochas-
tic systems that, for instance, evolve in unknown environments with bounded
behavior or do not preserve the Markov property.

Since their introduction (under the name of bounded-parameter MDPs) [16],
IMDPs have been receiving a lot of attention in the formal verification com-
munity. They are particularly viewed as the appropriate abstraction model for
uncertain systems with large state spaces, including continuous dynamical sys-
tems, for the purpose of analysis, verification, and control synthesis. Several
model checking and control synthesis techniques have been developed [37,38,43]
causing a boost in the applications of IMDPs, ranging from verification of con-
tinuous stochastic systems (e.g., [30]) to robust strategy synthesis for robotic
systems (e.g., [32–34,43]).

Bisimulation minimisation is a well-known technique that has been success-
fully used to reduce the size of a system while preserving the properties it satis-
fies [5,8,9,23,27]; this helps the task of the property solver, since it has to work
on a smaller system. Compositional minimisation permits to minimise the single
components of the system before combining them, thus making the task of the
minimiser easier and extending its applicability to larger systems. In this paper,
we show that this approach is suitable also for IMDPs. The contributions of the
paper are as follows.
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Polynomial-Time Alternating Probabilistic Bisimulation for Interval MDPs 3

– We define alternating probabilistic bisimulations to compress the IMDP
model size with respect to the controller synthesis semantics while preserv-
ing probabilistic CTL property satisfaction. We show that the compressed
models can be computed in polynomial time.

– From the perspective of compositional reasoning, we show that alternating
probabilistic bisimulations for IMDPs are congruences with respect to two
facets of parallelism, namely synchronous product and interleaving.

– We show promising results on a variety of case studies, obtained by proto-
typical implementations of all algorithms.

Related work. Related work can be grouped into three categories: uncertain
Markov model formalisms, bisimulation minimization, and compositional mini-
mization.

Firstly, from the modelling viewpoint, various probabilistic modelling for-
malisms with uncertain transitions are studied in the literature. Interval Markov
Chains (IMCs) [25,28] or abstract Markov chains [13] extend standard discrete-
time Markov Chains (MCs) with interval uncertainties. They do not feature the
non-deterministic choices of transitions. Uncertain MDPs [38] allow more gen-
eral sets of distributions to be associated with each transition, not only those
described by intervals. They usually are restricted to rectangular uncertainty sets
requiring that the uncertainty is linear and independent for any two transitions
of any two states. Parametric MDPs [17], to the contrary, allow such depen-
dencies as every probability is described as a rational function of a finite set of
global parameters. IMDPs extend IMCs by inclusion of nondeterminism and are
a subset of uncertain MDPs and parametric MDPs.

Secondly, as regards to the bisimulation minimization for uncertain or para-
metric probabilistic models, works in [18, 20, 21] explored the computational
complexity and approximability of deciding probabilistic bisimulation for IMDPs
with respect to the cooperative resolution of nondeterminism. In this work, we
show that IMDPs can be minimized efficiently with respect to the competitive
resolution of nondeterminism.

Lastly, from the viewpoint of compositional minimization, IMCs [25] and
abstract Probabilistic Automata (PA) [10, 11] serve as specification theories for
MC and PA, featuring satisfaction relation and various refinement relations.
In [22], the authors discuss the key ingredients to build up the operations of
parallel composition for composing IMDP components at run-time. Our paper
follows this spirit for alternating probabilistic bisimulation on IMDPs.

Structure of the paper. We start with necessary preliminaries in Section 2. In
Section 3, we give the definitions of alternating probabilistic bisimulation for in-
terval MDP and discuss their properties. A polynomial time decision algorithm
to decide alternating probabilistic bisimulation for IMDPs and also composi-
tional reasoning are discussed in Sections 4 and 5, respectively. In Section 6, we
demonstrate our approach on some case studies and present promising experi-
mental results. Finally, in Section 7 we conclude the paper.
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4 V. Hashemi et al.

2 Mathematical Preliminaries

For a set X, denote by Disc(X) the set of discrete probability distributions over
X. Intuitively, a discrete probability distribution ρ is a function ρ : X → R≥0

such that
∑
x∈X ρ(x) = 1; for X ′ ⊆ X, we write ρ(X ′) for

∑
x∈X′ ρ(x). Given

ρ ∈ Disc(X), we denote by Supp(ρ) the set {x ∈ X | ρ(x) > 0 } and by δx,
where x ∈ X, the Dirac distribution such that δx(y) = 1 for y = x, 0 otherwise.
For a probability distribution ρ, we also write ρ = { (x, px) | x ∈ X } where px
is the probability of x.

The lifting L(R) [31] of a relation R ⊆ X × Y is defined as follows: for ρX ∈
Disc(X) and ρY ∈ Disc(Y ), ρX L(R) ρY holds if there exists a weighting function
w : X × Y → [0, 1] such that (1) w(x, y) > 0 implies x R y, (2)

∑
y∈Y w(x, y) =

ρX(x), and (3)
∑
x∈X w(x, y) = ρY (y). When R is an equivalence relation on X,

ρ1 L(R) ρ2 holds if for each C ∈ X/R, ρ1(C) = ρ2(C) where X/R = { [x]R | x ∈
X } and [x]R = { y ∈ X | y R x }.

For a vector x ∈ Rn we denote by xi, its i-th component, and we call x a
weight vector if x ∈ Rn≥0 and

∑n
i=1 xi = 1. Given two vectors x,y ∈ Rn, their

Euclidean inner product x ·y is defined as x ·y = xTy =
∑n
i=1 xi ·yi. We write

x ≤ y if xi ≤ yi for each 1 ≤ i ≤ n and we denote by 1 ∈ Rn the vector such
that 1i = 1 for each 1 ≤ i ≤ n. For a set of vectors S = {s1, . . . , sm} ⊆ Rn,
we say that s is a convex combination of elements of S, if s =

∑m
i=1wi · si for

some weight vector w ∈ Rm≥0. For a given set P ⊆ Rn, we denote by convP
the convex hull of P and by Ext(P ) the set of extreme points of P . If P is a
polytope in Rn then for each 1 ≤ i ≤ n, the projection projei P on the i-th
dimension of P is defined as projei P = [mini P,maxi P ] where ei ∈ Rn is such
that ei

i = 1 and ei
j = 0 for each j 6= i, mini P = min{xi | x ∈ P }, and

maxi P = max{xi | x ∈ P }.

2.1 Interval Markov Decision Processes

We now define Interval Markov Decision Processes (IMDPs) as an extension
of MDPs, which allows for the inclusion of transition probability uncertainties
as intervals. IMDPs belong to the family of uncertain MDPs and allow to de-
scribe a set of MDPs with identical (graph) structures that differ in distributions
associated with transitions.

Definition 1 (IMDPs). An Interval Markov Decision Process (IMDP) M is
a tuple (S, s̄,A, AP, L, I ), where S is a finite set of states, s̄ ∈ S is the initial
state, A is a finite set of actions, AP is a finite set of atomic propositions,
L : S → 2AP is a labelling function, and I : S × A × S → I ∪ {[0, 0]} is a total
interval transition probability function with I = { [l, u] ⊆ R | 0 < l ≤ u ≤ 1 }.

Given s ∈ S and a ∈ A, we call has ∈ Disc(S) a feasible distribution reachable
from s by a, denoted by s a−→ has , if, for each state s′ ∈ S, we have has(s′) ∈
I (s, a, s′). We denote the set of feasible distributions for state s and action a
by Has , i.e., Has = { has ∈ Disc(S) | s a−→ has } and we denote the set of available



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
17

-0
9

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
S

E
T

TA
20

17
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

Polynomial-Time Alternating Probabilistic Bisimulation for Interval MDPs 5

actions at state s ∈ S by A(s), i.e., A(s) = { a ∈ A | Has 6= ∅ }. We assume that
A(s) 6= ∅ for all s ∈ S.

We define the size of M, written |M|, as the number of non-zero entries of
I , i.e., |M| = |{ (s, a, s′, ι) ∈ S ×A× S × I | I (s, a, s′) = ι }| ∈ O(|S|2 · |A|).

A path ξ inM is a finite or infinite sequence of states ξ = s0s1 . . . such that
for each i ≥ 0 there exists ai ∈ A(si) such that I (si, ai, si+1) ∈ I. The i-th state
along the path ξ is denoted by ξ[i] and, if the path is finite, we denote by last(ξ)
its last state. The sets of all finite and infinite paths inM are denoted by Paths∗

and Paths, respectively.
The nondeterministic choices between available actions and feasible distribu-

tions present in an IMDP are resolved by strategies and natures, respectively.

Definition 2 (Strategy and Nature in IMDPs). Given an IMDP M, a
strategy is a function σ : Paths∗ → Disc(A) such that for each path ξ ∈ Paths∗,
σ(ξ) ∈ Disc(A(last(ξ)). A nature is a function π : Paths∗ × A → Disc(S) such
that for each path ξ ∈ Paths∗ and action a ∈ A(s), π(ξ, a) ∈ Has where s =
last(ξ).

The sets of all strategies and all natures are denoted by Σ and Π, respectively.

Given a finite path ξ of an IMDP, a strategy σ, and a nature π, the system
evolution proceeds as follows: let s = last(ξ). First, an action a ∈ A(s) is chosen
probabilistically by σ. Then, π resolves the uncertainties and chooses one fea-
sible distribution has ∈ Has . Finally, the next state s′ is chosen according to the
distribution has , and the path ξ is extended by s′.

A strategy σ and a nature π induce a probability measure over paths as fol-
lows. The basic measurable events are the cylinder sets of finite paths, where the
cylinder set of a finite path ξ is the set Cylξ = { ξ′ ∈ Paths | ξ is a prefix of ξ′ }.
The probability Prσ,πM of a state s′ is defined to be Prσ,πM [Cyls′ ] = δs̄(s

′) and the
probability Prσ,πM [Cylξs′ ] of traversing a finite path ξs′ is defined to be

Prσ,πM [Cylξs′ ] = Prσ,πM [Cylξ] ·
∑

a∈A(last(ξ))

σ(ξ)(a) · π(ξ, a)(s′).

Standard measure theoretical arguments ensure that Prσ,πM extends uniquely to
the σ-field generated by cylinder sets.

s

{s}

t

{t}

u

{u}

a b

[
1 3
,

2 3
]

[ 1
10 , 1][

2
5
,
3
5
]

[ 14 ,
23 ]

a
[1, 1]

b

[1, 1]

Fig. 1. An example of IMDP.

As an example of IMDPs, consider the
one depicted in Figure 1. The set of states
is S = {s, t, u} with s being the initial one;
the set of actions is A = {a, b} while the
set of atomic propositions assigned to each
state by the labelling function L is repre-
sented by the letters in curly brackets near
each state. Finally, the transition probability
intervals are I (s, a, t) = [ 1

3 ,
2
3 ], I (s, a, u) =

[ 1
10 , 1], I (s, b, t) = [ 2

5 ,
3
5 ], I (s, b, u) = [ 1

4 ,
2
3 ],

I (t, a, t) = I (u, b, u) = [1, 1], and I (t, b, t) =
I (u, a, u) = [0, 0].
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6 V. Hashemi et al.

2.2 Probabilistic Computation Tree Logic (PCTL)

There are various ways how to describe properties of IMDPs. Here we focus on
probabilistic CTL (PCTL) [19]. The syntax of PCTL state formulas ϕ and PCTL
path formulas ψ is given by:

ϕ := a | ¬ϕ | ϕ1 ∧ ϕ2 | P./p(ψ)

ψ := Xϕ | ϕ1 U ϕ2 | ϕ1 U
≤k ϕ2

where a ∈ AP, p ∈ [0, 1] is a rational constant, ./ ∈ {≤, <,≥, >}, and k ∈ N.
The semantics of a PCTL formula with respect to IMDPs is very similar to

the classical PCTL semantics for MDPs: they coincide on all formulas except
for P./p(ψ), where they may differ depending on how the nondeterminism is
resolved. Formally, for the formulas they agree on, given a state s and a state
formula ϕ, the satisfaction relation s |= ϕ is defined as follows:

s |= a if a ∈ L(s);

s |= ¬ϕ if it is not the case that s |= ϕ, also written s 6|= ϕ;

s |= ϕ1 ∧ ϕ2 if s |= ϕ1 and s |= ϕ2.

Given an infinite path ξ = s1s2 . . . and a path formula ψ, the satisfaction relation
ξ |= ψ is defined as follows:

ξ |= Xϕ if s2 |= ϕ;

ξ |= ϕ1 U
≤k ϕ2 if there exists i ≤ k such that si |= ϕ2

and sj |= ϕ1 for every 1 ≤ j < i;

ξ |= ϕ1 U ϕ2 if there exists k ∈ N such that ξ |= ϕ1 U
≤k ϕ2.

Regarding the state formula P./p(ψ), its semantics depends on the way the non-
determinism is resolved for the probabilistic operator P./p(ψ). When quantifying
both types of nondeterminism universally, the corresponding satisfaction relation
s |= P./p(ψ) is defined as follows:

s |= P./p(ψ) if ∀σ ∈ Σ : ∀π ∈ Π : Prσ,πs [Pathsψ] ./ p (∀)

where Pathsψ = { ξ ∈ Paths | ξ |= ψ } denotes the set of infinite paths satisfying
ψ. It is easy to show that the set Pathsψ is measurable for any path formula ψ,
hence its probability can be computed and compared with p. When the IMDP
is actually an MDP, i.e., all intervals are single values, then the satisfaction
relation s |= P./p(ψ) in Equation (∀) coincides with the corresponding definition
for MDPs (cf. [2, Sect. 10.6.2]). We explain later how the semantics differs for a
different resolution of nondeterminism for strategy and nature.

3 Alternating Probabilistic Bisimulation for IMDPs

This section revisits required main results on probabilistic bisimulation for
IMDPs, as developed in [20]. In the setting of this paper, we consider alter-
nating probabilistic bisimulation which stems from the competitive resolution
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Polynomial-Time Alternating Probabilistic Bisimulation for Interval MDPs 7

of nondeterminisms in IMDPs. In the competitive semantics, the strategy and
nature are playing in a game against each other; therefore, they are resolved
competitively. This semantics is very natural in the context of controller syn-
thesis for systems with uncertain probabilities or in the context of parameter
synthesis for parallel systems.

In this paper, in order to resolve the stochastic nondeterminism we focus on
the dynamic approach [24, 42], i.e., independently at each computation step as
it is easier to work with algorithmically and can be seen as a relaxation of the
static approach that is often intractable [4, 7, 12,16].

To this end, we consider the controller synthesis semantics to resolve the two
sources of IMDP nondeterminisms and discuss the resultant alternating prob-
abilistic bisimulation. Note that there is another variant of alternating proba-
bilistic bisimulation based on the parameter synthesis semantics [20]. However,
the alternating bisimulations relations resulting from these two semantics coin-
cide [20, Theorem 4].

In the controller synthesis semantics, we search for a strategy σ such that for
any nature π, a fixed property ϕ is satisfied. This corresponds to the satisfaction
relation |=(∃σ∀) in PCTL, obtained from |= by replacing the rule (∀) with

s |=(∃σ∀) P./p(ψ) if ∃σ ∈ Σ : ∀π ∈ Π : Prσ,πs [Pathsψ] ./ p. (∃σ∀)

As regards to bisimulation, the competitive setting is not common. We define
a bisimulation similar to the alternating bisimulation of [1] applied to non-
stochastic two-player games. For a decision ρ ∈ Disc(A) of σ, let s ρ

−→ µ denote
that µ is a possible successor distribution, i.e., there are decisions µa of π for
each a ∈ Supp(ρ) such that µ =

∑
a∈A ρ(a) · µa.

Definition 3. Given an IMDPM, let R ⊆ S×S be an equivalence relation. We
say that R is an alternating probabilistic (∃σ∀)-bisimulation if for any (s, t) ∈
R we have that L(s) = L(t) and for each ρs ∈ Disc(A(s)) there exists ρt ∈
Disc(A(t)) such that for each t ρt−→ µt there exists s ρs−→ µs such that µs L(R) µt.
We write s ∼(∃σ∀) t whenever (s, t) ∈ R for some alternating probabilistic (∃σ∀)-
bisimulation R.

The exact alternation of quantifiers might be counter-intuitive at first sight.
Note that it exactly corresponds to the situation in non-stochastic games [1].
The defined bisimulation preserves the PCTL logic with respect to the |=(∃σ∀)
semantics.

Theorem 4. For states s ∼(∃σ∀) t and any PCTL formula ϕ, we have s |=(∃σ∀)
ϕ if and only if t |=(∃σ∀) ϕ.

As a concluding remark, it is worthwhile to note that Definition 3 can be seen
as the conservative extension of probabilistic bisimulation for (state-labelled)
MDPs. To see that, assume the set of uncertainty for every transition is a sin-
gleton. Since there is only one choice for the nature, the role of nature can be
safely removed from the definitions.
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8 V. Hashemi et al.

4 A PTIME Decision Algorithm for Bisimulation
Minimization

Computation of the alternating probabilistic bisimulation ∼(∃σ∀) for IMDPs fol-
lows the standard partition refinement approach [6,15,26,35]. However, the core
part is finding out whether two states “violate the definition of bisimulation”.
This verification routine amounts to check that s and t have the same set of
strictly minimal polytopes detailed as follows.

For s ∈ S and a ∈ A(s), recall that Has denotes the polytope of feasible
successor distributions over states with respect to taking the action a in the
state s. By Ps,aR , we denote the polytope of feasible successor distributions over
equivalence classes of R with respect to taking the action a in the state s. Given
an interval [l, u], let inf[l, u] = l and sup[l, u] = u. For µ ∈ Disc(S/R) we set
µ ∈ Ps,aR if, for each C ∈ S/R, we have µ(C) ∈ I (s, a, C) where

I (s, a, C) =
[

min
{

1,
∑
s′∈C

inf I (s, a, s′)
}
,min

{
1,
∑
s′∈C

sup I (s, a, s′)
}]

.

It is not difficult to see that each Ps,aR can be represented as an H-polytope.
To simplify our presentation, we shall fix an order over the equivalence classes
in S/R. By doing so, any distribution ρ ∈ Disc(S/R) can be seen as a vector
v ∈ Rn≥0 such that vi = ρ(Ci) for each 1 ≤ i ≤ n, where n = |S/R| and Ci
is the i-th equivalence class in the order. For the above discussion, ρ ∈ Ps,aR if
and only if ρ(Ci) ∈ [ls,ai ,us,ai ] for any 1 ≤ i ≤ n and ρ ∈ Disc(S/R), where ls,a

and us,a are vectors such that ls,ai = min{1,
∑
s′∈Ci inf I (s, a, s′)} and us,ai =

min{1,
∑
s′∈Ci sup I (s, a, s′)} for each 1 ≤ i ≤ n. Therefore, Ps,aR corresponds to

an H-polytope defined by {xs,a ∈ Rn | ls,a ≤ xs,a ≤ us,a,1 · xs,a = 1 }.

Definition 5 (Strictly minimal polytopes). Given an IMDPM, a state s,
an equivalence relation R ⊆ S × S, and a set {Ps,aR | a ∈ A(s) } where for each
a ∈ A(s), for given ls,a,us,a ∈ Rn, Ps,aR is the convex polytope Ps,aR = {xs,a ∈
Rn | ls,a ≤ xs,a ≤ us,a,1 · xs,a = 1 }, a polytope Ps,aR is called strictly minimal,
if for no ρ ∈ Disc(A(s) \ {a}), we have Ps,ρR ⊆ Ps,aR where Ps,ρR is defined as

Ps,ρR = {xs,ρ ∈ Rn | xs,ρ =
∑
b∈A(s)\{a} ρ(b) · xs,b ∧ xs,b ∈ Ps,bR }.

Checking violation of a given pair of states amounts to check if the states have
the same set of strictly minimal polytopes. Formally,

Lemma 6 (cf. [20]). Given an IMDPM and s, t ∈ S, we have s ∼(∃σ∀) t if and
only if L(s) = L(t) and {Ps,a∼(∃σ∀)

| a ∈ A and Ps,a∼(∃σ∀)
is strictly minimal } =

{Pt,a∼(∃σ∀)
| a ∈ A and Pt,a∼(∃σ∀)

is strictly minimal }.

The expensive procedure in the analysis of the worst case time complexity of com-
puting the coarsest alternating probabilistic bisimulation ∼(∃σ∀), as described
in [20], is to check the strict minimality of a polytope Ps,aR for a ∈ A(s). This
decision problem has been shown to be exponentially verifiable via a reduction
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Polynomial-Time Alternating Probabilistic Bisimulation for Interval MDPs 9

to a system of linear (in)equalities in EXPTIME. In this paper, we give a poly-
nomial time routine to verify the strict minimality of a polytope which in turn
enables a polynomial time decision algorithm to decide ∼(∃σ∀). To this aim, we
use the following equivalent form of the Farkas’ Lemma [39].

Lemma 7. Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Then, Ax ≤ b implies c ·x ≤ d
if and only if there exists y ∈ Rm≥0 such that ATy = c and b · y ≤ d.

This variant of Farkas’ Lemma leads us to establish the main result of the paper.
Formally,

Theorem 8. Given an IMDP M, a state s ∈ S, an equivalence relation R ⊆
S × S and a set {Ps,aR | a ∈ A(s) } defined as in Definition 5, checking whether
for each a ∈ A(s), the polytope Ps,aR is strictly minimal, is in P.

Proof. Let A(s) = {a0, a1, . . . , am}, n = |S/R|, and Pi = Ps,aiR for 0 ≤ i ≤ m.
We describe the verification routine to check the strict minimality of P0; the same
routine applies to the other polytopes. We consider the converse of the strict min-
imality problem which asks to decide whether there exist λ1, λ2, . . . , λm ∈ R≥0

such that
∑m
i=1 λi = 1 and

∑m
i=1 λiPi ⊆ P0. We show that the latter problem

can be casted as an LP via Farkas’ Lemma 7. To this aim, we alternatively
reformulate the converse problem as “do there exist λ1, λ2, . . . , λm ∈ R≥0 with∑m
i=1 λi = 1, such that xi ∈ Pi for each 1 ≤ i ≤ m implies

∑m
i=1 λix

i ∈ P0?”.
For every fixed λ1, λ2, . . . , λm ∈ R≥0 with

∑m
i=1 λi = 1, the implication

“(∀1 ≤ i ≤ m : xi ∈ Pi) =⇒
∑m
i=1 λix

i ∈ P0” can be written as the conjunction
of 2n conditions:

m∧
i=1

li ≤ xi ≤ ui ∧
m∧
i=1

1 · xi = 1 =⇒
m∑
i=1

λix
i
k ≥ l0k (1)

m∧
i=1

li ≤ xi ≤ ui ∧
m∧
i=1

1 · xi = 1 =⇒
m∑
i=1

λix
i
k ≤ u0

k (2)

for all 1 ≤ k ≤ n. (Note that the condition 1 ·
∑m
i=1 λix

i = 1 is trivially satisfied
if 1 · xi = 1 for all 1 ≤ i ≤ m.) Each of the conditions (1) and (2), by Farkas’
Lemma, is equivalent to the feasibility of a system of inequalities; for instance,
for a given k, (1) is true if and only if there exist vectors µk,i,νk,i ∈ Rn≥0 and

scalars θk,i, ηk,i ∈ R≥0 for each 1 ≤ i ≤ m satisfying:

µk,i − νk,i + θk,i1− ηk,i1 = −λiek ∀1 ≤ i ≤ m (3)
m∑
i=1

(
ui · µk,i − li · νk,i + θk,i − ηk,i

)
≤ −l0k (4)

Similarly, for a given k, (2) is true if and only if there exist vectors µ̂k,i, ν̂k,i ∈
Rn≥0 and scalars θ̂k,i, η̂k,i ∈ R≥0 for each 1 ≤ i ≤ m satisfying:

µ̂k,i − ν̂k,i + θ̂k,i1− η̂k,i1 = λie
k ∀1 ≤ i ≤ m (5)

m∑
i=1

(ui · µ̂k,i − li · ν̂k,i + θ̂k,i − η̂k,i) ≤ u0
k (6)
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10 V. Hashemi et al.

Algorithm 1: Bisimulation(M)

Input: A relation R on S × S
Output: A probabilistic bisimulation R

1 begin
2 R← { (s, t) ∈ S × S | L(s) = L(t) };
3 repeat
4 R′ ←R;
5 forall s ∈ S do
6 D ← ∅;
7 forall t ∈ [s]R do
8 if Violate(s, t,R) then
9 D ← D ∪ {t};

10 split [s]R in R into D and [s]R \D;

11 until R = R′;
12 return R;

Procedure 2: Violate(s, t,R)

Input: States s, t and relation R
Output: Checks if s ∼R t

1 begin
2 S, T ← ∅;
3 forall a ∈ A do
4 if Ps,a

R is strictly minimal then
5 S ← S ∪ {Ps,a

R };
6 if Pt,a

R is strictly minimal then

7 T ← T ∪ {Pt,a
R };

8 return S 6= T ;

Fig. 2. Alternating probabilistic bisimulation algorithm for interval MDPs

Thus, the converse problem we are aiming to solve reduces to checking the ex-
istence of vectors µk,i,νk,i, µ̂k,i, ν̂k,i ∈ Rn≥0 and scalars λi, θ

k,i, ηk,i, θ̂k,i, η̂k,i ∈
R≥0 for each 1 ≤ i ≤ m satisfying (3)-(6) and

∑m
i=1 λi = 1. That amounts to

solve an LP problem, which is known to be in P. ut

As stated earlier, in order to compute ∼(∃σ∀) we follow the standard partition
refinement approach formalized by the procedure Bisimulation in Figure 2.
Namely, we start with R being the complete relation and iteratively remove
from R pairs of states that violate the definition of bisimulation with respect to
R. Clearly the core part of the algorithm is to check if two states “violate the
definition of bisimulation”. The violation of bisimilarity of s and t with respect
to R, which is addressed by the procedure Violate, is checked by verifying
if states s and t have the same set of strictly minimal polytopes. As a result
of Theorem 8, this verification routine can be checked in polynomial time. As
regards the computational complexity of Algorithm 1, let |S| = n and |A| = m.
The procedure Violate in Figure 2 is called at most n3 times. The procedure
Violate is then linear in m and in the complexity of checking strict minimality

of Ps,aR and Pt,aR , which is in O(|M|O(1)
). Putting all these together, we get the

following result.

Theorem 9. Given an IMDPM, computing ∼(∃σ∀) belongs to O(|M|O(1)
).

5 Compositional Reasoning

In order to study the compositional minimization, that is, to split a complex
IMDP as parallel composition of several simpler IMDPs and then to use the
bisimulation as a means to reduce the size of each of these IMDPs before per-
forming the model checking for a given PCTL formula ϕ, we have to extend
the notion of bisimulation from one IMDP to a pair of IMDPs; we do this by
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Polynomial-Time Alternating Probabilistic Bisimulation for Interval MDPs 11

following the usual construction (see, e.g., [6, 40]). Given two IMDPs M1 and
M2, we say that they are alternating probabilistic (∃σ∀)-bisimilar, denoted by
M1 ∼(∃σ∀) M2, if there exists an alternating probabilistic (∃σ∀)-bisimulation on
the disjoint union of M1 and M2 such that s̄1 ∼(∃σ∀) s̄2. We can now establish
the first property needed for the compositional minimization, that is, transitivity
of ∼(∃σ∀):

Theorem 10. Given three IMDPs M1, M2, and M3, whenever M1 ∼(∃σ∀)
M2 and M2 ∼(∃σ∀) M3, then M1 ∼(∃σ∀) M3.

For the second property needed by the compositional minimization, that is,
that ∼(∃σ∀) is preserved by the parallel composition operator, we first have to
introduce such an operator; to this end, we consider a slight adaption of syn-
chronous product of M1 and M2 as introduced in [22]. Such a synchronous
product makes use of a subclass of the Segala’s (simple) probabilistic au-
tomata [40, 41], called action agnostic probabilistic automata [22], where each
automaton has as set of actions the same singleton set {f}, that is, all transi-
tions are labelled by the same external action f : an (action agnostic) probabilistic
automaton (PA) is a tuple P = (S, s̄, AP, L,D), where S is a set of states, s̄ ∈ S is
the start state, AP is a finite set of atomic propositions, L : S → 2AP is a labelling
function, and D ⊆ S ×Disc(S) is a probabilistic transition relation.

Definition 11. Given two IMDPs M1 and M2, we define the synchronous
product of M1 and M2 as M1 ⊗M2 := F(UF(M1)⊗ UF(M2)) where

• the unfolding mapping UF : IMDP→ PA is a function that maps a given IMDP
M = (S, s̄,A, AP, L, I ) to the PA P = (S, s̄, AP, L,D) where D = { (s, µ) | s ∈
S,∃a ∈ A(s) : µ ∈ Ext(Has) ∧Has is a strictly minimal polytope };

• the folding mapping F : PA → IMDP transforms a PA P = (S, s̄, AP, L,D)
into the IMDP M = (S, s̄, {f}, AP, L, I ) where, for each s, t ∈ S, I (s, f, t) =
projet conv {µ | (s, µ) ∈ D };

• the synchronous product of two PAs P1 and P2, denoted by P1 ⊗ P2, is the
probabilistic automaton P = (S, s̄, AP, L,D) where S = S1 × S2, s̄ = (s̄1, s̄2),
AP = AP1 ∪ AP2, for each (s1, s2) ∈ S, L(s1, s2) = L1(s1) ∪ L2(s2), and D =
{ ((s1, s2), µ1×µ2) | (s1, µ1) ∈ D1 and (s2, µ2) ∈ D2 }, where µ1×µ2 is defined
for each (t1, t2) ∈ S1 × S2 as (µ1 × µ2)(t1, t2) = µ1(t1) · µ2(t2).

As stated earlier, Definition 11 is slightly different from its counterpart in [22].
As a matter of fact, due to the competitive semantics for resolving the nondeter-
minism, only actions whose uncertainty set is a strictly minimal polytope play
a role in deciding the alternating bisimulation relation ∼(∃σ∀). In particular,
for the compositional reasoning keeping state actions whose uncertainty set is
not strictly minimal induces spurious behaviors and therefore, influences on the
soundness of the parallel operator definition. In order to avoid such redundan-
cies, we can either preprocess the IMDPs before composing by removing state
actions whose uncertainty set is not strictly minimal or restricting the unfolding
mapping UF to unfold a given IMDP while ensuring that all extreme transitions
in the resultant probabilistic automaton correspond to extreme points of strictly
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12 V. Hashemi et al.

minimal polytopes in the original IMDP. For the sake of simplicity, we choose
the latter.

Theorem 12. Given three IMDPs M1, M2, and M3, if M1 ∼(∃σ∀) M2, then
M1 ⊗M3 ∼(∃σ∀) M2 ⊗M3.

We have considered so far the parallel composition via synchronous produc-
tion, which is working by the definition of folding collapsing all labels to a single
transition. Here we consider the other extreme of the parallel composition: in-
terleaving only.

Definition 13. Given two IMDPs Ml and Mr, we define the interleaved com-
position Ml 'Mr of Ml and Mr as the IMDPM = (S, s̄,A, AP, L, I ) where

• S = Sl × Sr;
• s̄ = (s̄l, s̄r);
• A = (Al × {l}) ∪ (Ar × {r});
• AP = APl ∪ APr;
• for each (sl, sr) ∈ S, L(sl, sr) = Ll(sl) ∪ Lr(sr); and
•

I ((sl, sr), (a, i), (tl, tr)) =


Il(sl, a, tl) if i = l and tr = sr,

Ir(sr, a, tr) if i = r and tl = sl,

[0, 0] otherwise.

Theorem 14. Given three IMDPs M1, M2, and M3, if M1 ∼(∃σ∀) M2, then
M1 'M3 ∼(∃σ∀) M2 'M3.

6 Case Studies

We implemented in a prototypical tool the proposed bisimulation minimization
algorithm and applied it to several case studies. The bisimulation algorithm is
tested on several PRISM [29] benchmarks extended to support also intervals
in the transitions. For the evaluation, we have used a machine with a 3.6 GHz
Intel i7-4790 with 16 GB of RAM of which 12 assigned to the tool; the timeout
has been set to 30 minutes. Our tool reads a model specification in the PRISM
input language and constructs an explicit-state representation of the state space.
Afterwards, it computes the quotient using the algorithm in Figure 2.

Table 1 shows the performance of our prototype on a number of case studies
taken from the PRISM website [36], where we have replaced some of the prob-
abilistic choices with intervals. Despite using an explicit representation for the
model, the prototype is able to manage cases studies in the order of millions of
states and transitions (columns “Model”, “|S|”, and “|I |”). The time in seconds
required to compute the bisimulation relation and the size of the corresponding
quotient IMDPare shown in columns “t∼”, “|S∼|”, and “|I∼|”. In order to im-
prove the performance of the tool, we have implemented optimizations, such as
caching equivalent LP problems, which improve the runtime of our prototype.
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Polynomial-Time Alternating Probabilistic Bisimulation for Interval MDPs 13

Table 1. Experimental evaluation of the bisimulation computation

Model |S| |I | t∼ (s) |S∼| |I∼|

Consensus-Shared-Coin-3 5 216 13 380 1 787 1 770
Consensus-Shared-Coin-4 43 136 144 352 3 2 189 5 621
Consensus-Shared-Coin-5 327 936 1 363 120 26 5 025 14 192
Consensus-Shared-Coin-6 2 376 448 11 835 456 238 10 173 30 861

Crowds-5-10 111 294 261 444 1 107 153
Crowds-5-20 2 061 951 7 374 951 20 107 153
Crowds-5-30 12 816 233 61 511 033 149 107 153
Crowds-5-40 –MO–

Mutual-Exclusion-PZ-3 2 368 8 724 4 475 1 632
Mutual-Exclusion-PZ-4 27 600 136 992 70 3 061 13 411
Mutual-Exclusion-PZ-5 308 800 1 930 160 534 12 732 65 661
Mutual-Exclusion-PZ-6 3 377 344 25 470 144 –TO–

Dining-Phils-LR-nofair-3 956 3 048 1 172 509
Dining-Phils-LR-nofair-4 9 440 40 120 14 822 3 285
Dining-Phils-LR-nofair-5 93 068 494 420 622 5 747 29 279
Dining-Phils-LR-nofair-6 917 424 5 848 524 –TO–

Because of this, we saved to solve several LP problems in each tool run, thereby
avoiding the potentially costly solution of LP problems from becoming a bottle-
neck. However, the more refinements are needed, the more time is required to
complete the minimization, since several new LP problems need to be solved.
The plots in Figure 3 show graphically the number of states and transitions for
the Consensus and Crowds experiments, where for the latter we have considered
more instances than the ones reported in Table 1. As we can see, the bisimula-
tion minimization is able to reduce considerably the size of the IMDP, by several
orders of magnitude. Additionally, this reduction correlates positively with the
number of model parameters as depicted in Figure 4.

7 Concluding Remarks

In this paper, we have analyzed interval Markov decision processes under con-
troller synthesis semantics in a dynamic setting. In particular, we provided an
efficient compositional bisimulation minimization approach for IMDPs with re-
spect to the competitive semantics, encompassing both the controller and param-
eter synthesis semantics. In this regard, we proved that alternating probabilistic
bisimulation for IMDPs with respect to the competitive semantics can be decided
in polynomial time. From perspective of compositional reasoning, we showed that
alternating probabilistic bisimulations for IMDPs are congruences with respect
to synchronous product and interleaving. Finally, we presented results obtained
with a prototype tool on several case studies to show the effectiveness of the
developed algorithm.

The core part of this algorithm relies on verifying strictly minimal polytopes
in polynomial time, which depends on the special structure of the uncertainty
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Fig. 3. Effectiveness of bisimulation minimization on model reduction
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Fig. 4. State and transition reduction ratio by bisimulation minimization

polytopes. For future work, we aim to explore the possibility of preserving this
computational efficiency for MDPs with richer formalisms for uncertainties such
as likelihood or ellipsoidal uncertainties.
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