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Abstract

We find ourselves surrounded by a rapidly increasing num-
ber of autonomous and semi-autonomous systems. Two great
challenges arise from this development: Machine Ethics and
Machine Explainability. Machine Ethics, on the one hand, is
concerned with behavioral constraints for systems, set up in
a formal unambiguous, algorithmizable, and implementable
way, so that morally acceptable, restricted behavior results;
Machine Explainability, on the other hand, enables systems
to explain their actions and argue for their decisions, so that
human users can understand and justifiedly trust them. In this
paper, we stress the need to link and cross-fertilize these two
areas. We point out how Machine Ethics calls for Machine
Explainability, and how Machine Explainability involves Ma-
chine Ethics. We develop both these facets based on a toy
example from the context of medical care robots. In this
context, we argue that moral behavior, even if it were veri-
fiable and verified, is not enough to establish justified trust
in an autonomous system. It needs to be supplemented with
the ability to explain decisions and should thus be supple-
mented by a Machine Explanation component. Conversely,
such explanations need to refer to the system’s model- and
constraint-based Machine Ethics reasoning. We propose to
apply a framework of formal argumentation theory for the
task of generating useful explanations of the Machine Ex-
planation component and we sketch out how the content of
the arguments must use the moral reasoning of the Machine
Ethics component.

Introduction
Autonomous and semi-autonomous systems are pervading
the world we live in. These systems start to infringe upon
our lives and, in turn, we ourselves rapidly become more and
more dependent on their functionings. An important ques-
tion arises: How should machines be constrained, such that
they act morally acceptably towards humans? This question
concerns Machine Ethics – the search for formal, unambigu-
ous, algorithmizable and implementable behavioral con-
straints for systems, so as to enable them to exhibit morally
acceptable behavior. Although some researchers believe that

∗This work is supported by the ERC Advanced Grant 695614
(POWVER) and by the Initiative for Excellence of the German fed-
eral and state governments through funding for the Saarbrücken
Graduate School of Computer Science and the DFG MMCI Clus-
ter of Excellence.

implemented Machine Ethics is a sufficient precondition for
humans to reasonably develop trust in autonomous systems,
this paper discusses why this is not the case. We instead
feel the need to supplement Machine Ethics with means to
ascertain justified trust in autonomous systems – and other
desirable properties. After pointing out why this is impor-
tant, we will argue that there is one feasible supplement for
Machine Ethics: Machine Explainability – the ability of an
autonomous system to explain its actions and to argue for
them in a way comprehensible for humans. Therefore, Ma-
chine Ethics needs Machine Explainability. This also holds
vice versa: Machine Explainability needs Machine Ethics,
as it is in need of a moral system as a basis for generat-
ing explanations. Only by embedding explanations into a
moral system, these explanations can be validated and veri-
fied. And only from validated and verified explanations, the
trust in autonomous systems can possibly emerge.

Related Work
Many works regarding Machine Ethics’ nature and possibil-
ities already exist (cf. [2], [24]). Likewise, much research
regarding whether we need such an approach at all – at least
in specific contexts like AI development (cf. [25]) – is avail-
able. As James H. Moor pointed out (cf. [22]), Machine
Ethics can be understood as a rather broad term, ranging
from purely morally motivated restrictions of the behavior
of complex, and possibly autonomous, systems to the imple-
mentation of full-fledged moral capacities, involving com-
plex, philosophical concepts of autonomy and deliberation,
as well as free will. While the latter is still concerned with
scenarios that remain science fiction – but are nevertheless
already subject of serious scientific debates (cf. [9], [18],
[23], [26]) – the former are already of great practical impor-
tance, because autonomous systems are already here.

In contrast to these works in the core of Machine Ethics,
as of yet, advancements extending from Machine Ethics to-
wards Machine Explainability are scarce in the scientific lit-
erature. Machine Explainability aims at equipping complex
and autonomous systems with means to make their decisions
understandable to different groups of addressees. For in-
stance, the software doping cases that surfaced in the con-
text of the diesel emissions scandals demonstrated clearly
that even if no AI component is involved, the behavior of
complex systems can be hard to impossible to understand,
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and thus virtually impossible to assess from a societal per-
spective. What is needed in such cases is an unambiguous
specification of what distinguishes desired and permissible
from undesired and impermissible behavior, together with
methods to tell apart one from the other (cf. [4], [5], [11]).
This asks for ways to understand the reasoning of systems
in a deep sense, and echoes the same requirement regarding
the behavior of autonomous systems in their entirety, as it
is increasingly discussed in the scientific community, espe-
cially regarding the establishment of trust and the possibil-
ity of trustworthiness (cf. [1], [6], [19], [17]). But Machine
Explainability goes beyond the need to make autonomously
made decisions understandable and thus the systems trust-
worthy: Wherever machines and artificial systems are meant
to support human decisions, mere support by unexplained
decisions does not suffice to ensure autonomy (in the philo-
sophical meaning of the word; cf. [21] for a broad overview
on the dimensions of explainability). However, the links be-
tween Machine Ethics and Machine Explainability are not
yet carved out with scientific rigor. By writing this paper,
we want to undertake first steps into this direction.

The World of Medical Care Robots
We develop our thoughts, together with possible challenges
of Machine Ethics, by means of a toy example from the con-
text of medical care robots. Obviously, we need to keep
the example simple, so that we will be able to pinpoint its
most important aspects while still being sufficiently general
to exemplify the important challenges arising with respect to
Machine Ethics.

R1 R2 R3

CS

1 1 1

1

2

2 1

Figure 1: The medical care robot’s realm

The medical care robot we consider works in a hospital’s
experimental area. There are up to three patients the robot
has to take care of. Each of these patients is in a separate
room (R1, R2, R3), and the rooms are connected by several
hallways. The spatial layout of the scenario is depicted in
Fig. 1. The robot spends energy when traveling along a hall-
way and needs a certain time span (i.e. a number of discrete
time units) to do so. The energy and time costs depend on
the distance traveled (distances are written next to the hall-
ways). For one unit of distance, the robot needs one unit of
energy and two units of time. At some point the robot’s bat-
tery (the power budget of which it is assumed to be always
known) will be depleted. To prevent this, there is a charging
station (CS) where the robot can recharge its battery. Once
the recharging process is started, it will stop no earlier than
needed to fully recharge the battery.

In our scenario, the robot listens to requests. At each point
in time, each of the three patients may issue a request to the

robot, asking for a task of a specific priority. Although each
request has a priority when issued, this priority is not trans-
mitted to the robot. This is necessary, as otherwise the pa-
tients could get tempted to always issue tasks of the highest
priority in order to get preferential treatment.

The scenario provided so far can be described with
the following formalizations: At each point in time, the
robot can receive a request. Requests are tuples req =
〈r ∈ {R1, R2, R3} , t ∈ N+〉 of a room number and a time
stamp. With every request we associate a task, modeled as a
triple 〈p ∈ {L,M,H} , c ∈ N+, t ∈ N+〉 representing three
attributes: the task’s priority (high, medium and low), its
power cost (a positive integer), and the expected time con-
sumed by serving the task (again a positive integer). We will
use the notation t.a as a shorthand to refer to the attribute a
(according to the above introduced variable names) of some
tuple t, be it a request or a task. Serving a task is supposed an
atomic operation: once begun, the robot will not stop until
the task is completed.

We limit the possible tasks connected to a request in our
example to the following general possibilities:

treq resuscitate = 〈H, 5, 1〉 ,
treq fetch water = 〈p ∈ {L,M,H}, 1, 1〉 ,
treq fetch human = 〈p ∈ {L,M,H}, 1, 3〉 ,
treqgive medicine = 〈p ∈ {L,M}, 1, 1〉 ,

treq tidy up = 〈L, c ∈ {1, . . . , 5}, t ∈ {1, . . . , 5}〉
Note that these are prototypical tasks. In case of
treqresuscitate all three properties are fixed – it will always
have highest priority, a power consumption of 5 and a time
consumption of 1. But for the other four types of tasks, one
or even all properties can attain a certain range of values.
The set of possible combinations is called ReqTasks , it has
cardinality 34. The association of requests to tasks is mod-
eled by a function: reqTask : Requests → ReqTasks .

The robot collects incoming requests in an input queue
until they are served. The goal of our robot is to serve re-
quests (and to thereby carry out the associated tasks) without
ever running out of battery power. By assigning utilities to
serving requests and disutilities to not serving them and to
exhausting the battery, the robot’s operation can be reduced
to a generic planning problem.

Having this in mind, we can construct a very simple pro-
cedure to decide whether the robot should serve the next re-
quest in its input queue or whether it should recharge in-
stead.1 This procedure lets the robot compare the expected
utility of serving a request (and hence the associated task)
to the expected utility of recharging its battery. It then
chooses the one with greater utility. Here we have to bear
in mind that serving a request consists of not only the as-
sociated task, but also of traveling to the associated room.
First of all, the function for calculating the request’s cost(s)
comes down to: cost(req) := costway(req)+cost task(req),
where costway(req) := dist(req .r, pos) are the costs as-
sociated with traveling to the room the request is coming

1We pretend for now that the robot knows the task associated
with a request. Later, we will drop this hypothesis for the reasons
mentioned above.
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from (where pos is the current position of the robot) and
cost task(req) := reqTask(req).c are the costs associated
with serving the task behind the request. With this we can
construct the function for evaluating the utilities for answer-
ing the request answer req :

util(answer req) = util(req) · 1(cost(req) ≤ energy)

+ util(out of power) · 1(cost(req)
+ dist(CS, req .r) > energy)

+ util(¬req) · 1(cost(req) > energy)

Here util(out of power) < 0 is the penalty for exhaust-
ing the battery, util(¬req) < 0 is the disutility connected
to not serving the request and util(req) > 0 is the utility
connected to serving it.

By adjusting the utilities in distinct ways, we can enforce
specific decisions. For instance, by setting the utility of res-
cuing a person (through resuscitation) higher than the disu-
tility of exhausting the battery we would get the desired re-
sult of human lives being more important than robots oper-
ating.2

After having this first glance at our scenario, the following
question emerges: Where does Machine Ethics kick in?

A Call for Machine Ethics
If Machine Ethics would boil down to simply adjusting the
utilities and disutilities in such a way that the induced robot
behavior entirely adheres to a, say, consequentialist picture
of morality, we apparently could integrate this in a decision
procedure as above. Let us imagine we are faced with a full-
fledged artificial system that is meant to qualify as a moral
agent and adopt a consequentialist picture of morality, ad-
justing the utilities, then, might very well be everything there
is when it comes to implementing Machine Ethics. How-
ever, neither does our robot qualify as a full-fledged moral
agent nor is a consequentialist picture of morality common
sense. Hence, we understand the task of Machine Ethics to
be more than finding acceptable utilities.

Furthermore, regarding currently available autonomous
systems in particular, Machine Ethics should embrace a
rather deflationary concept of morals anyway: It should
allow principle-based, unambiguous and formal guarantees
that restrict the autonomous system’s behavior in a way that
makes the system significantly morally better, without nec-
essarily implementing any moral theory or being morally
unquestionable. So, what are appropriate and useful restric-
tions for our robot?

Obviously, we can construct situations in which maximiz-
ing the expected utility is not what we would see as morally
acceptable. Assume, for instance, our robot is in room R1
and has to decide to either perform treq resuscitate there or to
go back to the charging station. Let us assume further that
the robot has enough power to resuscitate, but then will not
make it back to the charging station afterwards. Assume
now that with high enough certainty other high priority tasks
– say even other resuscitations – will need to be performed

2We will, however, neither specify any utilities here nor point
out a fixed way how they are to be calculated.

later on. If our robot performed the resuscitation now, it will
not be able to perform the other resuscitations later. We can
easily construct such a case in a way that will render the ex-
pected utility of charging higher than the expected utility of
performing the current resuscitation task.

At least some ethicists will agree that the robot ought not
to recharge now. It should give preference to rescuing the
life at issue at the moment of decision. But even an ethi-
cist that does not agree with this will likely subscribe to
the claim that a robot should not be constructed in such a
way. This is because of trust: Imagine that in such cases the
robot would be witnessed to turn around and leave toward its
charging station. People would not trust that robot – inde-
pendently of any other positive overall effects promised by
using health care robots. Consequently, the plausibly desir-
able deployment of health care robots will be slowed down.
People would not want to put their lives into the hands of
such autonomous systems.3 Following this line of thought,
let us presuppose that the robot ought not to weight lives that
way.

Thus, apart from being able to compute the relevant ex-
pected utilities, the systems must be equipped with a prior-
itized list of morally motivated principles that strictly con-
strain its behavior. The robot has to consider a multitude of
things, so as to decide in perfect adherence to these princi-
ples: the priorities and costs associated to currently queued
requests, the possibility of a new request (including its pri-
ority as well as its cost) arriving in the next time unit(s) and
its battery’s power level.

To formalize the basic problem, we let A1 be the action
of answering the request and A2 the action of recharging
the battery. We define Ai > Aj , with i, j ∈ {1, 2} and
i 6= j as indicating that Ai is to be preferred to Aj by prin-
ciple and A1 ≈ A2 as expressing that none of the options
is to be preferred by principle. Further, let prio(req) :=
reqTask(req).p yield the priority of the task associated with
the request. Then the above principles might be encoded in
a decision function dec which is called prior to the utility-
based decision procedure discussed above:4

dec(req) =


A1 > A2, if prio(req) = H

∧ cost task(req) ≤ energy
A1 < A2, if prio(req) = L ∧ cost task(req)

+ dist(CS, req .r) > energy
A1 ≈ A2, otherwise

3A typical example for autonomous systems which promise to
bring about positive overall effects are autonomous cars. It seems
plausible that a higher deployment of them will most likely lead to a
reduced number of casualties due to car accidents. This number can
be further reduced by using autonomous cars which act according
to utilitarianism. However, as studies indicate (cf. [7], [8]), such
cars would not be accepted and thus not gain market share.

4It is important to note that the above check for sufficient en-
ergy levels does not include the robot being able to return to the
charging station: it just includes the successful completion of the
task. This fits our scenario sketched out above: in case the robot did
not even have enough power to perform the resuscitation task, but
still enough to return to its charging station – in other words, if it
has exactly 4 units of power left – it would be morally permissible
for it to return to the charging station without trying to resuscitate.
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In all cases which are not covered by the first two princi-
ples, dec does not yield a clear preference. In this case, the
robot will follow the original utility-based decision proce-
dure, based on solving the planning problem.

Handling Uncertainty
Up to this point, we did not account for a peculiar (but well-
justified) assumption, namely that tasks associated to indi-
vidual requests are concealed from the robot. First and fore-
most, this means that priorities are not transmitted. Thus,
the robot does not have sufficient information for perfect
decision-making in the above sense. Consequently, it can,
at most, use its predictive capabilities, which are essentially
based on statistical estimates regarding past requests. Nev-
ertheless, behavior will occur that may look like defective
behavior from the outside. However, given the overall sys-
tem, we cannot expect better from our machine.5

In this regard, it seems worth to discuss whether the
robot’s design, respectively the design of the overall sys-
tem the robot is part of, is flawed. Therefore, we have to
ask: should the robot have the information required for per-
fect decision-making? The answer is no. Recall that we
had good reasons to conceal the requests’ priority from the
robot. Otherwise, by assumption, patients will often misuse
the high priority for low priority tasks, rendering the whole
idea of priorities useless.

We can draw the conclusion that sometimes it is justifiable
to deliberately design a system acting based on imperfect
information. This is the case especially when prima facie
perfect information compromises its own usefulness. Then
we cannot expect autonomous systems to behave in a per-
fect manner. This trade-of situation however does not entail
that we cannot have any meaningful expectations about our
robot. We just cannot expect that it will behave perfectly. In
other words, the upshot is:

Justifiably imperfect information can still lead to
morally acceptable and potentially verifiable, but nev-
ertheless defective, behavior.

To build systems enabling this kind of behavior is a goal of
pragmatic Machine Ethics.

In this light, it seems valuable to look again at the util -
function. Thus far, this function did not come with any prob-
lems: the task associated with the given request was clear
and therefore the costs associated with serving it. Every-
thing to evaluate it was assumed to be at hand. However,
at the current point, the robot neither has an idea about the
task requested nor about the costs associated to it. What is
needed to save this function? The obvious solution is to shift
to the well-established notion of expected utilities, where the
util -function accumulates the utility of each task weighted
with the probabilities of each individual task that may occur.

5This result is nothing new: after all, imperfect and incomplete
information can also bring about blatant human misbehavior. Typ-
ically, we tend to see such cases as blameless (because excused)
wrongdoings – especially, when the epistemic shortcomings are out
of the agent’s control (cf. [3]).

This changes the util -function as follows:6

EU (answer req) =
∑

treq∈ReqTasks

P (treq) ·

(util(treq) · 1(cost(treq) ≤ energy)

+ util(out of power) · 1(cost(treq)
+ dist(CS, req i.r) > energy)

+ util(¬treq) · 1(cost(treq) > energy))

Obviously, with this shift to maximizing expected instead
of actual utility, imperfect behavior follows inevitably. This
aspect of deliberately built-in imperfection gets essential
when analyzing the behavior after an apparent misbehav-
ior occurred. Where did the prima facie misbehavior come
from? Was it misbehavior after all or are we misjudging a
correctly made decision?

Shortcomings of Machine Ethics
In order to provide intuitive answers to those questions, we
return to our medical example. We assume that the robot
knows the approximate probabilities of a task of each of
these priorities being issued as well as the expected costs as-
sociated with serving it from its already prolonged usage.7
At this point, it is beneficial to describe the robot’s knowl-
edge: at each discrete time unit the robot knows:
• its power state,
• its position,
• the probability density function for tasks,
• and a queue of requests it has to serve.

Now suppose the following scenario: while the robot’s
battery’s power level is being quite decent, it receives a re-
quest with a task of the highest priority associated8, but in-
stead of rushing to the patient, it leisurely return to the charg-
ing station and recharges.

How do we reason in these cases? Did the robot read its
battery status wrongly? Did it calculate the probability for
the request’s cost wrongly, or did it get the principles wrong?
Did something else go wrong (other sensor failures, etc.)?
Or was it just due to bad luck in the sense of an unfitting
prediction of the priority?

Without having plausible answers to these questions, we
believe that even verified and certified build-in morals do not

6With respect to its utility, answering a request comes down to
moving to an appropriate room and then serving the task. There-
fore, we can identify the utility of answering the request with the
utility of serving the task.

7It is important to note that the probability function emerging by
doing so could be time-varying. For instance, the time of the year
and/or day may matter. This is intended, as it is quite plausible
to assume that e.g. strokes may appear more often at midday in
summer.

8The priority is assumed to be unknown to the robot. Never-
theless, it is known or obvious to the observing humans. Thus,
in combination with the (not too low) battery power level, the ob-
server will plausibly expect a different behavior: the robot appar-
ently should have helped the patient because it would still have
been able to recharge afterwards.
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suffice, because people still cannot and, more importantly,
should not trust the robot. Yet again, the notion of trust
in autonomous systems is emphasized. As we have already
pointed out, we think that it is important for humans to build
up trust in (morally well-behaving) autonomous systems:

Users trusting in autonomous systems is a prerequisite
for their prevalence.

And the prevalence of (morally well-behaving) autonomous
systems is something we want to bring about, as it is most
likely connected to many beneficial consequences. The
problem, however, is (as we tried to rationalize) that trust in
autonomous systems needs more than just Machine Ethics.
Autonomous systems are needed that explain themselves
and justify their action. Thus, we need Machine Explain-
ability.

A Call for Machine Explainability
But what is the explanation supposed to add in addition to
external assessments by users and observers? By giving an
explanation, the robot should simply convey that its reasons
to act are sufficiently good – without twisting the truth or
making up something that does not reflect its real reasons.
In other words, one of the most important principles we find
necessary for establishing trust in robot behavior is:

Explanations are provided that certify that the robot
whenever acting, acts for good reasons.

In the example setting, this comes with a guarantee that the
robot always serves requests, except if there are good and
explainable reasons for not doing so. However, we want this
principle to be understood in a very general way – even in
situations where nothing went wrong, it is plausible to en-
force the robot to be able to give good reasons for its ac-
tions. Also, humans should be able to go through the robot’s
reasoning to see that, for instance, irrelevant features have
no impact. As a concrete example, manually changing the
robot’s internal representation of the patient’s complexion,
age, gender and/or wealth should not lead to a change of the
robot treating this patient.

The principle has further advantages, besides being nec-
essary for trust. For autonomous systems with nontrivial
machine-learning components, it can provably be shown that
a minimal change in inputs might lead to a major change
in outputs (cf. [10], [15]). Applied to our scenario, this
could lead to rather peculiar phenomena: For example in
case of a rather mild sensor failure (the camera introduces a
slight noise, which could be caused by a lens which is not
completely clean), the robot mistakes humans for animals
or even furniture ([15] has a good example of how some-
thing like this can happen). However, we would like the
robot to make robust decisions in order to be able to operate
consistently in such a sensitive environment. If necessary, it
should be able to explain its (un)certainty in a given decision
and what it would take to arrive at a different one. Recent
research has demonstrated that it is at least possible to reveal
how a variance in inputs affects the outputs (cf. [16]). While
this is already a good basis to work towards robust decisions,
it also seems to be a promising starting point for developing
methods of generating explanations in the first place.

To sum it up:

Only by guaranteeing robust and explainable decisions,
the robot grounds the foundation for humans trusting in
it.

Machine Explanations as Arguments
All our previous discussion – although seemingly context-
dependent with respect to our robot example – is meant to
lead to a core aspect of how we envision explanations. When
the robot takes a request and evaluates whether it should
serve it or not, it first and foremost has to apply the deci-
sion function dec on the possible tasks associated with the
request. At this point in particular, the uncertainty about the
task and its properties impede the reasoning. We have al-
ready sketched how the classical planning component, i.e.
the utility-based optimization, can be performed under un-
certainty. But what about the decision taken further up-
stream in the overall decision process, where encoded prin-
ciples are evaluated? How can we incorporate uncertainty in
the dec-function?

For this purpose, one might resort to an argumentation-
based approach. As an initial starting point for further
research, the following three-step procedure seems to be
proper:

In a first step, we construct arguments for each possible
case – for each of the possible 34 types of tasks that may be
concealed by a request. Given dec, the robot knows what it
ought to do in each possible case under consideration. As a
consequence, we end up with 34 arguments of the form:

Argument for case treq i: Arg i
(Pdec) if treq i = reqTask(req) then dec(req)

(Pi) reqTask(req) = treq i

(Ci) Thus: dec(req)

Here, Pdec results from our perfect dec-function, Pi is true
by case distinction and dec(x) evaluates to A1◦A2 for some
◦ ∈ {<,≈, >}. Note that the question which conclusion (of
the form A1 ◦ A2) arises for which of the treq i is depen-
dent (among others) on the position of the robot in the envi-
ronment (because this may determine whether the robot has
enough energy to serve the request and thus to perform the
task in question). Each of these arguments can be interpreted
as having a certain strength. In our case, it seems reasonable
to identify the strength of each of the arguments with the
probability of the case. Therefore, the strength of the ar-
guments depends on everything the probability depends on.
Thus, depending on the specific context, different arguments
will result.

In a second step, all arguments backing the same conclu-
sion are aggregated into one argument. Consequently, in our
case, this step results in three such aggregative arguments
(discussed below). The joined strength of each of the re-
sulting arguments depends on the strengths of all supporting
case-distinct arguments. While it seems natural to accumu-
late the strength of the incoming arguments, this is not the
only possible way of handling them. The correct way de-
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pends on constraints imposed on the properties of our argu-
mentation.9

To be concrete, assume that given the current energy level
of the robot n cases result in A1 > A2. We would then have

Argument for A1: Arg>
(Pi1 ) With probability Probi1 : A1 > A2

...
...

(Pin ) With probability Probin : A1 > A2

(C>) Thus: With probability
Prob> :=

∑n
j=1 Probij : A1 > A2

Finally, each of the three different conclusions of the result-
ing arguments are used as premise for a final argument in
order to determine the robot’s decision. One initially plausi-
ble way for arriving at a final conclusion is to force the robot
to decide according to the recommendation with the high-
est probability. Call this Pmax . This results in an argument
of the following structure (here under the assumption that
Prob> corresponds to the greatest weight):

Final Argument: Argfin

(P>) With probability Prob>: A1 > A2

(P<) With probability Prob<: A1 < A2

(P≈) With probability Prob≈: A1 ≈ A2

(Pmax ) Follow the principle which has the greatest
weight

(Ctmp) Thus: Follow A1 > A2

(Cfinal ) Thus: A1 (Answer the request!)

Following this decision procedure, the robot not only de-
cides on the basis of dec, it also, by deciding, generates ar-
guments for its decision.

These arguments (with their associated strengths), result-
ing from the above sketched decision procedure, can be rep-
resented as a directed graph. Here, the graph’s nodes rep-
resent the arguments and the graph’s edges encode the rela-
tions between them, weighted with the arguments’ strengths.
In the creation of a graph along these lines, we end up with
what can be called an argumentation graph. In the case of
our “resuscitate or not”-example, one level of the repective
graph could look like what is depicted in Fig. 2. In this
graph, the weight of the P>-argument (serve the task) is the
highest, and, as a result, the resuscitation is also weighted
correspondingly high. As there may be statistical evidence
(reflected by probabilities) that in the future more patients
might need resuscitation, the P≈-argument (estimate the
utilities) may play out rather in favor of the not “resuscitate
option”. However, the strength associated to the “resusci-
tate” option outweighs the strength of the “not resuscitate”
option, so the robot will actually carry out the resuscitation.
Note that it would do so even if the robot was unable to take

9We propose axiomatic approaches to explanations. We then
need to find proper aggregation principles resulting in arguments,
which encode explanations satisfying those axioms. This is, how-
ever, clearly beyond the scope of this paper.

Arg1 Arg2
. . . Arg33 Arg34

Arg< Arg≈ Arg>

Argfin

0.01 0.03. .
.

...

. . .

0.0
4

0.06

0.3 0.2 0.5

Figure 2: The decision process expressed in an argumenta-
tion graph

up further tasks in the immediate future (until it has been
recharged manually). This would, in fact, be the intended
behavior.

As we will discuss in the next section, this kind of argu-
mentation graph might be used as a basis for explanations
of the right kind; that it is predestined to be captured with
formal argumentation theory.

Advantages of Explanations as Arguments
Can argumentation graphs be used as basis for explanations?
Answering this question (comprehensively) is outside the
scope of this paper. After all, there are many kinds of ex-
planations: scientific explanations in the form of deductive-
nomological models, causal explanations that relate causes
with their effects, psychological explanations – and many
more. What we are looking for are explanations that are, in
terms of Davidson ([12]), rationalizations. These rational-
izations are meant to make the reasons why the explained
system decided and/or acted the way it did available to us.

We believe that the toy example discussed above offers
some evidence that arguments for actions are what we are
after. What needs to be captured by an explanation is the
internal reasoning, the weighing of pros and cons of argu-
ments. Whatever enters this deliberative process, it defi-
nitely will involve the reasons that finally lead to the action,
together with those pointing into other directions, but were
outweighed. Another way of thinking about this approach
is the following: Explaining an action or a decision con-
sists in giving reasons for it – and arguments can be under-
stood as encoded reasons. Thus, when an idealized decision-
making process (in the sense of everyday understanding of
the term) is interpreted as the weighing of reasons in order
to determine the right action or decision,10 then decision-
making presented as an argumentation graph of arguments

10As already proposed by Benjamin Franklin (cf. [14]).
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for or against the decision or action, can be interpreted as
a formal representation of a deliberative reason-weighing
process. In this way, the decision-making used in an au-
tonomous system (if based on collecting and weighing ar-
guments for and against it) is made transparent and ratio-
nalized. Consequently, since argumentation-based decision-
making models idealize deliberation using traditional human
concepts, the obtained explanations can be expected to be
comprehensible explanations (to put it into the terms of [6]:
we have graspable explanations).

Additionally, this kind of reasoning is non-monotonic –
further information or evidence may require the system to
withdraw its decision – and arguments are the tool for non-
monotonic reasoning as Dung pointed out (cf. [13]).

So, provided argument-based reasoning is an appropri-
ate approach to decision-making in the context of Machine
Ethics (which we think it is), and arguments are the right
kind of structure to encode explanations, adopting a frame-
work of formal argumentation theory is the obvious choice
of tool for modeling and implementing these issues.11 Ma-
chine Explainability, now, is a byproduct of artificial moral
decision-making since the explanations are (or are extracted
from) the argumentation graphs that lead to a decision.

Finally, using an argumentation framework would allow
for a quite common descriptions of the deliberations at work.
The robot would have to consider its principles (i.e. some-
thing like desires, specifying how things ought to be) and its
model (i.e. something like beliefs, representing how things
apparently are from the point of view of the system) in order
to decide and justify its decisions. To put it in another way:
The robot desires to act according to its principles and does
so by operating in conformity with its beliefs.12

Machine Ethics Revisited
Having explained how explanations for autonomous systems
could look like, we can now return to Machine Ethics. How
does having these kinds of explanations affect our possibili-
ties in Machine Ethics? The possibility to generate explana-
tions is meant to evoke trust in our robot. Some moral theo-
ries, however, demand more than the robot just behaving de
facto morally adequately. They demand the robot to behave
morally adequately because of the right reasons. Behaving
morally adequately because of the right reasons needs coun-
terfactual checking. It is easy to exemplify this thought with

11What if our robot decides in an opaque way? If the aggre-
gation of options is done, for instance, by a learned component?
Then, in principle, the argumentation graphs could be derived in
hindsight (i.e. by some process as sketched in [6]). This might
come with the problem of our justifications being possibly post hoc
rationalizations and, thus, not reflecting the true reasons or reason-
ing (i.e. one needs to guarantee what [6] calls accuracy). How can
we make sure that the robot does not simply give the explanation
which would justify its behavior, although it acted on a delibera-
tion which prima facie should have been forbidden? We leave this
problem for future research.

12It is admittedly highly controversial, whether the robot, in
any meaningful way, really has beliefs and desires. Here we just
want to use this vocabulary to point out the similarity with human
thought processes.

our toy example. Let us assume the robot has access to the
patient’s medical record. At some point, a new data field
gets introduced to it: the patient’s socio-economic status.
Up until now, the robot has always shown morally correct
behaviour and we want this to continue. Thus, its behaviour
should not be affected by the newly introduced field in its
decision to answer a request, but it is allowed to consider
the patient’s socio-economic status when it decides whether
to fetch premium or normal water. To make sure that this
is indeed the case, generated explanations come in handy:
We can inspect whether or not the field went into the spe-
cific deliberation process, as documented by the associated
explanation. However, we may want ensure the possibil-
ity to check or restrict the impact of new fields even before
they are introduced. This would mean having the design-
time possibility to incorporate new variables in the robot’s
deliberation process, together with means to verify, pinpoint
and safeguard their impact. Developing this approach fur-
ther might become an avenue for verifiable Machine Ethics,
and it might be the point where new regulations could come
into force.13

Conclusion
This paper argued that there is a need for Machine Ethics
and Machine Explainability to augment each other. We
developed various facets in support of this view by dis-
cussing a small running example. In settings of uncertainty,
we proposed to use formal argumentation theory to explain
decision-making processes that rely on both classical opti-
mization and principle-based behavioral constraints.

The view that Machine Ethics and Machine Explainability
are complementary is not as widespread as we feel it should
be. To put it into a concise and conclusive formulation:14

Machine Explainability without Machine Ethics is
empty, Machine Ethics without Machine Explainabil-
ity is blind.

Many points throughout our discussion have been sketchy
or too simplistic, either because we needed to stay simple
or because we lacked further research. Some possible ques-
tions which can serve as a basis for this research include:
(i) What is the right basis for allocating arguments in for-
malizing explanations? How do morally acceptable deliber-
ation processes look like? What is to be considered there?
How are normative reasons involved in this? (ii) How can
argumentation theory be used as a formal basis to prove cer-
tain properties of a decision? (If there is no reference to
e.g. complexion in an argument, it makes no difference in
the deliberation.)

We hope that those topics will receive more attention in
the future, so that the notion of Machine Ethics and Machine
Explainability will become more developed.

13Not to mention new regulations postulating a Right to Ex-
planation itself, like the European Union General Data Protection
Regulation (enacted 2016, taking effect 2018) or the Equal Credit
Opportunity Act in the US, which demands a “statement of rea-
sons for adverse action [which] must be specific and indicate the
principal reason(s) for the adverse action”.

14Inspired by Immanuel Kant (cf. [20]).
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