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Abstract. The diesel emissions scandal has demonstrated that real-
world behavior of systems can deviate excessively from the behavior
shown under certification conditions. In response to the massive reve-
lation of fraudulent behavior programmed inside diesel cars across Eu-
rope, the European Union has defined a procedure to test for Real Driv-
ing Emissions (RDE) [22]. This is gradually being put into force since
September 2017 [23]. To avoid misinterpretation, the RDE regulation
comes with an informal but relatively precise specification that spells
out in how far a real trip, i.e., a trajectory driven with a car, constitutes
an RDE test, or not. This paper presents a formalization of the RDE
test procedure which is used to monitor for RDE violations at runtime
and thereby fosters perspicuity. To this end, we extend the stream-based
specification language LoLa [51I0] with sliding aggregation windows. We
evaluate the approach experimentally using data from real trips and fur-
ther present a low-cost variant of the RDE test which can be conducted
without expensive test equipment solely with on-board sensors.

Keywords: Automotive Testing - Runtime Monitoring - Specification
Languages - Software Doping - Perspicious Systems.

1 Introduction

The recent diesel emissions scandal has put the problem of doped software [0]
in the spotlight: proprietary embedded control software may decide to exploit
functionality offered by a device against the best interest of the device owner or
of society, in favor of interests of the manufacturer. Concretely, the controllers
embedded in many diesel-powered cars are programmed in ways that induce
substantial environmental pollution, in violation of many emission regulations
around the world. This escapes detection through official test procedures because
the behavior is programmed to surreptitiously change whenever the car is deemed
to be in a test setting. This is easily possible, since, at least so far, emission
test procedures were carried out in a precisely defined environment, and were
following a precisely defined driving profile, with the car under test fixed on a
chassis dynamometer. This precision is needed so as to ensure reproducibility of

*This research was supported in part by the Saarbriicken Graduate School of Com-
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the tests and to enable comparisons of exhaust footprint and fuel consumption
across different car models.

For about a decade, the binding standard to be used during type approval of
a new car model has been the New Furopean Driving Cycle (NEDC), which has
recently been replaced by the Worldwide harmonized Light vehicles Test Proce-
dure (WLTP) [23]. The latter is considered to be more realistic, but it still shares
the problematic characteristics of the NEDC in that the WLTP driving profile is
very much a singularity, and therefore easy to identify by control software doped
by the manufacturer. To overcome this conceptual problem, the European Union
has lately defined a new procedure to test for Real Driving Emissions (RDE).
This comes with broad certification conditions for tests which are to be con-
ducted under real-world conditions, on public roads and during working days.
The RDE is gradually being put into force since September 2017. The RDE
complements the WLTP—while the RDE is intended to measure emissions un-
der real-world conditions the WLTP is intended to measure fuel consumption in
a reproducible manner enabling comparability.

To avoid misinterpretation, the RDE regulation comes with an informal but
relatively precise specification document [23] that spells out in how far a road
trip, i.e., a trajectory driven with a car in-the-wild, constitutes an RDE test,
or not. This specification contains constraints on the route, allowed altitude
and speed, and on the dynamics of the driving profile, that make use of per-
centiles. The specification also accounts for dynamic conditions like the weather.
Conducting an RDE test requires a PEMS, a Portable Emissions Measurement
System. This is a device that measures the emissions at the tailpipe of a vehicle
and is small and light enough to be carried inside or moved with the vehicle
during the test drive. The unit price of a PEMS is in the order of $250,000.
Commercial software such as “AVL Concerto for PEMS” is used to effectuate
the measurement, collect the relevant data, and to decide if the test performed is
indeed an RDE or not [I]. As usual for proprietary software, the source code of
AVL Concerto and similar programs is not available, so there is no direct check
available to reassure the verdict of the program after a test drive.

This paper phrases the question of RDE compliance as a runtime monitoring
problem. Its central contribution is a formalization of the RDE regulation. For
this, we extend the stream-based specification language LorA [10/5] with slid-
ing aggregation windows enabling the efficient computation of percentiles and
moving averaging windows as needed by the RDE regulation.

We exploit this formalization in a low-cost variant of the RDE test procedure
for NO, emissions which only uses on-board sensors instead of an expensive
PEMS. The hardware cost of our system is in the order of $100. With our openly
available formalizatiorﬂ at its core, the system implements the blueprint of an
independent emission control and compliance system which we use to empirically
monitor real vehicles under real driving conditions. The empirical results we can
report are very encouraging. We discuss the pros and cons of our solution. In

LAll details of the monitor, including the source code of the LOLA specification and
RDE trip data, can be found at https://www.powver.org/real-driving-emissions/.
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addition, we show that our extension of LOLA can be compiled into plain LOLA,
albeit at the price of losing succinctness.

The contributions of this paper are an extended version of the stream-based

specification language LOLA with sliding aggregation windows, an elaborate
study on the formalization of the RDE test procedure using this extended ver-
sion of LOLA, and the presentation of experimental results which make use of a
low-cost version of the RDE without expensive equipment.
Organization of the paper. In Section [3| we briefly introduce Lora [10] and the
RDE regulation [23]. In Section {4| we extend LorLA with sliding aggregation
windows. In Section [5| we present the RDE test procedure and its formalization
displaying the capabilities of the freshly introduced sliding aggregation windows.
In Section l6| we evaluate the RDE formalization and the thereof constructed
monitor experimentally using data from real trips. Furthermore, we show how a
runtime monitor can be used to continuously supervise cars in use.

2 Related Work

We implement our RDE monitor using an extended version of the stream-based
specification language Lora 2.0 [5II0]. LoLA can express complex temporal prop-
erties referring to the past and the future. It can be used for checking if single
traces satisfy given properties and generating statistical measures. LOLA allows
the computation of output streams, which are instances of templates specify-
ing when and how streams are computed. Triggers are used to define boolean
properties based on input and output streams. LOLA 2.0 supports instance ag-
gregation functions (e.g. exists, forall, count, ...) for output streams enabling
reasoning about all active instances of a certain stream template.

Recently, LoLA 2.0 has been extended to RTLOLA, which supports real-
time properties [I1] and is especially useful when data does not arrive with
a fixed frequency. The RDE, however, is based on test parameters provided
with a fixed sampling frequency. Statistical measurements for real-time data
have been realized by using sliding aggregation windows over discrete real-time
intervals, and due to the real-time semantics, arbitrary many sample points.
Currently, no implementation of RTLOLA is available. In our work, we follow
a similar approach by extending LoLaA with sliding aggregation windows over
a fixed number of data points. In LOLA 2.0, aggregation functions can only be
used to aggregate data of several instances at the current time, whereas sliding
aggregation windows aggregate data from an interval.

Temporal logic [I5I16] has been extended for real-time systems in MITL [2].
Signal Temporal Logic (STL) [I3I14] introduces real-valued signals to MITL.
The logic can specify past or future behavior. However, unlike LOLA, it cannot
relate values of the stream at different points in time. Further, it is not possible
to generate the statistical measures required to validate an RDE test. Hence, it
is not suitable for encoding the RDE regulation. An approach to extend STL for
properties, that need a global view on the data, has already been proposed [§].



Urban Rural Motorway

Ratio Range [%)] [29, 44] [23,43] [23,43]

Speed Range [km/h] |[0, 60] 160, 90] 190, 160]

Distance [km] > 16 > 16 > 16

Additional stop percentage > 100km/h for at
Constraints between 6% and least 5mins

30% of urban
time; average
velocity in range

[15, 40]km/h
Temperature [K] moderate: [273,303]; extended: [266,273[ or 303, 308]
Altitude [m)] moderate: < 700; extended: |700, 1300]
Speed Limit [km/h] 145 (]145,160] for at most 3% of motorway time)

Table 1. Some constraints for the urban, rural and motorway phase of RDE tests.

The semantics of temporal logics has been extended from boolean satisfaction
of a formula to robustness values [QI7I17]. Positive numbers indicate that the
property is satisfied, a negative value shows the opposite. Falsification techniques
for reactive systems try to make such a value smaller to eventually make it
negative and disprove the property [3].

Efficient algorithms for the incremental computation of sliding window ag-
gregations have been extensively studied [I2]. This work allows us to make use
of these algorithms within LOLA using a standardized interface.

Currently, RDE tests are conducted using Portable Emissions Measurement
Systems, e.g., [1]. The commercial software that is delivered with these systems
includes ready-to-use RDE monitors.

3 Preliminaries

3.1 Real Driving Emissions

Although the RDE regulation specifies broad testing conditions, there are still
some constraints which should guarantee that a trip is close to real-driving condi-
tions making it neither too easy nor too hard for the vehicle to pass the test. For
this, valid RDE drives take 90 to 120 minutes and traverse three phases: urban,
rural, and motorway. The regulation defines minimum and maximum permissi-
ble ratios of each phase w.r.t. the whole test distance. Moreover, the regulation
defines speed constraints, minimum distances, ambient conditions, and more.
Table [I] shows some of those constraints which we will formalize in Section [l

3.2 Lola 2.0: An Introduction

Lovra 2.0 [I0] is a stream-based specification language based on its predecessor
Lora [5]. This paper uses LOLA 2.0, however, for readability reasons we draw



this distinction explicitly only where it is relevant and otherwise refer to LoLA
2.0 simply as LOLA. This section aims to give a brief introduction to LoLA, for
further details we refer to the original publications [510].

LoLA provides an evaluation model based on synchronous streams where
output streams are computed based on input streams. To this end, a LoLA 2.0
specification comprises a declaration of NV typed input stream variables ¢; and
M typed parameterized output stream variables s; that get assigned stream
expressions which specify how the respective output streams are computed from
values of the input streams, output streams, and parameters.

Input stream variables are declared by

input T; t;

where T; is the type of input stream variable t;.
Parameterized output stream variables are declared by templates of the form

output Tj s;j(p1:T7,...,pe:T}) ¢ inv: Siw; €Xt: Sem; ter: Sier
i= e(t1, ., EN,S1ye ey SMy D1y .- Pk)

where T} is the type of output stream variable s;. Concrete streams s;(«), i.e.,
instances of s;, are identified by parameter valuations o € le X ... X T,g. Each
instance has a local clock. Instances s;(«) are invoked with local time 0 whenever
a tuple a appears on the invocation stream s;,, for which there does not already
exist an instance. The local time of an instance advances with an increment of 1
whenever true appears on the boolean extension stream s.;; which is required
to have the same parameter signature P= (pr:TY,...,px : T}) as the template
for s;. Whenever the extension stream is true, a new value is computed by the
stream expression e over stream variables and parameters which is then appended
to the stream. Otherwise, the previous value remains valid and the local time
does not advance. If true appears on the boolean termination stream s, again
with signature ]3, the instance is terminated. Intuitively, the invocation of a new
instance creates a new output stream that produces values with each tick of its
local clock and which ends on termination of the instance. An instance is alive
starting with its invocation until its termination. Input streams are alive from
the beginning until termination of the monitor.

In addition to the input and output streams, there is a stream producing the
constant empty tuple in every global step. If streams without parameters are
defined, then this stream is used as the invocation stream which thus is omitted
in the template. Additionally, if s..; is omitted instances are extended with every
global step and if s, is omitted instances are never terminated.

Stream expressions are defined inductively. Constants ¢ and parameter vari-
ables p; are atomic stream expressions. Let eq,..., e, be stream expressions of
types T1,...,Tk. If f is a k-ary function of type T3 x T X ... x Ty, — T, then
flei,...,er) is a stream expression of type T. If b is a boolean stream expres-
sion and 77 = T5, then idte(b, 61,62)E| is a stream expression of type T;. Let

2jte is short for if-then-else



k € Z, d be a constant of type T7, and s be an output stream variable. Then
s(p)[k, d] is a stream expression of type Ty where j are parameters comprised of
atomic stream expressions matching the signature of s. Further, for an instance
aggregation operator O, O(s) is an expression.

Semantically, constants, parameter variables, functions, and if-then-else con-
structs are defined as usual. The semantics of offset expressions s(p)[k,d] are
defined as follows: if the parameter tuple p evaluates to «, then s(p)[k, d] is the
value of the instance s(«) at local time ¢ 4+ k where ¢ is the local time of instance
s(«) at the global time step that the expression is evaluated. If the instance s(«a)
is not alive at the global time the expression is evaluated or if the local time ¢+ &
refers to a point before the invocation or after the termination, the value of the
offset expression is the default value d. Instance aggregation operators compute
properties about all instances of a template. For example, COUNT(S) returns the
number of active instances of output stream template s.

Notice that input stream variables can be used wherever output stream vari-
ables are expected by copying the input to an output stream.

Lora allows the declaration of triggers,

trigger ¢

where ¢ is a boolean stream expression. The trigger is activated if ¢ becomes
true. Triggers usually indicate the violation of a property.

4 Sliding Aggregation Windows

In the previous section, we briefly introduced the RDE regulation and the LoLA
specification language in which we aim to formalize the regulation. The RDE
regulation assesses the overall driving dynamics of a trip in terms of the 95%
percentile of speed times positive acceleration. In this section, we extend LOLA
2.0 with sliding aggregation windows which enable the efficient computation and
perspicuous specification of percentiles.

In [I1] LorA 2.0 has been extended with real-time sliding aggregation win-
dows which allow for efficient aggregation over windows comprising an un-
bounded amount of values specified in terms of real-time intervals. Our extension
of LoLA 2.0 complements this extension by allowing the computation of aggre-
gated values over windows of fixed width in terms of values taken into account.

For an introductory example, see the definition of stream vags

output float wvags := percentile95(val-n:0 | a_is_positivel)

which computes the 95% percentile of speed times positive acceleration over
the last n samples. In general, an aggregation window comprises an aggrega-
tion function (percentile9s) and a window expression which is composed of a
parameterized stream variable (va), a window specifier (-n:0), and an optional
condition (a_is_positive).



() 4] -[1]3] 2]

©(B) T 1T
sel(a) Al T# 3T H#]
aggregate(a) 41417 3

Fig. 1. Example of an Unrolled Aggregation Window: sum(s(a)[—3:0 | ¢(B8)])

Intuitively a sliding aggregation window aggregates over those values within
the bounds of the window specifier for which the condition is satisfied by applying
the aggregation function to the sequence of these values.

Formally, we extend the syntax of LOLA 2.0’s stream expressions with sliding
aggregation window expressions of the form

F(s@o) i | o)) (1)

where f : T* — T’ is an aggregation function mapping possibly empty sequences
of values of type T to a value of type T’ s(p;) is a stream variable of type T
with parameters py, 4,j € Z with j > ¢ define the window boundaries, and ¢(py)
is a boolean stream variable with parameters p;,. We further require that the
parameters pg, only contain parameter variables also occurring in p; or constants,
which relates exactly one ¢ instance to each s instance. The type of the whole
expression is the target set T’ of the aggregation function.

As we will show in the following, technically the introduction of sliding ag-
gregation windows does not allow us to express any new properties, because
aggregation windows can be rewritten to ordinary LOLA 2.0 syntax. Neverthe-
less, they have the advantage that they are much more succinct making them
more intuitive and easier to write than their rewritten equivalents. Thereby they
foster perspicuity of the specification—for which we strive.

4.1 Explicit Unrolling Semantics

We start with a naive rewriting rule for an explicit unrolling of the sliding ag-
gregation window into the syntax of LoLa 2.0.

To unroll an aggregation window expression we define a new n-ary function
f" where n is the window width, i.e., n = j — 4, and manually hand over every
value of the respective s instance to f’ for each position in the window where
the condition holds using an offset. To this end, we introduce a new unique value
# to the type of s and define an auxiliary stream template sel whose instances
run in tandem with the respective instances of s. Whenever a new value for an
s instance becomes available, we extend the respective sel instance with this
value if the condition holds, otherwise with #. See Fig. [l| for an example.

output T# sel(ﬁ) T inv: Sipw; ©Xt: Sept; ter: Sier
ite (p(py,") [0, falsel, s(p)[0,#], #)




Functions Space Update Cost

sum, avg, width — O(n) worst-case O(1)

count, any, all  O(n) worst-case O(1)

max, min O(n) amortized O(1)
median, percentile O(n)  worst-case O(logn)

Table 2. Aggregation Function Costs as a Function of Window Size [12]

The invocation, extension, and termination streams are the same as for the
stream template s we aggregate over, i.e., the instances s(«) and sel(«) for pa-
rameter valuation « are invoked, terminated, and extended together. P denotes
the parameter signature of s and p passes those parameters on to s to select the
corresponding instance of s. By requiring that p;, contains only parameters also
appearing in p; or constants, we can reconstruct the parameters for ¢ using only
the parameters passed to sel. This reconstruction is denoted by p;/.

The result are streams that only contain those values of the respective s in-
stances for which the condition holds. Notice that, although we specify a default
value for s(p) in the consequence of the conditional, s(p) will never be undefined.
It remains to pass those values with explicit offsets to the function f’.

output T aggregate(ﬁ) : inv: Siny; ©Xt: Sext; ter: Sier
fl(sel(P) [i+1,#], sel(p) [i+2,#], ..., sel (P [j,#1)

The function f’ computes the value of the aggregation using f by constructing
a sequence from its parameters in parameter order ignoring those that are #.
Now, the aggregation window can be rewritten as follows

flsPa)li:j | w(py)]) ~ aggregate(p)[0, f'(#")]

where f/(#™) = f(e) is the aggregation function’s default value in case there is
no s instance for the respective parameters—which implies, that there also is no
instance of aggregate for the respective parameters.

4.2 Efficient Aggregation Windows

With explicit unrolling, we can rewrite sliding aggregation windows to the usual
syntax of LOLA and hence use the LOLA monitoring algorithm as is. However,
the standard monitoring algorithm of LOLA will recompute the aggregation func-
tions from scratch for every window change, although many aggregation func-
tions like summation or average allow for a much more efficient incremental
updating strategy [I2/11]. To this end, we present a more sophisticated rewrite
rule which utilizes incremental updates and thereby allows us to compute aggre-
gation functions much more efficiently. Table |2| provides an overview of selected
aggregation functions as well as their space and update costs.



We follow [12] and define an abstract interface to aggregation algorithms
that reuse intermediate results. For an aggregation function f : T* — T’ let D
be an intermediate aggregation domain and € € D a unique initial value. We
define three operations on intermediate aggregation values, insert : D x T — D
adds a new value of type T to an intermediate aggregate, evict : D x T — D
evicts an old value from an intermediate aggregate, and lower : D — T’ lowers
an intermediate aggregate into an aggregated value of type T”. Insertions and
evictions happen in FIFO order, which will be guaranteed by our translation.
For each aggregation function, we choose an aggregation algorithm.

Computing aggregation windows over streams with the defined interface is
then straightforward. For each window one constructs the sel stream template
as given in Section [I.I] Instead of computing the value with aggregate from
scratch for every change, one stores an intermediate aggregation, inserts new
values v # # whenever they become available on the corresponding sel instance
and evicts old values v # # when they shift out of the window. This algorithm
can be directly implemented within LoLA 2.0 itself:

output D ins<ﬁ> : inv: Sinw; ©Xt: Sept; ter: Sier
ite(sel[j,#] # #, insert(aggl-1,€e], sellj,#]), aggl-1,€l)
output D agg(P) : inv: Siny; ©Xt: Sest; teTr: Ster :=

ite(sel [i,#] # #, evict(ins[0,e], sell[i,#]), ins[0,€])

The stream template agg produces instances running in tandem with s in-
stances and stores the intermediate results. First, the stream ins inserts new
values appearing on the respective sel instance. Then, if a value is sliding out
of the window, it is evicted by the agg stream. With this, rewriting aggregation
windows is possible as follows:

f(s@)li: 7 | ¢(pg)]) ~ lower(agg(ps)[0, €])

Rewriting the specification instead of extending the monitoring algorithm
has the advantage that the core of LoLA 2.0 stays small and is, therefore, easier
to implement and reduces the chance for bugs. Additionally, our extension can
be used directly with existing implementations of and optimizations for LoLA
2.0. Using the standardized interface suggested in [12] we utilize existing research
on sliding aggregation windows.

5 Formalizing Real Driving Emissions

We now have everything needed to formalize the RDE test procedure. The reg-
ulation is a contract imposing emission limits whenever a trip is a valid RDE
test. We split our formalization into two main parts where the first part de-
cides whether a trip qualifies as a valid test and the other assesses whether the
emission limits are violated.

We use a trigger that indicates an RDE violation



trigger is_valid_test & emission_limits_exceeded

when the trip is a valid test but the emissions are exceeded. It remains to define
boolean streams indicating a valid test and exceeded emissions.

As we will see our extension of LOLA provides a very intuitive and natural
way of formalizing the RDE test procedure. The specification is structured as
follows: We first declare input streams for all test parameters, we then formalize
the various preconditions of the regulation to determine the validity of a trip.
Finally, we formalize the computation of the distance specific emissions and
whether the respective emission limits are exceeded, or not. We describe selected
and interesting parts of the formalization® in this section.

5.1 Test Parameters

As the test parameters are provided as synchronous streams with a fixed sam-
pling frequency f prescribed by the regulation, we can directly declare them as
inputs to our monitor. To asses whether a trip meets basic requirements regard-
ing its route and ambient conditions, we need the speed v of the vehicle, the
altitude, and the ambient temperature. To calculate the emissions, we further
need the concentration of the various regulated emission gasses and the Exhaust
Mass Flow (EMF), i.e., the weight of the exhaust emitted per second. For this,
we declare an input stream gas_ppm for each regulated emission gas and another
input stream exhaust_mass_flow for the EMF. Given the gas concentration and
the EMF we can compute the mass flow of the respective gas. Usually, all inputs
come from the On-Board Diagnostics II (OBD-II) [19] interface and the PEMS
which includes a GPS tracker. Given an appropriately equipped vehicle, the NO,,
concentration can be obtained via OBD-II. Since the early 2000s all new U.S.
and European cars are equipped with an OBD-II port [18]. However, an NO,
sensor is not mandatory yet.

5.2 Preconditions

The preconditions a trip shall satisfy to qualify as a valid test are divided into trip
requirements, stipulating basic requirements regarding, for instance, the route
and the velocity, ambient conditions, stating acceptable temperature and altitude
ranges, overall trip dynamics, encompassing the driving behavior, and dynamic
conditions, accounting for road grade, weather, and other dynamic factors. While
the trip requirements and ambient conditions are relatively straightforward to
specify, the overall trip dynamics and dynamic conditions are more of a challenge.

Trip Requirements After declaring the input streams we formalize the trip
requirements as specified in Section 6 of ANNEX IITA of the RDE regulation.
Compare Table [I] in Section [3] for an overview of the constraints and our full
formalization for further details. To formalize the trip requirements, we first
compute useful auxiliary streams e.g.



v <= 60 // 6.3
avg(v[-N:0 | is_urban])

output bool is_urban
output float u_avg_v

which we use to comprehensively assert the trip requirements. According to the
regulation, values need to be binned according to the current speed in one of
three bins, urban, rural, or motorway. The stream u_avg_v computes the average
velocity in the urban speed bin using a sliding aggregation window. N is a constant
denoting the maximal number of samples an RDE trip could have. An RDE trip
must not last longer than 2h which is N = 7200 f samples. Computing the average
only over that sampling interval instead of the whole data allows us to specify
a monitor considering only the temporally maximal suffix of a trip. A trip with
more than N samples is not a valid RDE trip in any case.

We use the auxiliary streams to compute a boolean stream which is the
conjunction of all trip requirements, for instance, for the average velocity of the
urban segment: 15 <= u_avg_v <= 40.

Ambient Conditions The RDE regulation specifies the ambient conditions in
terms of temperature (in Kelvin), e.g., 273 <= temperature <= 303, and altitude
ranges which can be directly translated to boolean formulae.

Overall Trip Dynamics The overall trip dynamics asses the drivers driving
behavior. They require that the driver neither drives too aggressive nor too
restrained. To this end, they require to compute the 95% percentile of speed
times acceleration for acceleration values at least 0.1 for each speed bin. We
show this exemplary for the urban speed bin:

output float a := (v[+1,0] - v[-1,0]) / (2 * 3.6)
output float va := (v *x a / 3.6)
output bool u_a_ge_01 := a >= 0.1 & is_urban

output float u_va_pct :=
percentile95(val[-N:0 | u_a_ge_01])

These values can be efficiently computed with an update cost of O(logn) and
storage cost of O(n). Although, in general specifications with future references
are not efficiently monitorable [I0] this does not hold here, as v is extended in
every step and cannot delay the computation indefinitely. We again use these
values as part of boolean equations as specified in the RDE regulation, e.g.

u_va_pct > (0.136*u_avg_v + 14.44)

which invalidates the trip if less than 95% of the va values are below the given
threshold, i.e., if the driving was too aggressive.

Dynamic Conditions The dynamic conditions encompass road grade, weather,
and other factors that may influence the performance of the vehicle under test,
but are out of control of the driver. They serve as built-in plausibility checks
based on the reproducible CO5 measurements of WLTP. To validate the dy-
namic conditions one considers variable width windows where a new window is



instantiated with each sample point. Owed to the parameterized stream tem-
plates of LoLA 2.0 this can be expressed nicely by:

output bool win_completed(start: int)
inv: sample; ter: win_completed
:= total_co2_mass - win_start_co2(start) >= MCO2REF

output float win_v(start: int)
inv: sample; ter: win_completed := v

output float win_avg_v(start: int)
inv: sample; ter: win_completed
:= avg(win_v(start)[-N:0])

With each sample a new window is invoked. The values of these windows are
extended in each step, and a window is completed in the step where the CO5
emissions so far generated are at least a reference value determined by the WLTP
test results. The RDE requires to compute the distance specific emissions for each
window as well as the average speed. The earlier introduced sliding aggregation
windows can be used to compute these values. Each window is then checked for
normality by comparing the distance specific CO2 emissions given the average
speed to a reference curve. If at least 50% of windows are normal, the test is
considered valid.

In the above, we are formalizing the computation of the values to demon-
strate that we are indeed able to cover dynamic conditions faithfully with our
formalization. However, our actual experiments do not include the checks re-
garding these conditions, which merely serve as plausibility check. The practical
reason is that the needed WLTP values for our test vehicles were unavailable to
us.

Calculating Emissions As already stated above the emissions are calculated
using the exhaust mass flow and the gas concentrations. The emissions are then
accumulated and based on the distance of the trip the distance specific emissions
are calculated which are compared to the respective threshold [21], e.g.:

output bool nox_exceeded :=
ite(d > 0, sum(D_nox_mass[-N:0]) / 4, 0) > 0.08

5.3 RDE Violation

Given the boolean formulae of the preconditions, we compute whether the trip
is indeed valid. Given the boolean formulae indicating whether the various reg-
ulated emission gases exceed the thresholds, we compute whether the emissions
are exceeded. This gives us the boolean streams needed for our trigger.
Monitoring for RDE violations allows us to asses whether a car is compliant
or not. In addition, one can ask the question of how difficult is it to detect



a running test as early as possible. Some of the preconditions, e.g., the total
duration and the maximal velocity are monotonic and cannot be satisfied once
violated. To build an RDE defeat device one needs to be able to tell whether the
current trip prefix could still become a valid RDE trip or not.

6 Experimental Evaluation

We show that the formalization and the thereof constructed monitor are not only
useful for certification purposes but can further be used by a layperson without
expensive equipment to get an insight into exhaust emissions and whether her
car does indeed adhere to the RDE regulation, or not.

Usually, the test parameters are obtained with a Portable Emissions Mea-
surement System. We present two use cases for our monitor—one that requires
a quite expensive PEMS and another that does not.

Case 1: Genuine RDE The first use case of the constructed RDE monitor
is a genuine RDE test performed with a PEMS, for instance as part of an
official certification process. The input streams for our monitor are directly
generated by the PEMS and the control unit of the car.

Case 2: Low-Cost RDE The more interesting use case, however, is a low-
cost RDE test without a PEMS. At best such a test can be conducted by
a layperson without expensive equipment and expertise how to use it. The
key challenge of a low-cost RDE is obtaining the test parameters.

A PEMS is a whole emission measurement laboratory in a box and therefore
costs a significant amount of money. In addition, its setup procedure is rather
complicated and usually requires an expert. Therefore, genuine RDE tests cannot
be conducted by a layperson. As we will show, a low-cost variant of the RDE
can be performed solely based on on-board sensors for a fraction of the cost with
an easy to use monitor plugged into a standardized debug port.

The key challenge here is to obtain the test parameters—especially the con-
centrations of the regulated emission gasses. While the vehicle speed and al-
titude can be determined via GPS with an ordinary smartphone, measuring
emissions requires specific sensors. Fortunately, many modern cars with a Selec-
tive Catalytic Reduction (SCR) system are already equipped with NO, sensors
measuring the NO, concentration in the after-treatment exhaust stream, i.e.,
the stream of exhaust after it ran through the cleaning process as it leaves the
tailpipe. Further, the COy emissions can be approximated using data obtained
from the engine control unit. Thanks to the standardized OBD-II interface [19]
the required values can be obtained using a standard debug port.

We conducted a low-cost RDE with an Audi A7 3.0 TDI 200kW which is
known to contain a defeat device which chokes the injected amount of urea
shortly before it runs out of urea [24]. Urea is used as part of the SCR system
to lower the NO, emissions. We assume that the car indeed conforms with the
EURO 6 emission limits in case the urea tank contains enough urea. If this
were not the case, this would have been likely unrevealed by now based on the



extensive testing that was necessary to detect the defeat device in the first place.
In order to convince ourselves that the RDE specification and monitor we provide
is correct, we first checked the input validation by correctly validating recorded
data of genuine RDE tests. For trips that obviously are not RDE, the monitor
complained as expected. In a second step, we drove a valid RDE with the Audi
A7 mentioned above with full urea tank. We briefly discuss the test setup, main
obstacles, and the result of this test in the rest of this section.

While our test vehicle provides the NO, concentration in the exhaust stream,
it does not directly provide the exhaust mass flow, which is needed to calculate
the emissions. We thus approximate the exhaust mass flow as follows: [23] de-
scribes a procedure to compute the exhaust mass flow based on the mass air
flow and the mass fuel flow, i.e., the rate of mass of air and fuel used in the
combustion process. We approximate the fuel mass flow based on the rate of fuel
consumption in liters and the fuel density, which is approximately 0.835 kg/1
[20] for Diesel. In LoLA this is then calculated by:

output float exhaust_mass_flow := // in [kg/hl
mass_air_flow + fuel_rate * 0.835

CO4 emissions can be calculated based on the fuel rate and an oxidation
factor specifying how much of the carbon is fully oxidized to CO5. Cars do emit
CO which is a regulated emission gas. Thus the oxidation factor has to be less
than 1. For our tests, we assumed an oxidation factor of 0.99 [25].

Besides acquiring the test parameters, there is yet another challenge for a
successful low-cost RDE conducted by a layperson—she needs to drive a valid
RDE test trip. To assist with that, we augmented our specification with addi-
tional streams and triggers computing the urban, rural, and motorway distances
which still need to be driven and other indicators, e.g., emitting a warning when
the stop percentage comes close to the allowed boundaries.

With that assistance system in place, it was relatively easy to drive a valid
test trip. See Figure [2| for the speed profile of the trip. Our monitor computed
a value of 68 mg/km NO, which is within the EURO 6 emission limits of 80
mg/km [2I] and almost matches the value of the data-sheet [4], which is 67
mg/km. For CO4 the monitor computed 151 g/km which is a deviation of +9%
from the value of the datasheet, but CO5 is only used to check plausibility in
any case. This shows that a low-cost RDE test conducted by a layperson using
inexpensive equipment can provide very good results.

Knowing that the vehicle chokes the urea injected into the exhaust stream
whenever it runs low on urea, we tried to repeat our experiment with a close to
empty urea tank. Unfortunately, we were unable to drain the urea from the tank
of the car which is prevented by the construction of the vehicle.

To conclude the experimental evaluation and given those results, we envisage
that in the future cars are equipped with more sophisticated emission measure-
ment systems such that a low-cost RDE eventually becomes possible not only
for NO, but also for other emission gasses.
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Fig. 2. Profile of a Low-Cost RDE with an Audi A7 3.0 TDI 200kW

7 Conclusion

We presented an extension of the stream-based specification language LoLA
2.0 with sliding aggregation windows and showcased its application with a for-
malization of the Real Driving Emissions (RDE) regulation. The constructed
monitor has been successfully used as a basis for a low-cost, easy-to-use, and
fully transparent tool, which can be plugged into the standardized OBD-II port
with which every modern car is equipped. This enables laypersons to perform
RDE tests for a fraction of the cost of a genuine RDE test. These measurements
then rely on the on-board NO, sensors. Research about their precision is still in
progress. However, the tests we conducted suggest high precision measurements.
Nevertheless, it should be mentioned that the sensors and their driver software
are shipped with the car, so it is imaginable that the sensors are doped by the
manufacturer, thereby invalidating the test results. We are indeed looking into
the option to instead hook a separate sensor to the exhaust pipe.

The formalization of regulations is an essential step towards precise and suc-
cinct perspicuity enablers. The existing formalization already captures the heart
of the RDE regulation. There are some corner cases and details for regions with
peculiar geographic conditions that we did not implement yet, but we are plan-
ning to add. Our monitor is working online, i.e., the car’s driving information
is passed to the monitor in real-time. However, the decision whether the trip
satisfies the RDE requirements, or not, does not consider possible continuations
of the trip. Thus far, it does not detect that a current trip cannot be prolonged
to a valid RDE drive anymore. We are working on this. Additionally, our goal
is to enable RDE checks during normal usage of the car. To this end, we plan
to integrate a detection algorithm identifying all intervals of a trip (longer than
90 minutes) satisfying the RDE conditions together with compliance checks con-
cerning the emission thresholds. Such a monitor could, for instance, be integrated
into an easy-to-use smartphone app, possibly paired with a wireless OBD-II don-
gle, or as a simple means to crowdsource an empirical answer to the question of
how much of actual road traffic is covered by the RDE.
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