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Better Automated Importance Splitting

for Transient Rare Events?

Carlos E. Budde1, Pedro R. D'Argenio2,3, and Arnd Hartmanns1

1 University of Twente, Enschede, The Netherlands
2 Universidad Nacional de Córdoba, Córdoba, Argentina

3 Saarland University, Saarbrücken, Germany

Abstract Statistical model checking uses simulation to overcome the
state space explosion problem in formal veri�cation. Yet its runtime ex-
plodes when faced with rare events, unless a rare event simulation method
like importance splitting is used. The e�ectiveness of importance splitting
hinges on nontrivial model-speci�c inputs: an importance function with
matching splitting thresholds. This prevents its use by non-experts for
general classes of models. In this paper, we propose new method combin-
ations with the goal of fully automating the selection of all parameters for
importance splitting. We focus on transient probabilities, which particu-
larly challenged previous techniques, and present an exhaustive practical
evaluation of the new approaches on case studies from the literature. We
�nd that using Restart simulations with a compositionally construc-
ted importance function and thresholds determined via a new expected
success method most reliably succeeds and performs very well. Our im-
plementation within the Modest Toolset supports various classes of
formal stochastic models and is publicly available.

1 Introduction

Nuclear reactors, smart power grids, automated storm surge barriers, networked
industrial automation systems: We increasingly rely on critical technical systems
and infrastructures whose failure would have drastic consequences. It is imperat-
ive to, in the design phase, perform a quantitative evaluation based on a formal
stochastic model, e.g. on extensions of continuous-time Markov chains (CTMC),
stochastic Petri nets (SPN), or fault trees. Only if the probability of failure can
be shown to be su�ciently low can the system design be implemented. Calculat-
ing such probabilities�typically on the order of 10−9 to 10−19�is challenging:
For �nite-state Markovian models or probabilistic timed automata (PTA [21]),
probabilistic model checking can numerically approximate the desired probabil-
ities, but the state space explosion problem limits it to small models. For other
models, in particular those involving events governed by general continuous prob-
ability distributions, model checking techniques only exist for speci�c subclasses
with limited scalability [23] or merely compute probability bounds [13].

? This work is supported by the 3TU.BSR project, ERC grant 695614 (POWVER), the
NWO SEQUOIA project, and SeCyT-UNC projects 05/BP12 and 05/B497.
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Statistical model checking (SMC [16,29]), i.e. using Monte Carlo simulation
with formal models, has become a popular alternative for large models and
formalisms not amenable to model checking. It trades memory usage for runtime:
the number of simulation runs explodes with the desired precision. When an
event's true probability is 10−19, for example, we may want to be con�dent that
the error of our estimation is at most on the order of 10−20. Rare event simulation
(RES [25]) methods have been developed to attack this problem. They increase
the number of simulation runs that reach the rare event and adjust the statistical
evaluation accordingly. The main RES methods are importance sampling and
importance splitting. The former modi�es probabilities in the model to make the
event more likely. The challenge lies in �nding a good such change of measure.
Importance splitting instead performs more simulation runs, which however may
start from a non-initial state and end early. Here, the challenge is to �nd an
importance function that assigns to each state a value indicating how �close�
it is to the rare event. More (partial) runs will be started from states with
higher importance. Additionally, depending on the concrete splitting method
used, thresholds (the subset of importance values at which to start new runs)
and splitting factors (how many new runs to generate at each threshold) need to
be chosen. The performance of RES varies drastically with the choices made for
these parameters. The quality of a choice of parameters highly depends on the
model at hand; making good choices requires an expert in the system domain,
the modelling formalism, and the selected RES method.

Aligning RES with the spirit of (statistical) model checking as a �push-
button� approach requires methods to automatically select (usually) good para-
meters. These methods must not negate the memory usage advantages of SMC.
Between importance sampling and splitting, the latter appears more amenable to
automatic approaches that work well across modelling formalisms (CTMC, PTA,
etc.). We previously proposed a compositional method to automatically con-
struct an importance function [5]. Its compositionality is the key to low memory
usage. Our Fig tool [4] for RES of input-output stochastic automata (IOSA [9])
implements this method together with the Restart splitting algorithm [26],
thresholds computed via a sequential Monte Carlo (SEQ) approach [7,4], and
a single �xed splitting factor speci�ed by the user for all thresholds. Experi-
mental results [4] show that Fig works well for steady-state measures, but less
so for transient probabilities. In particular, runtime varies signi�cantly between
tool invocations due to di�erent thresholds being computed by SEQ, and the
optimal splitting factor varies signi�cantly between di�erent models.

Our contributions. In this paper, we investigate several alternative combinations
of splitting and threshold/factor selection algorithms with the goal of improving
the automation, robustness and performance of importance splitting for RES
in SMC. We keep the compositional method for automatic importance func-
tion construction as implemented in Fig. Aside from Restart, we consider the
�xed e�ort [10] and �xed success [22,25] splitting methods (Section 3). While
Restart was proposed for steady-state measures and only later extended to
transient probabilities [27], the latter two are designed for estimating transient
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probabilities. For threshold selection, we specify a new �expected success� (EXP)
technique as an alternative to SEQ (Section 4). EXP selects thresholds and in-
dividual splitting factors for each threshold, removing the need for the user to
manually select a global splitting factor. We implemented all techniques in the
modes simulator of the Modest Toolset [15]. They can be freely combined,
and work for all the formalisms supported by modes�including CTMC, IOSA,
and deterministic PTA. Our �nal and major contribution is an extensive exper-
imental evaluation (Section 5) of the various combinations on six case studies.

Related work. A thorough theoretical and empirical comparison of variants of
Restart is presented in [10], albeit in a non-automated setting. Approaching
the issue of automation, Jégourel et al. [18,19] use a layered restatement of the
formula specifying the rare event to build an importance function for use with
adaptive multilevel splitting [6], the predecessor of SEQ. Garvels et al. [11] de-
rive importance functions for �nite Markov chains from knowledge about their
steady-state behaviour. For SPN, Zimmermann and Maciel [30] provide a mono-
lithic method, though limited to a restricted class of models and throughput
measures [31]. Importance sampling has been automated for SPN [24] restricted
to Markovian �ring delays and a global parameterisation of the transition intens-
ities [31]. The di�culties of automating importance sampling are also illustrated
in [17]: the proposed automatic change of measure guarantees a variance reduc-
tion, yet is proved for stochastic behaviour described by integrable products of
exponentials and uniforms only. We do not aim at provable improvements in
speci�c settings, but focus on general models and empirically study which meth-
ods work best in practice. We are not aware of other practical methods for, or
comparisons of, automated splitting approaches on general models.

2 Preliminaries

We write {| . . . |} for multisets, in contrast to sets written as { . . . }. N is the set
of natural numbers { 0, 1, . . . } and N+ = N \ { 0 }. In our algorithms, operation
S.remove() returns and removes an element from the set S. The element may be
picked according to any policy (e.g. uniformly at random, in FIFO order, etc.).

2.1 Simulation Models

We develop RES approaches that can work for any stochastic formalism com-
bining discrete and continuous state. We thus use an abstract notion of models:

De�nition 1. A (simulation) model M is a discrete-time Markov process whose
states consist of a discrete and (optionally) a continuous part. It has a �xed
initial state that can be obtained as M.initial(). Operation M.step(s) samples a
path from state s and returns the path's next state after one index time unit.

Example 1. A CTMC Mctmc is a continuous-time stochastic process. We can
cast it as a simulation model Msim by using the number of transitions taken as
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the (discrete) index time of Msim . Thus, given a state s of Mctmc , Msim .next(s)
returns the �rst state s′ of Mctmc encountered after taking a single transition
from s on a sample path. In e�ect, we follow the embedded discrete-time Markov
chain. Only if the event of interest refers to time do we also need to keep track
of the global elapsed (continuous) time as part of the states of Msim .

We require models to be Markov processes. For formalisms with memory, e.g.
due to the use of general continuous probability distributions, we encode the
memory (e.g. values and expiration times of clocks in the case of IOSA) in the
state space. We compute transient probabilities, or more precisely the probability
to reach a set of target states while avoiding another disjoint set of states:

De�nition 2. A transient property φ ∈ S → { true, false, undecided } for a
model with state space S maps target states to true, states to be avoided to false,
and all other states to undecided . We require that the probability of reaching a
state where φ returns true or false is 1 from a model's initial state.

To determine whether a sample path satis�es φ, evaluate φ sequentially for every
state on the path and return the �rst outcome that is not undecided . Standard
SMC/Monte Carlo simulation generates a large number n of sample paths to
estimate the transient probability p as p̂ def= ntrue

n (where ntrue is the number of
paths that satis�ed φ) and reports a con�dence interval around the estimate with
a speci�ed con�dence level. This corresponds to estimating the value of the until
formula P=?(¬ avoid U target) in a logic like PCTL as used in e.g. Prism [20]
for state predicates avoid and target . Time-bounded until U≤b is encoded by
tracking the elapsed time tglobal in states and including tglobal > b in avoid .

2.2 Ingredients of Importance Splitting

Importance splitting performs �more simulation� for states �close� to the target
set. Closeness is represented by an importance function fI ∈ S → N that maps
each state to its importance in { 0, . . . ,max fI }. To simplify our presentation,
we assume that fI(M.initial()) = 0, φ(starget) ⇒ fI(starget) = max fI , and if
s′ := M.next(s), then |fI(s) − fI(s′)| ≤ 1. These assumptions can easily be re-
moved. The performance, but not the correctness, of all importance splitting
methods hinges on the availability of a good importance function. Traditionally,
it is speci�ed ad hoc for each model domain by a RES expert [10,25,26]. Methods
to automatically compute one [11,18,19,30] are usually specialised to a speci�c
formalism or a particular model structure, potentially providing guaranteed ef-
�ciency improvements. We build on the method of [5] that is applicable to any
stochastic compositional model with a partly discrete state space. It does not
provide mathematical guarantees of performance improvements, but is aimed at
generality and providing �usually good� results with minimal user input.

Compositional fI . A compositional model is a parallel composition of com-
ponents M = M1 ‖ . . . ‖ Mn. Each component can be seen as a model on its own,
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but the components may interact, usually via some synchronisation/handshaking
mechanism. We write the projection of state s of M to the discrete local variables
of component Mi as s|i. The compositional method works as follows:
1. Convert the target set formula target to negation normal form (NNF) and

associate each literal targetj with the component M(targetj) whose local state
variables it refers to. Literals must not refer to multiple components.

2. Explore the discrete part of the state space of each component Mi. For each
targetj with Mi = M(targetj), use reverse breadth-�rst search to compute the
local minimum distance f ji (s|i) of each state s|i to a state satisfying targetj .

3. In the syntax of the NNF of target , replace every occurrence of targetj by
f ji (s|i) with i such that Mi = M(targetj), and every Boolean operator ∧ or ∨
by +. Use the resulting formula as the importance function fI(s).

Full implementation details can be found in [4]. Other operators can be used in
place of +, e.g. max or multiplication. Aside from the choice of operator, with
+ as default since it works well for most models, the procedure requires no user
input. It takes into account both the structure of the target set formula and
the structure of the state space. Memory usage is determined by the number
of discrete local states (required to be �nite) over all components. Typically,
component state spaces are small even when the composed state space explodes.

Levels, thresholds and factors. Given a model and importance function fI ,
importance splitting could spawn more simulation runs whenever the current
sample path moves from a state with importance i to one with importance
j > i. Using the compositional approach, the probability of visiting a state with
a higher importance is often close to 1 for many of the i, so splitting on every
increment would lead to excessively many (partial) runs and high runtime. One
thus partitions the importances into a set of sequentially numbered intervals
called levels. This results in a level function fL ∈ S → N where, again, the
initial state is on level 0 and all target states are on the highest level max fL.
We also refer to the boundary between the highest importance of level l − 1
and the lowest importance i of level l as the threshold Tl, identi�ed by i. Some
splitting methods can be further parameterised by the �amount of splitting� at
each threshold; we will use splitting factor and e�ort functions fS resp. fE in
N→ N \ { 0 } that map each level to a positive natural number for this purpose.

3 Splitting Methods

We now brie�y describe, from a practical perspective, the three di�erent ap-
proaches to importance splitting that we implemented and evaluated.

3.1 Restart

Originally discovered in 1970 [2] and later popularised by J. and M. Villén-
Altamirano [26], the Restart method for importance splitting was �rst de-
signed for steady-state measures and later extended to transient properties [27].
Restart works by performing one main simulation run from the initial state.
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Input: model M, level function fL, splitting factors fS , transient property φ

1 S := {| 〈M.initial(), 0〉 |}, p̂ := 0 // start with the initial state from level 0
2 while S 6= ∅ do // perform main and child runs (Restart loop)
3 〈s, l〉 := S.remove(), lcreate := l // get next split and store creation level
4 while φ(s) = undecided do // run until property decided (simulation loop)
5 s := M.step(s) // simulate up to next change in discrete state
6 if fL(s) < lcreate then break // moved below creation level: kill run
7 else if fL(s) > l then // moved one level up: split run
8 l := fL(s), S := S ∪ {| 〈s, l〉, . . .(fS(l) times). . . , 〈s, l〉 |}

9 if φ(s) then p̂ := p̂+ 1/
∏l

i=1 fS(l) // update result if we hit the rare event

10 return p̂

Algorithm 1: The Restart method for importance splitting

✘

✔

✘

Figure 1. Restart

As soon as any run crosses a threshold
from below, a number of child runs are
started from the �rst state in the new
level l (the run is split). That num-
ber is determined by l's splitting factor:
fS(l) − 1 child runs are started, res-
ulting in fS(l) runs that continue after
splitting. Each run is tagged with the
level on which it was started. As soon
as a run crosses a threshold from above
into a level below its creation level, it
ends (the run is killed). A run also ends
when it reaches a state satisfying avoid
or target . We state Restart formally as Algorithm 1. An illustration of its be-
haviour is shown in Figure 1. The horizontal axis is the model's index time while
the vertical direction shows the current state's importance. Target states are
marked 3and avoid states are marked 7. We have three levels with thresholds
at importances 3 to 4 and 9 to 10. fS is { 1 7→ 3, 2 7→ 2 }.

The result of a Restart run�consisting of a main and several child runs�is
the weighted number of runs that reach target . Each run's weight is 1 divided
by the product of the splitting factors of all levels. The result is thus a positive
rational number. Note that this is in contrast to standard Monte Carlo simula-
tion, where each run is a Bernoulli trial with outcome 0 or 1. This a�ects the
statistical analysis on which the con�dence interval over multiple runs is built.

WhileRestartmay appear simple at �rst glance, it is very carefully designed
such that the mean of the results of many Restart runs is actually an unbiased
estimator for the true transient probability [27,28] . In particular, the weight of
a successful run is the same no matter whether it went straight up through all
levels to the target, or �rst moved up and down between levels several times,
creating many new child runs on the way. Only the fact that, after splitting,
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Input: model M, level function fL, e�ort function fE , transient property φ

1 L := { 0 7→ [S := { M.initial() }, n := 0, up := 0 ] } // set up data for level 0
2 for l from 0 to max fL do // iterate over all levels from initial to target
3 for i from 1 to fE(l) do // perform sub-runs on level (�xed e�ort loop)
4 s :∈ L(l).S, L(l).n := L(l).n+ 1 // pick from the level's initial states
5 while φ(s) = undecided do // run until φ is decided (simulation loop)
6 s := M.step(s) // simulate up to next change in discrete state
7 if fL(s) > l then // moved one level up: end sub-run
8 L(l).up := L(l).up + 1 // level-up run for current level
9 L(fL(s)).S := L(fL(s)).S ∪ { s } // initial state for next level

10 break

11 if φ(s) then L(l).up := L(l).up + 1 // hit rare event (highest level only)

12 if L(l).up = 0 then return 0 // we cannot reach the target any more

13 return
∏max fL

i=0 L(l).up/L(l).n // multiply conditional level-up prob. estimates

Algorithm 2: The �xed e�ort method for importance splitting

exactly one of the resulting runs can survive moving a level downward results in
a correct estimation: over many Restart runs, underestimation caused by runs
that die when going down is compensated by overestimation from the one that
survives and is later split again.

3.2 Fixed E�ort

✘

✔

✘

✘

✘
✘

✘

✘✘

✔

Figure 2. Fixed e�ort

In contrast to Restart, each run of the
�xed e�ort method [10,12] performs a
�xed number fE(l) of partial runs on
each level l. Each of these ends when
it either crosses a threshold from below
into level l+1, encounters a target state,
or encounters an avoid state. We count
the �rst two cases as nlup . In the �rst
case, the new state is stored in a set of
initial states for level l + 1. When all
partial runs for level l have ended, the
algorithm moves to level l + 1, starting
the next round of partial runs from the
previously collected initial states of the new level. This behaviour is illustrated
in Figure 2 (with fE(l) = 5 for all levels) and formally stated as Algorithm 2.
The initial state of each partial run can be chosen randomly, or simply in a
round-robin fashion among the available initial states [10]. When a �xed e�ort
run ends, the fraction of partial runs started in level l that moved up is an
approximation of the conditional probability of reaching level l + 1 given that
level l was reached. Since target states exist only on the highest level, the overall
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result is thus simply the product of the fraction nlup/fE(l) for all levels l, i.e.
a rational number in the interval [0, 1]. The average of the result of many �xed
e�ort runs is again an unbiased estimator for the transient probability [12].

The �xed e�ort method has been speci�cally designed for transient proper-
ties. Its advantage is predictability in the sense that each run involves performing
(at most)

∏max fL
l=0 fE(l) partial runs. Like splitting levels need to be provided to

Restart via function fS , the �xed e�ort method needs the e�ort function fE
that determines the number of partial runs to start for each level.

3.3 Fixed Success

✘

✔

✘

✘

✘

✘

✘

✘

✔✔✔

✘

✘

Figure 3. Fixed success

Fixed e�ort intuitively controls the sim-
ulation e�ort by adjusting the estim-
ator's imprecision. The �xed success
method [1,22] turns this around: its
parameters control the imprecision, but
the e�ort then varies. Instead of launch-
ing a �xed number of partial runs per
level, �xed success keeps launching such
runs until fE(l) of them have reached
the next level (or a target state in case
of the highest level). Illustrated in Fig-
ure 3 (with fE(l) = 4 for all levels), the
algorithmic steps are as in Algorithm 2
except for two changes: First, the for loop in line 3 is replaced by a while

loop with condition L(l).up < fE(l). Second, the �nal return statement in

line 13 uses a di�erent estimator: instead of
∏max fL

i=0
L(l).up
L(l).n , we have to return∏max fL

i=0
L(l).up−1
L(l).n−1 . This is due to the underlying negative binomial distribution;

see [1] for details. We thus have to require fE(l) ≥ 2 for all levels l.
From the automation perspective, the advantage of �xed success is that it

self-adapts to the (a priori unknown) probability of levelling up: if that probabil-
ity is low for some level, more partial runs will be generated on it, and vice-versa.
However, the desired number of successes still needs to be speci�ed. 20 is sugges-
ted as a starting point in [1], but for a speci�c setting already. A disadvantage of
�xed success is that it is not guaranteed to terminate: If the model, importance
function and thresholds are such that, with positive probability, it may happen
that all initial states of some level lie in a bottom strongly connected component
without target states, then the (modi�ed) loop of line 3 of the algorithm will
diverge. We have not encountered this situation in our experiments, though.

4 Determining Thresholds and Factors

To determine the splitting levels/thresholds, we implement and compare two
approaches: the sequential Monte Carlo (SEQ) method from [4] and a new tech-
nique that tries to ensure a certain expected number of runs that level up.
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Input: model M, importance function fI , transient property φ, n, k ∈ N+, k < n

1 for i from 1 to n+ k do S(i) := M.initial() // set up state vector
2 T .push(0) // stack of selected threshold importances
3 while T .top() < max fI do // �nd upper threshold for every importance
4 for i from 1 to n do // �rst set of runs: �nd importance distribution
5 s := S(i)
6 while φ(s) = undecided do

7 s := M.step(s)
8 if fI(s) > fI(S(i)) then S(i) := s // keep most important state

9 sort S(i) for i ∈ { 1, . . . , n } according to fI // sort �rst n states, ascending
10 if T .top() ≥ fI(S(n− k)) then break // found no more important state

11 T .push(fI(S(n− k))) // new threshold at n−k
n

importance quantile
12 for i from 1 to n do // second set of runs: initial states for next round
13 j := sample uniformly from {n+ 1, . . . , n+ k }, S(i) := S(j)
14 while φ(S(i)) = undecided ∧ fI(S(i)) < T .top() do S(i) := M.step(S(i))
15 if fI(S(i)) < T .top() then goto line 13 // did not reach new threshold

16 for j from n+ 1 to n+ k do // randomly select k initial states
17 i := sample uniformly from { 1, . . . , n }, S(j) := S(i)

18 for l from T .top() to max fI do T .push(l) // �ll in missing thresholds
19 return T // set of threshold importances characterising the levels

Algorithm 3: The sequential Monte Carlo method for threshold selection

4.1 Sequential Monte Carlo

Our �rst approach is inspired by the sequential Monte Carlo splitting tech-
nique [7]. As shown in Algorithm 3, it works in two alternating phases: First, n
simulation runs determine the importances that can be reached from the cur-
rent level (starting with the model's initial state as level 0), keeping track of the
state of maximum importance for each run. We then sort the collected states
and pick the importance of the one at position n − k, i.e. the n−k

n importance
quantile, as the start of the next level. This means that as parameter k grows,
so does the width of the levels, and the probability of moving from one level to
the next decreases. In the second phase, the algorithm randomly selects k new
initial states that lie just beyond the newfound threshold via more simulation
runs, then proceeds to the next round to compute the next threshold from there.
The result is a sequence of importances characterising a level function.

This SEQ algorithm only determines the splitting levels. It does not decide
on splitting factors, which the user must select if they wish to run Restart. The
approach implemented in Fig and modes is to request a �xed splitting factor g
and then run SEQ with k = n/g. When used with �xed e�ort and �xed success,
we set k = n/2 and use a user-speci�ed e�ort value e, i.e. fE(l) = e for all levels l.
A value for n must also be speci�ed; by default, we use n = 1000. It is clear
that the degree of automation o�ered by SEQ is not satisfactory. Furthermore,
we found in previous experiments with Fig that the levels computed by di�er-
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Input: model M, importance function fI , transient property φ, n ∈ N+

1 fL := fI , fE := { l 7→ n | l ∈ { 0, . . . ,max fI } }
2 m := 0, e := 0, pup := { l 7→ 0 | l ∈ { 0, . . . ,max fI } }
3 while pup(max fI) = 0 do // roughly estimate the level-up probabilities
4 m := m+ 1, L := level data computed in one �xed e�ort run (Algorithm 2)
5 for l from 0 to max fI do pup(l) := pup(l) +

1
m
(L(l).up/L(l).n − pup(l))

6 for l from 0 to max fI do // turn level-up probabilities into splitting factors
7 split := 1/pup(l) + e, F (l) := bsplit + 0.5c, e := split − F (l)

8 return F // if F (l) > 1, then l is a threshold and F (l) the splitting factor

Algorithm 4: The expected success method for threshold and factor selection

ent SEQ runs could di�er signi�cantly, leading to a large variance in Restart
performance [4]. Combined with mediocre results for transient properties, this
was the main trigger for the work we present in this paper.

SEQ may get stuck in the same way as �xed success, and we did encounter
this with our wlan case study (see Section 5). Our implementation thus restarts
SEQ whenever it does not terminate within 30 s; on the wlan model, SEQ always
succeeded with at most two retries in our experiments.

4.2 Expected Success

To replace SEQ, we propose a new approach based on the rule-of-thumb that one
would like the expected number of runs that move up on each level to be 1. This
rule is called �balanced growth� by Garvels [12]. The resulting procedure, shown
as Algorithm 4, is conceptually much simpler than SEQ: We �rst perform �xed
e�ort runs, using constant e�ort n and each importance as a level, until the rare
event is encountered. We extract the approximations of the conditional level-up
probabilities computed inside the �xed e�ort runs, averaging the values if we
need multiple runs (line 5). After that, we set the factor for each importance to
one divided by the (very rough) estimate of the respective conditional probability
computed in the �rst phase. Since splitting factors are natural numbers, we round
each factor, but carry the rounding error to the next importance. In this way,
even if the exact splitting factors would all be close to 1, we get a rounded
splitting factor of 2 for some of the importances. The result is a mapping from
importances to splitting factors, characterising both the level function fL�every
importance with a factor 6= 1 starts a new level�and the splitting function fS .
We call this procedure the expected success (ES) method. Aside from the choice
of n (for which our default of n = 256 has worked well in all experiments), it
provides full automation with Restart. To use it with �xed e�ort, we need
a user-speci�ed base e�ort value e, and then set fE to { l 7→ e · fS(l) | l ∈
{ 0, . . . ,max fL } } resulting in a weighted �xed e�ort approach.

We also experimented with expected numbers of runs that move up of 2 and
4, but these almost always lead to dismal performance or timeouts due to too
many splits or partial runs, so we do not consider them any further.
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5 Experimental Evaluation

The purpose of our work was to �nd a combination of RES methods that provides
consistent good performance at a maximal degree of automation. We thus imple-
mented the compositional importance function generation, the splitting methods
described in Section 3, and the threshold calculation methods of Section 4 in
the modes simulator of the Modest Toolset [13]. This allowed us to study
CTMC queueing models, network protocols modelled as PTA, and a more com-
plex �leserver setting modelled as a stochastic timed automaton (STA [3]) using
a single tool. We evaluated the performance of all relevant combinations of the
implemented RES methods on all of these models.

5.1 Case Studies

We consider the following six case studies:

tandem Tandem queueing networks are a standard benchmark in probabilistic
model checking as well as RES [?]. We consider the case from [5] with all
exponentially distributed interarrival times (a CTMC). The arrival rate into
the �rst queue is λ = 3 and its service rate is µ1 = 2. After that, customers
move into the second queue, which initially contains one customer, to be
served at rate µ2 = 6. The model has one parameter C: the capacity of each
queue. We estimate the value of the transient property P=?(q2 > 0 U q2 = C),
i.e. of the second queue becoming full without having been empty before.

openclosed Our second model [?], again a CTMC, consists of two parallel
queues: an open queue q0, receiving packets at rate λ = 1 from an ex-
ternal source, and a closed queue qc that receives internal packets. One server
processes packets from both queues: packets from q0 are processed at rate
µ11 = 4 while qc is empty; otherwise, packets from qc are served at rate
µ12 = 2. The latter packets are put back into another internal queue, which
are independently moved back to qc at rate µ2 = 1

2 . We study the system
as in [4] with a single packet in internal circulation, i.e. an M/M/1 queue
with server breakdowns, and parameter B of the capacity of q0. We estim-
ate P=?(¬ reset U lost): the probability that q0 over�ows before a packet is
processed from q0 or qc such that the respective queue becomes empty again.

breakdown The �nal queueing system that we consider [?] as a CTMC consists
of ten sources of two types, �ve of each, that produce packets at rate λ1 = 3
(type 1) or λ2 = 6 (type 2), periodically break down with rate β1 = 2 resp.
β2 = 4 and get repaired with rate α1 = 3 resp. α2 = 3. The produced
packets are collected in a single queue, attended to by a server with service
rate µ = 1000, breakdown rate γ = 3 and repair rate δ = 4. Again, and as
in [5], we parameterise the model by the queue's capacity, here denoted K,
and estimate P=?(¬ reset U buf = K): starting from a single packet in the
queue, what is the probability for the queue to over�ow before it was empty?

brp Taking advantage of the wide modelling formalism support of theModest

Toolset, we also study two PTA examples using the Modest models ori-
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ginally introduced in [14]. The �rst is of the bounded retransmission pro-
tocol, another classic benchmark in formal veri�cation. We use one para-
meter parameter M that determines the actual parameters N (the number
of chunks of the �le to transmit), MAX (the retransmission bound) and TD
(the transmission delay) by way of 〈N,MAX ,TD〉 = 〈16 · 2M , 4 ·M, 4 · 2M 〉.
We consider the large instances 〈32, 4, 8〉, 〈64, 8, 16〉 and 〈128, 12, 32〉. To
avoid nondeterminism, TD is both lower and upper bound for the transmis-
sion delay. We estimate P=?(true U snok ∧ i > N

2 ), i.e. the probability that
the sender eventually reports an unsuccessful transmission after more than
half of the chunks have been sent successfully.

wlan The second PTA model is of two stations communicating wirelessly via
IEEE 802.11 wireless LAN. In contrast to [14] and the original Prism case
study the model was derived from, we use the exact timing parameters de-
scribed by the standard, which lead to a model too large for standard prob-
abilistic model checkers, and a stochastic semantics of the PTA, scheduling
events as soon as possible and resolving all other nondeterminism uniformly.
The model has one parameter K, the maximum value of the backo� counter
in the exponential backo� procedure. We estimate P=?(true U bc1 = bc2 = K),
the probability that both station's backo� counters reach K.

�leserver Our last case study combines exponentially and uniformly distrib-
uted delays plus discrete probabilistic choices. It is a STA model of a �le
server where a fraction of the �les is archived and requires signi�cantly more
time to retrieve. Introduced in [13], we change the archive access time from
nondeterministic to continuously uniform over the same interval. Model para-
meter C is the server's queue size. We estimate the time-bounded probability
of queue over�ow: P=?(true U≤1000 queue = C).

Several of our case studies are queueing systems, re�ecting the fact that they are
very frequently used benchmarks for RES [?]. The three CTMC models could
easily be modi�ed to use other distributions and our techniques and tools would
still work the same.

5.2 Experimental Setup

We ran experiments on two di�erent machines: Those for the tandem and wlan
models were performed on a four-core Intel Core i5-6600T (2.7/3.5 GHz) system
running 64-bit Windows 10 v1607 x64 using three simulation threads. All other
experiments ran on a six-core Intel Xeon E5-2620v3 (2.4/3.2GHz, 12 logical
processors) system running Mono 5.2 on 64-bit Debian v4.9.25 using �ve simu-
lation threads each for two separate experiments running concurrently. We used
a timeout of 600 s for the tandem, openclosed and brp models and 1200 s for all
others. Simulations were run until the half-width of the 95% normal con�dence
interval was at most 10% of the currently estimated mean. By this use of a relat-
ive width, the precision automatically adapted to the rareness of the event. We
also performed SMC/Monte Carlo simulation as a comparison baseline, where
modes uses the Agresti-Coull approximation of the binomial con�dence interval.
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Table 1. Model data and performance results

S
M
C Restart �xed e�ort -weighted �xed success

model/param p̂ nI 2 4 8 16 ES 16 64 256 8 16 128 8 32 128

tandem 8 5.6e−6 22 70 3 1 1 11 1 1 1 1 1 1 1 1 1 1

12 1.9e−8 30 � 45 1 10 190 1 5 4 3 3 2 1 6 2 2

16 7.1e−11 38 � � 3 177 588 2 18 8 6 11 6 4 18 7 5

20 3.0e−13 46 � � 5 � � 4 124 23 14 84 21 12 59 17 12

open- 20 3.9e−8 155 � 2 142 3 2 1 5 3 2 6 4 2 5 3 3

closed 30 8.8e−12 235 � 5 � 21 7 1 19 9 9 46 19 6 24 8 8

40 2.0e−15 315 � 19 � 89 15 3 105 24 17 360 72 14 133 19 20

50 4.6e−19 395 � 74 � � 85 4 404 45 33 � 167 38 284 47 34

break- 40 4.6e−4 193 46 7 7 8 11 4 10 10 16 15 13 7 11 9 15

down 80 3.7e−7 353 � 33 24 29 40 23 73 51 61 194 112 44 87 52 54

120 3.0e−10 513 � 80 59 67 97 104 397 149 173 687 283 139 312 182 136

160 2.4e−13 673 � 316 109 121 175 583 794 377 290 � � 335 999 421 313

brp 1 3.5e−7 2 k � � � 413 86 21 110 36 33 856 435 226 27 21 50

2 5.8e−13 6 k � � � � � 81 � 423 184 � � � 208 141 235

3 9.0e−19 16 k � � � � � 216 � � � � � � � 420 569

wlan 4 2.2e−5 14 k 376 � � � � � 57 38 31 120 131 221 44 36 39

5 1.6e−7 23 k � � � � � � 457 177 121 784 855 809 139 153 164

�le- 50 3.9e−11 156 � 125 88 61 57 27 572 137 75 � 435 79 � � 140

server 100 4.8e−23 306 � � � � 229 319 � � 765 � � 851 � � �

For each case study, aside from attempting standard Monte Carlo simulation
(labelled �SMC� in tables and charts) we evaluated the following approaches:
� Restart with thresholds selected via SEQ and a �xed splitting factor g ∈
{ 2, 4, 8, 16 } (labelled �Restart g�), using n = 512 and k = n/g for SEQ;

� Restart with thresholds and splitting factors determined by the ES method
(labelled �Restart ES�) and the default n = 256 for ES;

� �xed e�ort with SEQ as above and e�ort e ∈ { 16, 64, 256 } for every level;
� weighted �xed e�ort with ES (labelled �-weighted�) as described in Sec-
tion 4.2 using base e�ort e ∈ { 8, 16, 128 } (note that all weights are ≥ 2);

� �xed success with SEQ as before and the required number of successes for
each level being either 8, 32 or 128.

We did not consider ES where the splitting factors it computes would not be
used (such as with �unweighted� �xed e�ort or �xed success). The default of
using addition to replace both ∧ and ∨ in the compositional importance function
generation (cf. Section 2.2) worked well for all cases except wlan, for which we
used max instead. Note that Restart with SEQ and a user-speci�ed splitting
factor is the approach previously implemented in and studied with Fig [4].

5.3 Results

We provide an overview of the performance results for all model instances in
Table 1. We report the averages of three runs of each experiment to account for
�uctuations due to the inherent randomisation in the simulation and especially
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Figure 4. Some detailed performance results compared (runtimes in seconds)
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in the threshold selection algorithms. Column p̂ lists the average of all (up to 45)
individual estimates for each instance. All estimates were consistent, including
with SMC on the few cases where it did not time out. To verify that the composi-
tional importance function construction does not lead to high memory usage, we
list the total number of states that it needs to store in column nI . These numbers
are consistently low; even on the two PTA cases, they are far below the total
number of states of the composed state spaces. The remaining columns report
the total time, in seconds, that each approach took to compute the importance
function, perform threshold selection, and use the respective splitting method to
estimate the probability of the transient rare event. Dashes mark timeouts.

We show a selection of the most interesting cases graphically with added
details in Figure 4. Each bar's darker part is the time needed to compute the
importance function and the thresholds. The lighter part is the time spent in
performing the actual RES. We see that the former, which is in fact almost
entirely spent in threshold selection, is much lower for ES than for SEQ. The error
bars show the standard deviation between the three runs that we performed for
each experiment. A larger sample size would be needed for a thorough evaluation
of this aspect, though.

Overall, our experimental evaluation �rst con�rms the previous observations
made with Fig: The performance of Restart depends not only on the choice
of importance function, but also very much on the selected thresholds and the
splitting factor. Out of g ∈ { 2, 4, 8, 16 }, there was no single optimal splitting
factor that worked well for all models. Restart with ES usually performed
best, being drastically faster than any other method in many cases. This is a
very encouraging result since Restart with ES is also the one approach that
requires no more user-selected parameters. We thus selected it as the default
used by the modes tool. The wlan case stands out as the only one where this
default, and in fact none of the Restart-based methods, terminated within our
1200 s time bound. All of the splitting methods speci�cally designed for transient
properties, however, worked for wlan, with �xed success performing best. They
also work reasonably well on the other cases, but we see that their performance
depends on the chosen e�ort parameter. In contrast to the splitting factors for
Restart, though, we can make a clear recommendation for this choice: larger
e�ort values rather consistently result in better performance.

6 Conclusion

We have investigated ways to improve the automation and performance of im-
portance splitting to perform rare event simulation for general classes of stochastic
models. For this purpose, we studied and implemented three existing splitting
methods and two threshold selection algorithms, one from a previous tool and
one new. Our implementation in the Modest Toolset's modes simulator is
publicly available at www.modestchecker.net.1 We performed an extensive ex-

1 Reviewers: The tool version used for our experiments, the model �les, and the com-
plete raw results can be accessed anonymously at www.modestchecker.net/setta17/.

http://www.modestchecker.net/
http://www.modestchecker.net/setta17/
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perimental evaluation, reporting in this paper the only practical comparison of
Restart and other splitting methods that we are aware of.

Our results show that we have found a fully automated rare event simulation
method that performs very well in the form of automatic compositional import-
ance functions together with Restart and the expected success method. It is
also easier to implement than our previous approach, and �nally pushed auto-
mated importance splitting for general models to the realm of truly rare events
with probabilities down to the order of 10−23.

In future work, we would like to more deeply investigate models with few
points of randomisation such as the PTA examples that proved to be most chal-
lenging for our methods, and combine RES with lightweight scheduler sampling [8]
to be able to handle models that include non-spurious nondeterminism.

Acknowledgements. We are grateful to José Villén-Altamirano for very fruitful
discussions that led to our eventual design of the expected success method.
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