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Abstract

One of the prevailing ideas in applied concurrency theory and verification is
the concept of automata minimization with respect to strong or weak bisimi-
larity. The minimal automata can be seen as canonical representations of the
behaviour modulo the bisimilarity considered. Together with congruence re-
sults wrt. process algebraic operators, this can be exploited to alleviate the
notorious state space explosion problem. In this paper, we aim at identifying
minimal automata and canonical representations for concurrent probabilistic
models. We present minimality and canonicity results for probabilistic and
Markov automata modulo strong and weak probabilistic bisimilarity, together
with the corresponding minimization algorithms. We also consider weak distri-
bution bisimilarity, originally proposed for Markov automata. For this relation,
the quest for minimality does not have a unique answer, since fanout minimality
clashes with state and transition minimality. We present an SMT approach to
enumerate fanout-minimal models.

Keywords: Probabilistic automata, Markov automata, Weak probabilistic
bisimulation, Minimal quotient, Decision algorithm

1. Introduction

Markov decision processes (MDPs) are models appearing in areas such as
operations research, automated planning, and decision support systems. In the
concurrent systems context, they arise in the form of probabilistic automata
(PAs) [38]. PAs form the backbone model of successful model checkers such as
PRISM [31] and IscasMc [25] enabling the analysis of randomised concurrent
systems. Despite the remarkable versatility of this approach, its power is limited
by the state space explosion problem, and several approaches are being pursued
to alleviate that problem.
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In related fields, a favorable strategy is to minimize the system – or compo-
nents thereof – to the quotient under bisimilarity. This can speed up the overall
model analysis or turn a too large problem into a tractable one [3, 8, 27]. Both
strong and weak bisimilarity are used in practice, with weaker relations leading
to greater reduction. However, this approach has never been explored in the
context of MDPs or PAs. One reason is that thus far no effective decision algo-
rithm was at hand for weak bisimilarity on PAs. A polynomial time algorithm
has been proposed only recently [41] in the form of a decision algorithm, not
a minimization algorithm. The algorithm proposed in [41] follows the classi-
cal partition refinement approach [7, 30, 34], which computes as byproduct the
bisimulation relation and that can be used as starting point for the construction
of the quotient. This paper therefore focuses on a seemingly tiny problem: does
there exist a unique minimal representative of a given probabilistic automaton
with respect to weak bisimilarity? Can we compute it? In fact, this turns out to
be an intricate problem. We nevertheless arrive at polynomial time algorithms.

Notably, minimality with respect to the number of states of a probabilistic
automaton does not imply minimality with respect to the number of transitions.
A further minimization is possible with respect to transition fanouts, the latter
referring to the number of target states of a transition with non-zero probability.
The minimality of an automaton thus needs to be considered with respect to
all the three characteristics: number of states, of transitions and of transitions’
fanouts.

These results however do not carry over to a setting where weak probabilistic
bisimilarity is based on distributions. This generalization, first presented on
Markov automata (MAs) [17], has more challenging algorithmic implications [14,
37] and these challenges are echoed in the minimization context considered
here. It turns out that for distribution bisimilarity, minimality with respect
to fanout might conflict with minimality with respect to states and transitions.
We provide a thorough discussion of the principal phenomena for distribution
bisimilarity on both PA and MA, and develop an SMT approach to enumerate
fanout minimal models.

Since weak probabilistic bisimilarity enjoys congruence properties for parallel
composition and hiding on PAs, the results in this paper enable compositional
minimization approaches to be carried out efficiently. Moreover, because PAs
comprise MDPs, we think it is not far fetched to imagine fruitful applications
in areas such as operations research, automated planning, and decision support
systems.

As a byproduct, our results provide tailored algorithms for strong probabilis-
tic bisimilarity on PAs and strong and weak bisimilarity on labelled transition
systems.

The paper is an extended version of the conference paper [15]. All discussions
related to distribution bisimilarity and to Markov automata are original and
unpublished contributions.

Organization of the paper. After the preliminaries in Section 2, we recall the
bisimulation relations in Section 3 and we introduce the preorders between au-
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tomata in Section 4. Then we present automaton reductions in Section 5 which
will be used to compute the normal forms defined in Section 6. In Section 7 we
extend the results of the previous sections to the distribution-based bisimula-
tions. We show in Section 8 that for distribution-based bisimulations the fanout
minimality conflicts with state and transition minimality. Then, in Section 9
we discuss how the obtained results carry over to the genuine Markov automata
setting. We conclude the paper in Section 10 with some remarks.

2. Preliminaries

Sets, Relations, and Distributions. Given a set X, we denote by P(X) the power
set of X, i.e., P(X) = {C | C ⊆ X }.

Given a relation R ⊆ X × X, we say that R is a preorder if it is reflexive
and transitive. We say that R is an equivalence relation if it is a symmetric
preorder. Given an equivalence relation R on X, we denote by X/R the set of
equivalence classes induced by R and, for x ∈ X, by [x]R the class C ∈ X/R
such that x ∈ C.

Given three sets X, Y , and Z and two relations R ⊆ X×Y and S ⊆ Y ×Z,
we denote by R ◦ S the relation R ◦ S = { (x, z) | ∃y ∈ Y.x R y ∧ y S z }.

A σ-field over a set X is a set F ⊆ 2X that includes X and is closed under
complement and countable union. A measurable space is a pair (X,F) where X
is a set, also called the sample space, and F is a σ-field over X. A measurable
space (X,F) is called discrete if F = 2X . A measure over a measurable space
(X,F) is a function ρ : F → R≥0 such that, for each countable collection {Xi}i∈I
of pairwise disjoint elements of F , ρ(∪i∈IXi) =

∑
i∈I ρ(Xi). A probability mea-

sure (or, probability distribution) over a measurable space (X,F) is a measure ρ
over (X,F) such that ρ(X) = 1. A sub-probability measure (or, sub-probability
distribution) over (X,F) is a measure over (X,F) such that ρ(X) ≤ 1. A mea-
sure over a discrete measurable space (X, 2X) is called a discrete measure over
X.

Given a set X, we denote by SubDisc(X) the set of discrete sub-probability
distributions over X. Given ρ ∈ SubDisc(X), we denote by |ρ| the size ρ(X) =∑

s∈X ρ(s) of a distribution. We call a distribution ρ full, or simply a probability
distribution, if |ρ| = 1. The set of all discrete probability distributions over X
is denoted by Disc(X). Given ρ ∈ SubDisc(X), we denote by Supp(ρ) the set
{x ∈ X | ρ(x) > 0 }, by ρ(⊥) the value 1 − ρ(X) where ⊥ /∈ X, by δx the
Dirac distribution such that ρ(y) = 1 if y = x, 0 otherwise, and by δ⊥ the
empty distribution such that |δ⊥| = 0. Given ρ ∈ SubDisc(X), we may also
write ρ = { (x, px) | x ∈ X } where px is the probability ρ(x) of x; we usually
omit the pairs (x, px) where px = 0. For a constant c ≥ 0, we denote by c · ρ
the distribution defined by (c · ρ)(x) = c · ρ(x) provided c · |ρ| ≤ 1. Further,
for ρ ∈ SubDisc(X) and x ∈ X such that ρ(x) < 1, we denote by ρ\x the

rescaled distribution such that (ρ\x)(y) = ρ(y)
1−ρ(x) if y 6= x, 0 otherwise. For

ρ ∈ SubDisc(X) and x ∈ X, we denote by ρ − x the distribution such that
(ρ− x)(y) = ρ(y) if y 6= x, 0 otherwise. We define the distribution ρ = ρ1 ⊕ ρ2

3
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by ρ(s) = ρ1(s) + ρ2(s) provided |ρ| ≤ 1, and conversely we say ρ can be split
into ρ1 and ρ2. Since ⊕ is associative and commutative, we may use the notation⊕

for arbitrary finite sums. Given a countable set of indices I, we say that ρ
is a convex combination of a family of distributions {ρi ∈ SubDisc(X)}i∈I if
there exists a family {ci ∈ R≥0}i∈I such that

∑
i∈I ci = 1 and ρ =

⊕
i∈I ci · ρi.

Finally, for ρ ∈ SubDisc(X), x ∈ Supp(ρ) and y /∈ Supp(ρ), we denote by ρ[y/x]
the distribution such that ρ[y/x](z) = ρ(x) if z = y, ρ(z) otherwise.

The lifting L(R) [29] of an equivalence relation R on X is an equivalence
relation L(R) ⊆ Disc(X)×Disc(X) defined as: for ρ1, ρ2 ∈ Disc(X), ρ1 L(R) ρ2

if and only if for each C ∈ X/R, ρ1(C) = ρ2(C).
We will often lift mappings defined on a set X to mappings over distributions

Disc(X) in a generic way.

Definition 1 (Lifting of Functions). Given arbitrary sets X and Y , and ρ ∈
Disc(X), we lift a mapping b : X → Y to b : Disc(X) → Disc(Y ) by defining
(b(ρ))(y) =

∑
x∈b−1(y) ρ(x) for each y ∈ Y .

Models. A Markov automaton (MA) [12, 16, 17] is a tuple A = (S, s̄,Σ, TI , TM ),
where S is a countable set of states, s̄ ∈ S is the start (or initial) state, Σ is
a countable set of actions, TI ⊆ S × Σ × Disc(S) is an interactive transition
relation, and TM ⊆ S × R≥0 × S is a Markovian transition relation.

We call an MA A = (S, s̄,Σ, TI , TM ) a Probabilistic Automaton (PA) [38, 39]
if TM = ∅ and we call a PAA a Labelled Transition System (LTS) if (s, a, µ) ∈ TI
implies µ = δt for some t ∈ S. For PAs and LTSs, we may omit the empty
Markovian transition relation from A = (S, s̄,Σ, TI , ∅), i.e., we may simply write
A = (S, s̄,Σ, TI ); in this work we consider only finite automata, i.e., automata
such that S, TI , and TM are finite. Note that we can not simply require S and
Σ to be finite, since this does not guarantee that TI is finite: in fact, for S =
{s0, s1} and Σ = {τ}, we can have TI = { (s0, τ, {(s0, p), (s1, 1−p)}) | p ∈ [0, 1] }
which is uncountable.

The set Σ is partitioned into two sets H = {τ} and E of internal (hidden)
and external actions, respectively; we let s, t, u, v, and their variants with
indices range over S and a, b range over Σ. For MAs (but not for PAs), states
can be partitioned into stable and instable states: given s ∈ S, we call s stable,
denoted by s↓, if there is no µ ∈ Disc(S) such that (s, τ, µ) ∈ TI ; we call
s instable otherwise. Intuitively, s is a stable state if the maximal progress
assumption allows time to progress, as governed by Markovian transitions; s
is instead an instable state if time progress is blocked by the presence of a τ
transition, which forces the system to take an interactive transition immediately.

Mapping MAs to PAs. In this work we are interested in the bisimulation re-
lations defined on Markov automata; as we will see later, such relations are
essentially defined on the underlying PA once the Markovian transitions are
considered as external interactive transitions. We now recall the mapping from
MAs to PAs proposed in [12, 16, 17, 37] that maps the Markovian transitions
from a state to newly added interactive transitions encoding both rates and

4
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relative probability of reaching the successor states. More precisely, given an
MA A = (S, s̄,Σ, TI , TM ) and s, s′ ∈ S, define

rate(s, s′) =
∑

(s,λ,s′)∈TM

λ,

rate(s) =
∑
t∈S

rate(s, t), and

λ(s) =

{
{ (t, rate(s,t)

rate(s) ) | t ∈ S } if rate(s) 6= 0,

δs otherwise.

Then, A is mapped by E : MA → PA to the PA A 7→ A′ = (S′, s̄′,Σ′, TI ′)
whose components are S′ = S, s̄′ = s̄, Σ′ = Σ ∪ {χrate(s) | s ∈ S }, and
TI ′ = TI ∪ { (s, χrate(s), λ(s)) | s ∈ S ∧ s↓ }, under the assumption that Σ ∩
{χrate(s) | s ∈ S } = ∅. Note that each new action in {χrate(s) | s ∈ S } is an
external action. It is worth mentioning that E implements the maximal progress
assumption, that is, only stable states will be able to expose timed behaviour.
As a result, the image of E may contain unreachable fragments.

In the remainder of the paper we mainly work with PAs and then omit the
subscript I from the interactive transition relation TI .

Notation for PAs. A transition tr = (s, a, µ) ∈ T , also denoted by s
a−→ µ, is

said to leave from state s, to be labelled by a, and to lead to µ, also denoted
by µtr . We denote by src(tr) the source state s, by act(tr) the action a, and
by trg(tr) the target distribution µ. We also say that s enables action a, that
action a is enabled from s, and that (s, a, µ) is enabled from s. Finally, we
denote by T (s, · ) the set of transitions enabled by the state s, i.e., T (s, · ) =
{ tr ∈ T | src(tr) = s }, by T ( · , a) the set of transitions with action a, i.e.,
T ( · , a) = { tr ∈ T | act(tr) = a }, and by T (s, a) the set of transitions enabled
by the state s with action a, i.e., T (s, a) = T (s, · ) ∩ T ( · , a).

Given a state s, an action a, and a countable set of indices I, we say that
there exists a combined transition s

a−→c µ if there exist a family of transitions
{(s, a, µi) ∈ T (s, a)}i∈I and a family {ci ∈ R≥0}i∈I such that

∑
i∈I ci = 1 and

µ =
⊕

i∈I ci · µi.

Weak Transitions of PAs. An execution fragment α of a PA A is a finite or
infinite sequence of alternating states and actions α = s0a1s1a2s2 . . . start-
ing from a state first(α) = s0 and, if the sequence is finite, ending with a
state last(α), such that for each i > 0 there exists (si−1, ai, µi) ∈ T such that
µi(si) > 0. The length of α, denoted by len(α), is the number of occurrences
of actions in α. If α is infinite, then len(α) = ∞. Denote by frags(A) the
set of execution fragments of A and by frags∗(A) the set of finite execution
fragments of A. An execution fragment α is a prefix of an execution frag-
ment α′, denoted by α 6 α′, if the sequence α is a prefix of the sequence α′.
The trace of α, denoted by trace(α), is the sub-sequence of external actions
of α; we denote by ε the empty trace. We extend the definition of trace to

5
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actions as follows: trace(a) = a for a ∈ E and trace(τ) = ε. For instance, for
a ∈ E, trace(s0as1) = trace(s0τs1τ . . . τsi−1asiτ . . . τsn) = a = trace(a) and
trace(s0) = trace(s0τs1τ . . . τsn) = ε = trace(τ).

Given a PA A = (S, s̄,Σ, T ), the reachable fragment of A is the PA RF (A) =
(S′, s̄,Σ, T ′) where S′ = { s ∈ S | ∃α ∈ frags∗(A) : first(α) = s̄ ∧ last(α) = s }
and T ′ =

⋃
s∈S′ T (s, · ).

A scheduler for a PA A is a function σ : frags∗(A)→ SubDisc(T ) such that
for each finite execution fragment α, Supp(σ(α)) ⊆ T (last(α), · ). A scheduler
is called Dirac if it assigns a Dirac distribution to each finite execution fragment
and it is called determinate [7] if for each pair of finite execution fragments α
and α′, if trace(α) = trace(α′) and last(α) = last(α′), then σ(α) = σ(α′). It
is worthwhile to note that a determinate scheduler satisfies σ(α) = σ(last(α))
whenever trace(α) = ε.

Given a scheduler σ and a finite execution fragment α, the distribution σ(α)
describes how transitions are chosen to move on from last(α). A scheduler
σ and a state s induce a probability measure µσ,s over execution fragments as
follows. The basic measurable events are the cones of finite execution fragments,
where the cone of a finite execution fragment α, denoted by Cα, is the set
Cα = {α′ ∈ frags(A) | α 6 α′ }. The probability µσ,s of a cone Cα is defined
recursively as follows:

µσ,s(Cα) =


0 if α = t for a state t 6= s,

1 if α = s,

µσ,s(Cα′) ·
∑

tr∈T ( · ,a) σ(α′)(tr) · µtr (t) if α = α′at.

Standard measure theoretical arguments ensure that µσ,s extends uniquely to
the σ-field generated by cones. We call the measure µσ,s a probabilistic execution
fragment of A and we say that it is generated by σ from s. Given a finite
execution fragment α, we define µσ,s(α) as µσ,s(α) = µσ,s(Cα) · σ(α)(⊥), where
σ(α)(⊥) is the probability of choosing no transitions, i.e., of terminating the
computation after α has occurred.

We say that there is a weak combined transition from s ∈ S to µ ∈ Disc(S)

labelled by a ∈ Σ that is induced by σ, denoted by s
a

=⇒c µ, if there exists a
scheduler σ such that the following holds for the induced probabilistic execution
fragment µσ,s:

1. µσ,s(frags∗(A)) = 1;

2. for each α ∈ frags∗(A), if µσ,s(α) > 0 then trace(α) = trace(a);

3. for each state t, µσ,s({α ∈ frags∗(A) | last(α) = t }) = µ(t).

We say that there is a weak transition from s ∈ S to µ ∈ Disc(S) labelled by

a ∈ Σ that is induced by σ, denoted by s
a

=⇒ µ, if there exists a Dirac scheduler
σ inducing s

a
=⇒c µ.

We say that there is a weak hyper transition from ρ ∈ Disc(S) to µ ∈ Disc(S)

labelled by a ∈ Σ, denoted by ρ
a

=⇒c µ, if there exists a family of weak combined
transitions {s a

=⇒c µs}s∈Supp(ρ) such that µ =
⊕

s∈Supp(ρ) ρ(s) · µs.

6
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Given two weak hyper transitions, it is known that their concatenation is still
a weak hyper transition, provided that one of the two weak hyper transitions is
labelled by τ .

Lemma 1 (cf. [32, Proposition 3.6]). Given a PA A and an action a, if there

exist two weak hyper transitions µ1
a

=⇒c µ2 and µ2
τ

=⇒c µ3 (or µ1
τ

=⇒c µ2 and

µ2
a

=⇒c µ3), then there exists the weak hyper transition µ1
a

=⇒c µ3.

In the remainder of the paper we make use of this lemma without mentioning
it further. The following technical lemma allows us to decompose a weak hyper
transition µ

a
=⇒c µ

′ into several weak hyper transitions µi
a

=⇒c µ
′
i. This can be

seen as an extension of the family of weak combined transitions to a family of
generic weak hyper transitions.

Lemma 2 (cf. [18, Lemmas 5 and 6]). For µ, µ′ ∈ Disc(S), µ
a

=⇒c µ
′ if and

only if there exist a finite set of indexes I and two families of subdistributions
{µi ∈ SubDisc(S)}i∈I and {µ′i ∈ SubDisc(S)}i∈I such that µ =

⊕
i∈I µi, µ

′ =⊕
i∈I µ

′
i, and µi

a
=⇒c µ

′
i for each i ∈ I.

3. Bisimulations

3.1. State-based Bisimulations

In the following, we define state-based strong and weak (probabilistic) bisim-
ulation relations. These relations are defined on the states of an automaton, and
follow the classical idea that for each pair of related states, each transition avail-
able from one of the states has to be mimicked by the other while preserving
the relation, i.e., by reaching related states.

Let  ∈ {−→,−→c,=⇒,=⇒c}.

Definition 2 (Generic State-based Bisimulation). Let A = (S, s̄,Σ, T ) be a
PA. An equivalence relation R ⊆ S × S is a  -bisimulation if for every action
a ∈ Σ, distribution µ ∈ Disc(S), and states s, s′ ∈ S with s R s′, it holds that

s
a−→ µ implies s′

a
 µ′ for some µ′ ∈ Disc(S) such that µ L(R) µ′.

We denote by � the union of all  -bisimulations. Two PAs A, A′ are
 -bisimilar, written A � A′ if their initial states are bisimilar in the direct
sum of the two PAs. Here, by direct sum of A1 and A2 we refer to the PA A
whose set of states S is the disjoint union S1 ] S2 and whose set of transitions
T is the union of T1 and T2 (cf. [39, Section 4.2]).

We recover the standard characterization for strong and weak bisimilarities
from this definition as follows:

1. Strong Bisimilarity for LTSs, denoted ∼LTS , respectively, is �−→.

2. Strong Probabilistic Bisimilarity for PAs, denoted ∼, is �−→c
.

3. Weak Bisimilarity for LTSs, denoted ≈LTS , is �=⇒.

7



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
2

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IN

F.
C

O
M

P
U

T.
26

2
(1

).
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

(a) (b)

p

τ r

q

τ

ab a

c

c

τ
τ

τ

τ

ab a

c

c

Figure 1: (a) An example of PA. (b) An example of LTS.

4. Weak Probabilistic Bisimilarity for PAs, denoted ≈, is �=⇒c
.

The relations ∼LTS and ≈LTS coincide with the respective notions of strong and
weak bisimilarity on LTS [33]. The same holds for the probabilistic bisimilarities
∼ and ≈ on PAs [40]. In the sequel we assume that bisimilarities are only applied
to suitable automata.

Example 1. As an example of PAs, consider the PA shown in Figure 1(a),
where p, q, r ∈ R>0 are such that p + q + r = 1, and we omit the probability
1 from all other transitions. It is easy to observe that all states with the same
shape and color are indeed weak probabilistic bisimilar: the states depicted as

are the only states not enabling any transition, so they satisfy the weak prob-
abilistic bisimulation definition; for the same motivation, they are also strong
probabilistic bisimilar. Note that they can not be strong or weak probabilistic
bisimilar to any other state since the latter enables at least one transition la-
belled with an external action which can not be matched by . The two states

are weak probabilistic bisimilar since both of them enable a c-transition
reaching with probability 1 the class of ; the a-transition

a−→ δ enabled
by the bottom state can be matched by the top state by first performing
the transition

τ−→ δ and then the transition
a−→ δ , which results in the

weak combined transition
a

=⇒c δ for which clearly δ L(R) δ holds. Note
that the top and bottom states are not strong probabilistic bisimilar since
the top state is not able to match the transition

a−→ δ enabled by the
bottom state and the bottom state is not able to match the transition

τ−→ δ enabled by the top state. The only state can not be strong or
weak probabilistic bisimilar to any other state since it is the only one enabling

a b-transition
b−→ δ and no other state s is able to perform a weak combined

transition s
b

=⇒c δ .
An example of LTS is given in Figure 1(b). As for the PA shown in Fig-

ure 1(a), all states with the same shape and color are weak bisimilar, with a
similar motivation. They are also strong bisimilar except for the states, which
are again distinguished by the transitions

a−→ δ and
τ−→ δ . �

3.2. Distribution-based Bisimulations

In the setting of Markov automata, a weaker notion of bisimulation has
been introduced recently [11, 12, 16, 17]. It is defined on distributions in-

8
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A

τ

0.5

0.5
τ

0.5 0.5

a

1

b

1

c

1

A′ τ

0.25 0.25 0.5

a

1

b

1

c

1

Figure 2: Two weak distribution bisimilar PAs

stead of states. This permits to equate MAs that are not weak probabilistic
bisimilar despite intuitively having indistinguishable behaviour. The resulting
bisimulation is coarser than weak probabilistic bisimulation but otherwise en-
joys the same properties, especially wrt. compositionality. As in [14] we refer to
it as weak distribution bisimulation, and follow the notation adopted in [16, 17].
Apart from notational differences, the relation essentially coincides with the
weak bisimulation introduced in [11, 12].

Definition 3 (Weak distribution bisimulation (cf. [16, 17])). Let A be a PA.
An equivalence relation R ⊆ SubDisc(S) × SubDisc(S) is a weak distribution
bisimulation if for each pair of sub-distributions (µ1, µ2) ∈ R it holds that

1. |µ1| = |µ2| and

2. for each t ∈ Supp(µ1) and each a ∈ Σ, there exist µ→2 , µ
×
2 ∈ SubDisc(S)

such that

(a) µ2
τ

=⇒c µ
→
2 ⊕ µ×2 ,

(b) (µ1(t) · δt) R µ→2 and (µ1 − t) R µ×2 , and

(c) whenever t
a−→ µ′1, then there exists µ′2 such that µ→2

a
=⇒c µ

′
2 and

(µ1(t) · µ′1) R µ′2.

Two distributions µ1, µ2 are called weak distribution bisimilar (with respect
to some PA A), written µ1 e µ2, if the pair (µ1, µ2) is contained in a weak
distribution bisimulation relation (with respect to A).

Two PA are called weak distribution bisimilar if the Dirac distributions of
their initial states are weak distribution bisimilar in the direct sum of the PAs,
i.e., δs̄1 e δs̄2 .

We denote by eδ the induced equivalence relation on states, i.e., eδ =
{ (u, v) ∈ S × S | δu e δv }.

9
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Example 2. As an example of weak distribution bisimilar PAs, consider the
two PAs A and A′ shown in Figure 2 (cf. [17, Figure 3]). In the remainder of the
example, as notation we use µ to denote a distribution in A and µ′ to denote its
corresponding counterpart in A′. The two PAs A and A′ are bisimilar according
to the reflexive, symmetric, and transitive closure of the relation

R = { (δ , δ′ ) | ∈ { , , , } }
∪ {(µ , µ′ )}
∪ {(δ , µ′ ), (µ , µ′ )}
∪ {(µ , µ′ ), (µ , µ′ ), (µ , µ′ ), (µ , µ′ )}
∪ {(δ⊥, δ⊥)}

where µ = {( , 0.5), ( , 0.5)}, µ = {( , 0.25), ( , 0.25), ( , 0.5)}, µ =
{( , 0.5), ( , 0.5)}, µ = {( , 0.25), ( , 0.5)}, and µ = {( , 0.25), ( , 0.5)}.
Moreover, we add to R all pairs (c ·µ, c ·ρ) with c ∈ R≥0 that are required, pro-
vided that (µ, ρ) ∈ R (cf. [18, Lemma 7]); for instance, the pair (0.5·δ , 0.5·µ )
is one of the added pairs.

The only interesting pair is (µ , µ ); all other pairs are straightforward.
For the pair (µ , µ ) obviously it holds |µ | = 1 = |µ |. For the state

t = , we can take µ→2 = 0.5 · µ′ and µ×2 = 0.5 · δ′ ; clearly µ
τ

=⇒c

(µ→2 ⊕ µ×2 ) = µ , 0.5 · δ = (µ ( ) · δ ) R µ→2 = 0.5 · µ′ , and 0.5 · δ =

(µ − ) R µ×2 = 0.5·δ′ . As µ′2 for matching the only transition
τ−→ µ , we

can take µ′2 = 0.5·µ′ , which trivially satisfies 0.5µ′ = µ→2
τ

=⇒c µ
′
2 = 0.5·µ′

and 0.5 · µ = (µ ( ) · µ ) R µ′2 = 0.5 · µ′ . For the state t = , we can
just take µ→2 = 0.5 · δ′ and µ×2 = 0.5 · µ′ and the remaining checks are trivial.

�

4. Preorders

The size of an automaton is usually expressed in terms of the size |S| of the
set of states S and the size |T | of the transition relation T of the automaton.
The complexity of algorithms working on PAs often depends exactly on those
two metrics. A less commonly considered metric is the number of target states
of a transition reached with a probability greater than zero, i.e., the size of its
support. Especially in practical applications it is known that the first two of
these metrics – the number of states and transitions of the automaton – can be
drastically reduced while preserving its behaviour with respect to some notion
of bisimilarity. In contrast, the last metric is usually considered a constant.
Nevertheless in some cases it can be reduced as well. We will formalize these
three metrics by means of three preorder relations, thus allowing us to define
the notion of minimal automata up to bisimilarity.

To capture the last of the three metrics, we introduce the following definition.

Definition 4 (Transition Fanout). Let A = (S, s̄,Σ, T ) be a PA. For a distri-
bution µ ∈ Disc(S) we define ‖µ‖ = |Supp(µ)|. For a set of transitions T ⊆ T
we define ‖T‖ =

∑
(s,a,µ)∈T ‖µ‖.

10
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Definition 5 (Size Preorders). Let A = (S, s̄,Σ, T ) and A′ = (S′, s̄′,Σ′, T ′) be
two PAs, and let � ∈ {∼,∼LTS ,≈,≈LTS ,e} be a notion of bisimilarity. We write

• A �≺
|S| A′ if A � A′ and |S| ≤ |S′|,

• A �≺
|T | A′ if A � A′ and |T | ≤ |T ′|, and

• A �≺
‖T ‖ A′ if A � A′ and ‖T ‖ ≤ ‖T ′‖.

In the remainder of the paper we let � range over �≺
|S|

, �≺
|T |

, and �≺
‖T ‖

where � ∈ {∼,∼LTS ,≈,≈LTS ,e}, if not mentioned otherwise. It is easy to verify
that these relations are preorders.

Definition 6 (�-Minimal Automata). We call a PA A �-minimal, if whenever
A′ � A for some PA A′, then also A � A′.
Lemma 3 (Existence of �-Minimal Automata). For every PA A there exists a
PA A′ such that A′ � A and A′ is �-minimal.

For each of the preorders considered, the proof of this lemma exploits that
for every automaton the respective metric is a finite natural number and at least
0.

As each relation � is a preorder, minimal automata are not necessarily

unique. For example, two �≺
|S|

-minimal automata A and A′ with A � A′
may differ in the underlying set of states, and/or transitions. This will be
investigated in Sections 6 and 7.

5. Reductions

In this section, we introduce and formalize several methods to reduce the size
of an automaton with respect to state-based bisimulations. We postpone the
reductions specific to distribution-based bisimulations to Section 7. Except for
the first method, quotient reduction, the methods are especially tailored towards
one or two distinct notions of bisimilarity. We summarize the properties of the
reductions at the end of this section. We will further show that each reduction
can be computed in polynomial time.

5.1. Quotient Reduction
Definition 7 (Quotient Automaton). Let A = (S, s̄,Σ, T ) be a PA. Given
an equivalence relation � on S, we define the quotient PA [A]� with respect
to � as the reachable fragment of the PA (S/�, [s̄]�,Σ, [T ]�) where [T ]� =
{ ([s]�, a, [µ]�) | (s, a, µ) ∈ T }.

Note that [µ]� results from lifting to distributions (cf. Definition 1) the
quotient mapping on states [ · ]� : S → P(S) such that s 7→ [s]�.

Definition 8 (Quotient Reduction). We write A �;A′ if A′ = [A]�.

Figure 3(b) shows the result of applying Definition 8 to the PA in Figure 3(a)
and weak probabilistic bisimilarity, where bisimilar states have the same shape
and color, as seen in Example 1.

11
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(a) (b) (c)

p

τ r

q

τ

ab a

c

c

p τ

q + r

b

a
a c

τ

τ

b

a c
≈ T,R

Figure 3: (a) Example PA (same as in Figure 1(a)). (b) Quotient reduction. (c) Rescaling of
convex-transitive reduction.

5.2. Convex Reduction

In essence, strong probabilistic bisimilarity ∼ enhances standard bisimilarity
by the idea that the observable behaviour of a system is closed under convex
combinations of transitions. Using this fact, we minimize the number of transi-
tions in a PA by replacing the transitions of each state by a unique and minimal
set of generating transitions.

Definition 9. Let P = {p1, . . . , pn ∈ Rk} be a finite set of points in Rk. We call
CHull(P ) = { p ∈ Rk | ∃c1, . . . , cn ∈ R≥0 :

∑n
i=1 ci = 1 and p =

∑n
i=1 ci · pi }

the convex hull of P .

C is a finitely generated convex set, if C = CHull(P ) for a finite set P ⊆ Rk.
The following lemma guarantees the optimality of our approach with respect to

∼≺
|T |

.

Lemma 4 (cf. [7, Section 2]). Every finitely generated convex set C has a unique
minimal set of generators Gen(C) such that C = CHull(Gen(C)).

Definition 10 (Convex Reduction). Let A be a PA. We write A C
; A′ if the

automaton A′ differs from A only by replacing the set T by the set T ′, where

(s, a, γ) ∈ T ′ if and only if γ ∈ Gen(CHull({µ ∈ Disc(S) | (s, a, µ) ∈ T })).

Note that, when A is an LTS, then the outcome A′ of A C
; A′ is A itself,

since for any given LTS, state s, and action a, it holds that Gen(CHull({µ ∈
Disc(S) | (s, a, µ) ∈ T })) = {µ ∈ Disc(S) | (s, a, µ) ∈ T }; the inclusion
⊆ is immediate, since Gen(CHull(C)) ⊆ C holds for each set C. Regarding
the inclusion ⊇, for each LTS we have that each transition (s, a, µ) ∈ T is
actually of the form (s, a, δt) for some t ∈ S; since each Dirac distribution δt
is representable as convex combination δt =

⊕
i∈I ci · µi solely if µi = δt for

each i ∈ I, this implies that {µ ∈ Disc(S) | (s, a, µ) ∈ T } ⊆ Gen(CHull({µ ∈
Disc(S) | (s, a, µ) ∈ T })), as required.

5.3. Convex-Transitive Reduction

Just like strong probabilistic bisimilarity, weak probabilistic bisimilarity em-
bodies the idea that the observable behaviour of a system is closed under convex

12
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combinations. Yet, this has to be interpreted for weak transitions. Finding a
minimal set of generators turns out to be harder in this setting, as the behaviour
of each state s no longer only depends on (convex combinations of) single step
transitions leaving s. Instead, reachable distributions are now characterized by
arbitrarily complex schedulers and their convex combinations. This convex set
is known to be finitely generated [7].

We take inspiration from the standard approach followed in transitive reduc-
tion of order relations. Intuitively, this is the opposite of the transitive closure
operation, and is achieved by removing transitions that can be reconstructed
from other transitions by transitivity. In this spirit, we propose a simple algo-
rithm that iteratively removes transitions, as long as their target distribution
can also be reached by a weak combination of other transitions. Similar to
transitive reduction on order relations, this reduction algorithm has polynomial
complexity.

We will later show that this reduction leads to a minimal result with respect

to ≈≺
|T |

, if applied on a model that a priori has been subjected to a quotient
reduction.

Definition 11 (Convex-Transition Reduction Preorder). Given two PAs A =
(S, s̄,Σ, T ) and A′ = (S′, s̄′,Σ′, T ′), we write A ⊆T A′ if and only if T ⊆ T ′,
S = S′, Σ = Σ′, s̄ = s̄′, and for each transition (s, a, µ) ∈ T ′ there exists a weak

combined transition s
a

=⇒c µ in A.

Lemma 5 (Existence of ⊆T -Minimal Automata). For every PA A there exists
a PA A′ such that A′ ≈ A and A′ is ⊆T -minimal.

Definition 12 (Convex Transitive Reduction). Let A be a PA. We write A T
;

A′ if A′ ⊆T A and A′ is ⊆T -minimal.

Notably, this reduction relation is non-deterministic, i.e., non-functional.
However, as we will show in Section 6, it is unique up to isomorphism (=iso),
if applied to a quotient reduced automaton. The overall result will therefore
be unique up to isomorphism. As a special case, this reduction can be applied
to non-probabilistic transition systems (LTSs), where it then coincides with
transitive reduction of order relations. For this it is irrelevant that this reduction
allows the combination of transitions, as long as we work on a quotient reduced
system, because in that system bisimilar states have been collapsed into a single
representative. Thus, a Dirac transition to a single state can only be matched

by a Dirac transition to precisely that state. In the LTS setting,
T
; preserves

≈LTS , and in fact it is a necessary step to arrive at the transition minimal
quotient. Minimalization concepts for LTSs were already introduced in [5, 6,
19, 20] while the concept of normal forms for LTSs has been introduced already
in [6], and likely they have been considered in the context of tools exploiting
weak bisimilarity [9, 23]. For the probabilistic minimizations/normal forms we
are not aware of any publication.
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5.4. Rescaling

A particular fine point of weak probabilistic bisimilarities [1] is related to
internal transitions that induce a non-zero chance of residing inside the class.
If looking at the quotient, this concerns any internal transition (s, τ, µ) that
reaches the source state s with nontrivial probability, i.e., 0 < µ(s) < 1. For
those transitions, we can renormalise the probability of all other states in the
support set by 1−µ(s) without breaking weak bisimilarity. In other words, such
µ can be replaced by the rescaled distribution µ\s.

Definition 13 (Rescaling). Let A = (S, s̄,Σ, T ) be a PA. We write A R
; A′ if

A′ = (S, s̄,Σ, T ′) such that for each (s, a, µ′) ∈ T ′, either a ∈ E and (s, a, µ′) ∈
T , or a = τ ∈ H and there exists (s, τ, µ) ∈ T such that µ(s) < 1 and µ′ = µ\s.

As it will turn out, this reduction is the final step to obtain minimality with

respect to ≈≺
‖T ‖

if applied a posteriori to the other two reductions,
≈
; and

T
;.

Figure 3(c) depicts the result of applying this sequence of reductions on the PA
in Figure 3(a). Figure 3(b) shows the automaton after it has been subjected to
quotient reduction only.

5.5. Properties of Reductions

We summarize preservation and computability properties of the reduction
relations.

Lemma 6 (Preservation of Bisimilarities). Given two PAs A and A′,

1. A �;A′ implies A � A′ for each � ∈ {∼,∼LTS ,≈,≈LTS}.

2. A C
; A′ implies A � A′ for each � ∈ {∼,∼LTS ,≈,≈LTS}.

3. A T
; A′ implies A � A′ for each � ∈ {≈LTS ,≈}.

4. A R
; A′ implies A ≈ A′.

Proof. The cases for
�
;,

C
;, and

T
; follow almost immediately from the defini-

tions of the reductions.
Now, consider

R
;: since by definition of

R
;, A and A′ have the same set of

states, we use µ to refer to distributions from both A and A′; we still use s′ to
remark that we consider the state s in A′.

Let I be the equivalence relation on S ] S′ such that for each s ∈ S, [s]I =
{s, s′}, i.e., each class corresponds to exactly four pairs in I: (s, s), (s, s′), (s′, s),
and (s′, s′), that is, we first relate each state s with its primed counterpart in
A′ and then take the reflexive and symmetric closure.

We claim that I is a weak probabilistic bisimulation for A and A′: let s I t
and s

a−→ µ; if s = t, i.e., we are considering the pairs (s, s) or (s′, s′), then also

t enables the transition t
a−→ µ and µ L(I) µ.

14
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Suppose now that s 6= t, i.e., we are considering the pairs (s, s′) or (s′, s);

if a ∈ E, then by definition of
R
; we have that also t enables the transition

t
a−→ µ, thus µ L(I) µ clearly holds.
Now, consider a ∈ H: if s ∈ S and t ∈ S′, i.e., we are considering the

pair (s, s′), then t is able to match such a transition by the weak combined

transition t
τ

=⇒c µ
′ as induced by the scheduler σ such that σ(t)(⊥) = µ(s),

σ(t)(tr) = 1− µ(s), and σ(α)(⊥) = 1 for each finite execution fragment α 6= t,
where tr = (t, τ, µ\s). The resulting distribution µ′ is such that µ′(s) = 1 ·
µ(s) + (1 − µ(s)) · (µ\s)(s) · 1 = µ(s) + (1 − µ(s)) · 0 = µ(s) and, for z 6= s,

µ′(z) = (1− µ(s)) · (µ\s)(z) · 1 = (1− µ(s)) · µ(z)
(1−µ(s)) = µ(z), hence µ L(I) µ′,

as required. Note that this applies also when µ = δs as the resulting scheduler
assigns σ(t)(⊥) = µ(s) = 1 so the induced weak combined transition is t

τ
=⇒c δt

and δs L(I) δt.

If s ∈ S′ and t ∈ S, i.e., we are considering the pair (s′, s), then s
a−→ µ

is actually a transition s
τ−→ ρ\s that t is able to match by the weak com-

bined transition t
τ

=⇒c µ as induced by the determinate scheduler σ such that
σ(α)(tr ′) = 1 for each α ∈ frags∗(A) with last(α) = t, and σ(α)(⊥) = 1 for
each finite execution fragment α with last(α) 6= t where tr ′ = (t, τ, ρ). The re-
sulting distribution µ is such that µ(t) =

∑∞
i=0(σ(t)(tr ′) · ρ(t))i · σ(t)(⊥) =∑∞

i=0(1 · ρ(t))i · 0 = 0 = (ρ\t)(t), since σ being determinate implies that
σ(α)(tr ′) = σ(t)(tr ′) = 1 and σ(α)(⊥) = σ(t)(⊥) = 0 whenever last(α) = t, and
µ(z) =

∑∞
i=0(σ(t)(tr ′) · ρ(t))i · (σ(t)(tr ′) · ρ(z)) · σ(z)(⊥) =

∑∞
i=0(1 · ρ(t))i · (1 ·

ρ(z)) · 1 = ρ(z) ·
∑∞
i=0(ρ(t))i = ρ(z) · 1

1−ρ(t) = (ρ\t)(z), hence ρ\s L(I) µ = ρ\t,
as required.

Proposition 7 (Computability of Reductions). For every PA A, a PA A′ can

be found in polynomial time, such that A ; A′ for ; ∈ {�;,
C
;,

T
;,

R
;} and

� ∈ {∼,∼LTS ,≈,≈LTS}.

Proof outline. The result for
�
; follows by the corresponding polynomial de-

cision procedures [7, 23, 30, 34, 41] and reachability analysis;
C
; requires for

each state and each enabled action to solve O(|T |) linear programming prob-
lems (cf. [7, Section 6]) in order to find the set of generators of reachable dis-

tributions;
R
; can be obtained by computing for each transition s

τ−→ µ the

distribution µ\s, which requires at most O(|S|) operations; finally,
T
; can be

computed by iteratively refining A by removing one transition obtaining A′
and deciding whether A ≈ A′. Since this is polynomial [41] and the check is

performed at most |T | times, computing
T
; is polynomial.

6. Normal Forms

We are now concerned with minimality and uniqueness properties induced
by the reduction operations with respect to the metrics discussed. To discuss
uniqueness, it is convenient to introduce normal forms as means to canonically

15
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represent automata in such a way that two automata are equivalent if and
only if their normal forms are identical up to isomorphism (structural identity).
Two PAs A = (S, s̄,Σ, T ) and A′ = (S′, s̄′,Σ′, T ′) are isomorphic, denoted by
A =iso A′, if Σ = Σ′ and there is a bijective mapping b : S → S′ such that
b(s̄) = s̄′ and (s, a, µ) ∈ T if and only if (b(s), a, b(µ)) ∈ T ′.

Definition 14 (Normal Form). Given an equivalence relation � over PAs, we
call NF� : PA→ PA a normal form, if it satisfies for every PA A

• NF�(A) � A, and

• for every PAA′ it holds thatA � A′ if and only if NF�(A) =iso NF�(A′).

It is natural to strive for normal forms that are distinguished in a certain
sense. Not surprisingly, we will strive for normal forms that are distinguished
as being the smallest possible representation of the behaviour they represent.
In the following, we call a total and functional subset of a binary relation r ⊆
PA×PA a function in r. Note that every function in r is a mapping PA→ PA.

Definition 15 (Normal Form Instances). • Let NF∼LTS
=
∼LTS
; .

• Let NF≈LTS be an arbitrary function in
≈LTS
; ◦ T

;.

• Let NF∼ =
∼
; ◦ C;.

• Let NF≈ be an arbitrary function in
≈
; ◦ T

; ◦ R
;.

Theorem 8. Let � ∈ {∼,∼LTS ,≈,≈LTS}.

1. Minimality: NF�(A) is �≺
|S|

, �≺
|T |

, and �≺
‖T ‖

-minimal for every A ∈
PA.

2. Uniqueness of minimals: If A and A′ are �≺
|S|

, �≺
|T |

, and �≺
‖T ‖

-
minimal automata and A � A′, then also A =iso A′,

3. Normal forms: NF� is uniquely defined up to =iso, and is a normal
form.

It is straightforward to check that all normal forms NF� above are indeed
mappings. Furthermore, by Lemma 6, it follows that in each of the cases
NF�(A) � A.

The remainder of this section is devoted to the proof of Theorem 8. We
begin with a lemma that we use often.

Lemma 9 (Preservation of Minimality). Let � ∈ {�≺
|S|
,�≺
|T |
,�≺
‖T ‖

,⊆T }. If
A =iso A′ and A is �-minimal, then A′ is �-minimal, too.

For each normal form, the proof will refer to the following crucial, but already
folklore insight, that the quotient automaton is minimal with respect to the
number of states.

16
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Lemma 10 (State Minimality of Quotient Automata). For every A ∈ PA, the

automaton A′ with A �;A′ is �≺
|S|

-minimal.

Next, we show that �≺
|S|

and �≺
|T |

-minimality can be achieved at the same
time in one automaton. For bisimilarities on LTSs, this is enough to conclude

also �≺
‖T ‖

-minimality, as this always coincides with �≺
|T |

-minimality here (as all
transitions have the form (s, a, δt)).

Lemma 11 (Compatibility of �≺
|S|

and �≺
|T |

-minimality). For every PA A there

exists a PA A′ with A′ � A, which is �≺
|S|

and �≺
|T |

-minimal.

Proof. By Lemma 3, there exists a PA A that is �≺
|T |

-minimal. Consider A′ =
[A]�. From Definition 7 it is clear that for every transition of [A]� there exists

a transition in A. Thus, [A]� �≺
|T | A, and hence, [A]� must also be �≺

|T |
-

minimal. Furthermore, by Lemma 10, [A]� must also be �≺
|S|

-minimal, and
finally by Lemma 6 we have that A � [A]� = A′.

6.1. Strong Bisimilarities

Lemma 12 (Canonicity of Normal Form). Let � ∈ {∼LTS ,∼}, A ∈ PA, and

A′ = NF�(A). For every �≺
|S|

and �≺
|T |

-minimal PA Am with Am � A, also
Am =iso A′.

Proof. We skip the proof for � = ∼LTS and proceed with the more complicated

case of � = ∼. Recall that NF∼ =
∼
; ◦ C

;. As applying
∼
; to A leads to

a ∼≺
|S|

-minimal automaton according to Lemma 10, and
C
; obviously does not

alter the number of states, A′ = NF∼(A) is ∼≺
|S|

-minimal, and thus |Sm| = |S′|,
as Am is ∼≺

|S|
-minimal by assumption.

Since A′ ∼ A and A ∼ Am, we have A′ ∼ Am. We will now argue that
b = ∼ ∩ (S′ × Sm) is in fact a suitable mapping to establish A′ =iso Am. We
start by showing that b is functional, injective, and surjective. Assume b is
not injective. Then there must exist states s1, s2 ∈ S′ and t ∈ Sm, such that
b(s1) = t and b(s2) = t. This implies that s1 ∼ t and s2 ∼ t. By transitivity, this
implies s1 ∼ s2, contradicting Lemma 10. Functionality can be shown similarly.
We skip the details. If b is not surjective, this would immediately contradict the

assumption that Am is ∼≺
|S|

-minimal, since then any state t ∈ Am for which no
s ∈ S′ exists, such that b(s) = t could be removed without violating A′ ∼ Am.

The condition that b maps s̄′ to s̄m is immediate by definition of b; the
last condition to be shown to have b being an isomorphism is relative to the
transitions, i.e.,

(s, a, µ) ∈ T ′ if and only if (b(s), a, b(µ)) ∈ Tm. (?)

The set of combined transitions any state s of A′ can take must equal (modulo
b) the set of combined transitions that b(s) can take as s ∼ b(s). By reduction

17
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C
;, the set of transitions leaving s must be minimal, according to Lemma 4, and
must also be unique. As the transitions of b(s) are minimal by assumption, the
uniqueness of the minimal set of generators guarantees condition (?).

For ∼LTS and ∼, Theorem 8 now follows almost immediately by Lemma 11,
Lemma 12, and Lemma 6. For ∼LTS , we in addition need the observation that

A is �≺
‖T ‖

-minimal if and only if it is �≺
|T |

-minimal, as we remarked before
Lemma 11. For ∼, the same observation holds, but follows from the uniqueness
of the minimal set of generators (Lemma 4).

6.2. Weak Bisimilarities

The following two lemmas are the weak counterparts to Lemma 12.

Lemma 13. Let A be a PA and A′ = NF≈LTS (A). Let Am be a ≺|S|≈LTS
and

≺|T |≈LTS
-minimal PA satisfying Am ≈LTS A. Then A′ =iso Am.

We skip the proof of this lemma, as it is similar to, but simpler than the
proof of the following lemma. The LTS part of Theorem 8 can then be proven
in complete analogy to the proof for ∼.

It is instructive to note that in the following lemma, we need to apply the

reduction
R
; to arrive at an uniqueness result. Only applying

≈
; followed by

T
;

will still lead to �≺
|S|

and �≺
|T |

-minimal automata, but they will not agree up to
=iso , in full generality. Different to Lemmas 13 and 12, the following lemma is
slightly more general.

Lemma 14. Let A be a ≈≺
|S|

-minimal PA, A T
; ◦ R

; A′, and A′m be a ≈≺
|S|

and

≈≺
|T |

-minimal PA satisfying A′m ≈ A. Finally, let A′m
R
; Am for some Am.

Then A′ =iso Am.

Proof. Let Am and A′ be chosen as in the claim. By following the same argu-
mentation as in the proof of Lemma 12, we can show that b = ≈ ∩ (Sm × S′)
is a bijection. To complete the proof, we need to establish that b is a suitable
mapping so that Am =iso A′ follows.

Assume, to derive a contradiction, that b is not an isomorphism. Since b is a
bijection between Sm and S′ (note that all automata in this lemma are required

to be ≈≺
|S|

-minimal), in order to have Am 6=iso A′ there must exist s ∈ Sm,
t ∈ S′ with s ≈ t (i.e., b(s) = t), and

(i) either a transition s
a−→ µs ∈ Tm but there does not exist t

a−→ µt ∈ T ′
such that µs L(≈) µt, i.e., there does not exist a transition t

a−→ µt ∈ T ′
such that µt = b(µs), or

(ii) a transition t
a−→ µt ∈ T ′ but there does not exist s

a−→ µs ∈ Tm such
that µs L(≈) µt.

18
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We proceed with the proof of (i). Note that this cannot be caused by
two transitions with µt 6= b(µs) but b(µs\s) = µt\t, since both automata are

rescaled. However, since s ≈ t, it follows that there exists t
a

=⇒c µt such that
µs L(≈) µt. Now, there are two cases: either a ∈ E, or a = τ ∈ H. We provide
the detailed proof for a = τ whose schematic proof idea is depicted below; the
case a ∈ E is similar.

s

µs
tµt

γis

γ1
t
⊕

⊕
γnt

ρs

µ′s
µs⊕ L(≈)=

τ
c

τ

τ
c

τ
c

τc

τ
c

τ

τ

Let σt be the scheduler inducing t
τ

=⇒c µt and t
τ−→ γ1

t , . . . , t
τ−→ γnt be all

transitions such that pi = σt(t)(t
τ−→ γit) > 0 and γit 6L(≈) µs, that is, t

τ−→ γit
is a transition used in the first step of the weak combined transition t

τ
=⇒c µt; it

is immediate to see that (
⊕n

i=1 piγ
i
t)

τ
=⇒c µt. Since s ≈ t, it follows that there

exists γis for each 1 ≤ i ≤ n such that s
τ

=⇒c γ
i
s and γis L(≈) γit . Furthermore,

(
⊕n

i=1 piγ
i
s)

τ
=⇒c µs, as (

⊕n
i=1 piγ

i
t)

τ
=⇒c µt and µt = b(µs).

Now, consider a generic γjs ; there are two cases depending on whether s
τ−→

µs is used to reach µs. If it is not used by any of the γis, then there exists

the weak combined transition s
τ

=⇒c (
⊕n

i=1 piγ
i
s)

τ
=⇒c µs that does not involve

s
τ−→ µs, hence s

τ−→ µs can be omitted. This contradicts the ≈≺
|T |

-minimality
of Am.

So, suppose that s
τ−→ µs is used in order to reach µs. Since (

⊕n
i=1 piγ

i
s)

τ
=⇒c

µs, we may split this hyper-transition into two parts according to Lemma 2,
depending on whether s

τ−→ µs is chosen by the scheduler with non-zero prob-
ability: (

⊕n
i=1 piγ

i
s)

τ
=⇒c µ

′
s with weight c1 ≥ 0 that does not involve s

τ−→ µs,

and (
⊕n

i=1 piγ
i
s)

τ
=⇒c δs with weight c2 > 0 that involves s

τ−→ µs such that

c1 + c2 = 1 and there exists ρs such that (s
τ−→ µs and) µs

τ
=⇒c ρs and

µs = (c1µ
′
s ⊕ c2ρs). Note that we use ρs instead of µs since it may be that, in

order to reach a distribution equivalent to µs, we have to adjust probabilities
by performing more steps. Now, consider the convex combination of the two
weak combined transitions Tr1 = s

τ
=⇒c (

⊕n
i=1 piγ

i
s)

τ
=⇒c µ

′
s and Tr2 = s

τ
=⇒c

(
⊕n

i=1 piγ
i
s)

τ
=⇒c δs

τ−→ µs
τ

=⇒c ρs, with weights c1 and c2, respectively. Since
(c1µ

′
s ⊕ c2ρs) = µs, we have that such convex combination corresponds to the

weak transition s
τ

=⇒c µs, so we can replace the transition s
τ−→ µs by the

weak combined transition Tr = c1 ·Tr1 ⊕ c2 ·Tr2 with µs = c1µ
′
s ⊕ c2ρs. Since

s
τ−→ µs still occurs in Tr2 = s

τ
=⇒c δs

τ−→ µs
τ

=⇒c ρs, we can recursively re-
place it by the same weak combined transition Tr , hence, after k replacements,
we have that µs = c1µ

′
s ⊕ c2c1µ′s ⊕ c22c1µ′s ⊕ · · · ⊕ ck2ρs = (

⊕k−1
l=0 c1c

l
2µ
′
s)⊕ ck2ρs,

that is, (
⊕k−1

l=0 (1 − c2)cl2µ
′
s) ⊕ ck2ρs. If we let k tend to infinite, since c2 < 1,
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we derive that µs = µ′s, therefore there exists the weak combined transition

s
τ

=⇒c (
⊕n

i=1 piγ
i
s)

τ
=⇒c µs that does not involve s

τ−→ µs, hence again s
τ−→ µs

can be omitted. This contradicts the ≈≺
|T |

-minimality of Am.
As a final note, consider the weight c2 and suppose that c2 = 1. Since

s
τ

=⇒c (
⊕n

i=1 piγ
i
s)

τ
=⇒c δs with (

⊕n
i=1 piγ

i
s) 6L(≈) δs, it follows that each

state in the support of
⊕n

i=1 piγ
i
s is actually weak bisimilar to s as the states

visited along the loop s
τ

=⇒c (
⊕n

i=1 piγ
i
s)

τ
=⇒c δs form a strongly connected

component. This contradicts the ≈≺
|S|

-minimality of Am.
The proof of case (ii) is completely analogous, except that the contradictions

will be derived with respect to ⊆T , which is a result of the fact that A′ has

been reduced according to
T
;. More precisely, since it is not possible to find a

transition s
a−→ µs ∈ Tm such that there does not exist a transition t

a−→ µt ∈
T ′ such that µt = b(µs), it follows that |T ′| ≥ |Tm|. In order to complete the
proof that A′ =iso Am, we have to show that |T ′| = |Tm|. Suppose, for the sake

of contradiction, that |T ′| > |Tm|, that is, there exists a transition t
a−→ µt ∈ T ′

such that there does not exist a transition s
a−→ µs ∈ Tm with b(s) = t such that

µt = b(µs). By following the same approach as before, we derive that t
a−→ µt

can be replaced by the weak combined transition t
a

=⇒c µt that does not involve

t
a−→ µt, but this contradicts the fact that A′ is the outcome of

T
;. Hence, since

|T ′| = |Tm| and for each transition s
a−→ µs ∈ Tm there exists t

a−→ µt ∈ T ′
with t = b(s) such that µt = b(µs) and vice-versa, b is an isomorphism between
A′ and Am, thus A′ =iso Am, as required.

Corollary 15. Let A be a ≈≺
|S|

-minimal PA.

A is ⊆T -minimal if and only if it is ≈≺
|T |

-minimal.

Proof. Let A be ≈≺
|S|

-minimal. For the first direction of the if and only if, note
first that by Lemma 11, a PA A′m must exist, which is minimal with respect to

≈≺
|T |

and ≈≺
|S|

. Let A′m
R
; Am. Clearly, Am must be ≈≺

|S|
and ≈≺

|T |
-minimal,

too. As by assumption, A is ⊆T -minimal, A T
; A. Let A′ satisfy A R

; A′. We

combine the two reductions and see that A T
; ◦ R

; A′. This allows us to apply
Lemma 14 to obtain A′ =iso Am. As A′ =iso Am implies that both have the

same number of transitions, also A′ must be ≈≺
|T |

-minimal. If we can now show
that also A and A′ have the same number of transitions, we are done. Assume

the contrary to arrive at a contradiction. As A R
; A′, this is only possible

if there are two transitions (s, τ, µ) and (s, τ, γ) in A such that µ\s = γ\s.
This means that one of them could have been removed without changing the
combined weak transitions s can perform, contradicting the assumption that A
is ⊆T -minimal.

For the other direction, assume A is in addition ≈≺
|T |

-minimal. As removing
transitions from A would lead to an automaton that is smaller with respect to

≈≺
|T |

, it must be the case that any such automaton A′ does not satisfy A′ ≈ A,
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otherwise this would contradict the assumption that A is ≈≺
|T |

-minimal. It
immediately follows that A is also ⊆T -minimal.

Lemma 16. If A is ≈≺
‖T ‖

-minimal, then there also exists A′, such that A ≈ A′

and A′ is ≈≺
|S|

, ≈≺
|T |

, and ≈≺
‖T ‖

-minimal.

Proof. We first show that for every ≈≺
‖T ‖

-minimal automaton A there is one

that is also ≈≺
|S|

-minimal. As candidate, we take the unique automaton A′ such

that A ≈
; A′. From Definitions 7 and 8 it is clear that the transitions of A′

can be surjectively mapped to transitions of A, such that every transition of A′
is smaller or equal with respect to ‖ · ‖ than its image transition in A. Thus,

minimality with respect to ≈≺
‖T ‖

is preserved.

Now we show that any A′′, which satisfies A′ T
; A′′ is in addition ≈≺

|T |
-

minimal. Clearly, the numbers of states of A′ and A′′ are the same. Further-
more, the transitions of A′′ form a subset of the transitions of A′. Thus, as A′ is

≈≺
‖T ‖

-minimal, also A′′ must be ≈≺
‖T ‖

-minimal. By Definition 12, A′′ is minimal

with respect to ⊆T , and thus, by Corollary 15, also with respect to ≈≺
|T |

.

Corollary 17. For every PA A there exists a PA A′ with A′ ≈ A, which is

≈≺
|S|

, ≈≺
|T |

, and ≈≺
‖T ‖

-minimal.

Proof. Follows immediately from Lemmas 3 and 16.

Lemma 18 (Canonicity of Normal Form). Let ANF≈ = NF≈(A). Let Am be a

≈≺
|S|

, ≈≺
|T |

, and ≈≺
‖T ‖

-minimal automaton satisfying Am ≈ A. Then ANF≈ =iso

Am.

Proof. By Corollary 17 we know that Am exists such that Am ≈ A and Am
is ≈≺

|S|
, ≈≺
|T |

and ≈≺
‖T ‖

-minimal. Furthermore, as Am is ≈≺
‖T ‖

-minimal, it must

hold Am
R
; Am. Finally, as A′ = NF≈(A), there must exist A′′ such that

A ≈;A′′ and A′′ T; ◦ R
; A′, and by the Definition of

≈
; and Lemma 10, A′′ is

≈≺
|S|

-minimal. Thus, we can apply Lemma 14 to obtain the desired result.

Theorem 8 now follows for ≈ with Corollary 17 and Lemma 18.

7. Weak Distribution Bisimulation

In the previous sections, we have seen how to obtain the normal forms for
the state-based bisimulations. These normal forms are generated by applying
in sequence different reductions working on the states and the transitions of
the automaton for which we want to find the normal form. The first reduc-
tion minimizes the number of states (and reduces the number of transitions as
byproduct) by taking the quotient under the considered bisimulation. Then, the
following reductions take care to remove transitions that are not necessary and
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to reduce the fanout. Extending blindly this approach to a distribution-based
bisimulation turns out to be not achievable, since the first step, the generation

of the quotient automaton, does not provide an automaton that is e
≺|S|-minimal,

and thus a different construction has to be adopted to obtain a normal form.
This is the topic of this section where we show how to define a normal form
for the weak distribution bisimulation. The key operation is the elimination of
vanishing states, i.e., states that are fully replaceable by a distribution they can
reach. Such vanishing states are at the core of the weak distribution bisimula-
tion decision algorithm presented in [37] and their dual –the pivotal states– of
the decision algorithm of [14].

To simplify the presentation, we first introduce some notation inspired by [37].

Definition 16. Given a PA A = (S, s̄,Σ, T ), a state s ∈ S, and a fresh state
t /∈ S, we introduce the following notation.

• The set of fresh internal transitions corresponding to the internal weak
combined transitions from s is WT (s, τ) = { (s, τ, µ) | s τ

=⇒c µ };

• The renamed automaton A[t/s] is the PA A[t/s] = (S′, s̄′,Σ, T ′) where
S′ = (S \ {s}) ∪ {t}, s̄′ = t̄ if s̄ = s, s̄′ = s̄ otherwise, and T ′ =
{ (v, a, µ[t/s]) | (v, a, µ) ∈ T \T (s, · ) }∪{ (t, a, µ[t/s]) | (s, a, µ) ∈ T (s, · ) }.
Essentially, by renaming s as t we generate a copy of A where each occur-
rence of s has been replaced by t;

• For a finite T ⊆ WT (s, τ), the T -replaced automaton AT is the PA AT =
(S, s̄,Σ, (T \ T (s, · )) ∪ T ). If T = {(s, τ, µ)} we may write A(s,µ) instead
of A{(s,τ,µ)}. Essentially, we replace all transitions with source s with the
new internal transitions from T .

We are now ready to define the vanishing states:

Definition 17. Let A = (S, s̄,Σ, T ) be a PA and s ∈ S be instable. We say
that the state s is

trivially vanishing if T (s, · ) = {(s, τ, µ)} for some µ ∈ Disc(S);

vanishing if there exists (s, τ, µ) ∈ WT (s, τ) such that seδ t when comparing
A[t/s] and A(s,µ) for t /∈ S. In this case A(s,µ) – or (s, µ), for short – is
called a vanishing representation of s;

näıvely vanishing if it is vanishing and for all vanishing representationsA(s,µ)

and all t ∈ Supp(µ), we have that seδ t; and

non-näıvely vanishing (denoted by s�) if it is vanishing but not näıvely
vanishing, that is, there is a vanishing representation A(s,µ) such that
there exists t ∈ Supp(µ) such that se/ δ t.

We say that s is non-näıvely tangible, denoted by sl, if it is not non-näıvely
vanishing.
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We extend the notation to set of states in the expected way, that is, we denote
the set of all non-näıvely vanishing states by S� and the set of all non-näıvely
tangible states by Sl.

Example 3. As an example of vanishing state, consider the PA in Figure 4a
and the state Y . Y is trivially vanishing, since it enables exactly one transition
Y

τ−→ µ, where µ = {(A, 2/5), (B, 1/5), (C, 1/5), (D, 1/5)}. Y is also non-
näıvely vanishing: it is vanishing but not näıvely vanishing because for A ∈
Supp(µ) it clearly holds that Y e/ δ A. We refer the interested reader to [37,
Example 2] for more examples of vanishing states. �

The elimination of vanishing states has been defined in [37]. We present
these ideas now in the context of reductions. For this paper we do not consider
general elimination, but we restrict ourselves to the elimination of only states in
S�: it is known (cf. [37, Theorem 2]) that the elimination of such states reduces
the weak distribution bisimulation to weak probabilistic bisimulation. Moreover,
it is shown (cf. [37, Lemma 6]) that all states in S� can be eliminated, since if
s, t ∈ S�, after the removal of t it still holds that s ∈ S� (cf. [37, Corollary 1]).
Note that näıvely vanishing states do not necessarily have to be eliminated
in advance: after quotient reduction with respect to e, all näıvely vanishing
states are collapsed with the bisimilar states in the support of their respective
vanishing representations.

Definition 18 (Elimination of the non-näıvely vanishing states S�, cf. [37]).
Given a PA A = (S, s̄,Σ, T ), a state s ∈ S�, and a PA A′ = (S, s̄,Σ, T ′) such

that A R
; A′, let A′(s,µ) be the vanishing representation of s in A′. Let

T ′′ = { (t, a, (ρ(s) · µ)⊕ (ρ− s)) | (t, a, ρ) ∈ T ′, t 6= s }.

The elimination of s from A′ is defined as:

A′ŝ =

{
(S \ {s}, s̄,Σ, T ′′) if s 6= s̄,

(S \ {s} ∪ {s̄f}, s̄f ,Σ, T ′′ ∪ {s̄f
τ−→ µ}) otherwise,

where s̄f /∈ S is a fresh state.

For S′� = {s1, . . . , sn}, consider A′′ = ((A′ŝ1)′ŝ2 . . .)′ŝn ; we write A V
; A′′

for the elimination of all non-näıvely vanishing states.

Remark 1. In the above elimination, we have to take particular care of the
case s̄ ∈ S�. In this case, we have to ensure to provide a new initial state for
the resulting automaton: this is obtained by adding s̄f /∈ S as new initial state

and the transition s̄f
τ−→ µ. It is immediate to see that s̄f is trivially vanishing

and that it is transient since it has no incoming transitions.
As pointed out in [39, Remark 1], PAs can also be defined by considering

an initial probability distribution instead of a single initial state. In such a
scenario, for A′ = (S, ῑ,Σ, T ′) and s ∈ S�, we can define A′ŝ as the PA A′ŝ =
(S \ {s}, ῑ′,Σ, T ′′) where ῑ′ = (ῑ(s)µ)⊕ (ῑ− s).
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It is worth mentioning that the resulting automaton A′′ does not depend on
the actual order of removal of states in S�. More precisely, for the symmetric
group of n elements Gn and each pair of permutations π1, π2 ∈ Gn, we have
that A′′1 = A′′2 where A′′i = (A′ŝπi(1) . . .)′ŝπi(n) , i ∈ {1, 2}. This follows from the
facts that all states in S� can be eliminated (cf. [37, Lemma 6]) and that the
elimination commutes (cf. [36, Lemma 5]).

The following theorem relates state-based and distribution-based bisimula-
tion, that is, after elimination of the states in S�, distribution-based bisimula-
tion boils down to state-based bisimulation.

Theorem 19 (cf. [37, Theorem 2]). Let A1, A2 be two PAs and A′1, A′2 be such

that A1
V
; A′1 and A2

V
; A′2. Then,

A1 eA2 ⇐⇒ A′1 ≈ A′2.

Intuitively, Theorem 19 implies that after elimination of non-näıvely van-
ishing states from A1 and A2, in the resulting PAs A′1 and A′2 are such that
whenever s′ eδ t′, then s′ ≈ t′, i.e., [u′]eδ

= [u′]≈ for each state u′ ∈ S′1 ∪ S′2.
By Theorem 19 we immediately get the following result:

Corollary 20. The following mappings from PA to PA are normal forms with

respect to e:
V
; ◦ ≈; ◦ T

; ◦ R
; and

eδ
; ◦ V; ◦ T

; ◦ R
;. Moreover, for each PA A,

for A′ and A′′ such that A V
; ◦ ≈; ◦ T

; ◦ R
; A′ and A eδ

; ◦ V
; ◦ T

; ◦ R
; A′′, it

holds that A′ =iso A′′. We denote both normal forms by NFe.

Proof. The following diagram justifies the first normal form (left equivalences
follow by Theorem 19, right equivalences by Theorem 8):

A1

V
; //

e

A′1
≈
; //

≈

A′′1
T
; // A′′′1

R
; // A′′′′1

=iso

A2

V
; // A′2

≈
; // A′′2

T
; // A′′′2

R
; // A′′′′2

The second normal form follows from the first one by the following diagram:

A

V
;
��

eδ
; // A′

V
;
��

A′′

≈
;
��

≈ A′′′

A′′′′

≈

By definition of the quotient mapping it is clear that A e A′. Theorem 19
then gives A′′ ≈ A′′′. Now by definition of the quotient mapping it is also
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clear that A′′ ≈ A′′′′, so by transitivity we get also A′′′ ≈ A′′′′. The claim
is now that it even holds that A′′′ =iso A′′′′. By Theorem 19 it follows that
an equivalence class of states in Sl (and of an initial state in S�) wrt. eδ
after elimination of states in S� corresponds to an equivalence class induced
by ≈. It remains to show that also the transitions coincide. Note that by [37,
Lemma 9], elimination of states in S� corresponds to substituting them by their
unique-up-to-bisimilarity canonical vanishing representations1 (that is, vanish-
ing representations (s, µ) where Supp(µ) ⊆ Sl). Now quotienting makes these
representations unique. Note that still A′′′ and A′′′′ are not identical because
by the current definition of elimination the fresh symbol s̄f for an eliminated
initial state s̄� is not defined more specifically. However, the fresh symbols s̄f
are trivially isomorphic.

Lemma 21 (State Minimality of Quotient Automata after Elimination). For

every A ∈ PA, the PA A′ such that Aeδ
; ◦ V

; A′ is e
≺|S|-minimal.

Proof. By Theorem 19 it is clear that elimination leads to the weak bisimulation
case. In [37] it has been shown that all states in S� can be eliminated and
the proof of Corollary 20 shows that after quotienting with respect to eδ and
elimination the result is already a quotient with respect to ≈. Lemma 10 shows
that this quotient is already state-minimal.

Corollary 22. NFe is e
≺|S|-minimal and e

≺|T |-minimal.

Proof. It remains to show that the number of transitions is minimal. This fol-
lows directly from Theorem 8 and the fact that – even when s̄ ∈ S� – elimination
never results in more transitions than before elimination.

Example 4. Figure 4 shows that the fanout may increase by elimination. The
PA in Figure 4a has a cumulative fanout of 14. State Y is trivially (non-
näıvely) vanishing. The PA obtained after elimination of Y (cf. Figure 4b) has
a cumulative fanout of 15. �

Therefore we have shown:

Lemma 23. NFe is in general not e
≺‖T ‖-minimal.

This lemma seems to be in contrast with Theorem 8 for the state-based
weak bisimulation, where state-, transition-, and fanout-minimality are reached
simultaneously. The key difference is that by removing non-näıvely vanishing
states, it is the case that some state of the original automaton has no more a
representative in the normal form (so we are able to reduce further the number
of states), and this is reflected by an increase of the fanout that is caused by
the replacement of the removed state with a distribution. Still we can state:

1As usual, initial states in S� are made transient by elimination.
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(b) After elimination

Figure 4: Fanout may increase after elimination

Lemma 24 (Canonicity of Normal Form). Given a PA A, with s̄ being non-
näıvely tangible, let ANFe = NFe(A). Let Am ≈ A be a |S| minimal PA. Let
further Am be ‖T ‖ minimal among all such |S| minimal PAs. In other words
Am is (|S|, ‖T ‖) minimal with respect to the usual lexicographic order ( · , · ).
Then ANFe =iso Am.

Proof. When the initial state s̄ is a non-näıvely tangible state, minimality en-
sures that we have a quotient and all states in S� \ {s̄m} have been eliminated
(cf. Lemma 21). Among the state minimal automata, fanout minimality en-
sures that after elimination convex-transitive reduction and rescaling have been
performed (cf. Lemma 18). So with Theorem 19, Corollary 20 and Corollary 18
the claim follows.

Remark 2 (Stronger canonicity result). According to the definition, each PA
has a unique initial state; as noted in [39], nothing prevents us to define PAs so
that they can have multiple initial states or even an initial distribution, similarly
to Markov chains and MDPs (cf., e.g, [2]). If one drops the requirement that
an explicit start state shall exist, even stronger canonicity results are possible.
Assume that initial distributions are allowed and whenever there is a non-näıvely
vanishing state, it is described by its canonical vanishing representation, i.e., the
vanishing representation containing only non-näıvely tangible states (which is
unique up to isomorphism, cf. [37, Lemma 9]). In this context, non-näıvely
vanishing initial states may be omitted from the state space. Therefore the
statement of the lemma can be simplied as: Given a PA A, let ANFe =
NFe(A). Let Am ≈ A be a |S|-minimal PA. Let further Am be ‖T ‖-minimal
among all such |S|-minimal PAs. Then ANFe =iso Am.

Proposition 25. For every PA A, a PA A′ can be found in exponential time,

such that A; A′ for ; ∈ {eδ
; ,

V
;}.
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Proof. The result follows by the exponential complexity of computing the set
WT (s, τ) for each s ∈ S, see [37].

Theorem 26 (Complexity of Normal Forms). For every PA A,

• NF∼LTS
(A), NF≈LTS

(A), NF∼(A), and NF≈(A) can be computed in poly-
nomial time;

• NFe(A) can be computed in exponential time.

Proof. The result follows immediately by Propositions 7 and 25 by simply
adding the complexity of each reduction involved in the corresponding definition
of NF�.

8. Fanout minimal automata

In this section we introduce a sketch of an algorithm which, starting from
the normal form of an automaton, calculates its fanout minimal automata. We
will see that in general there are many of those and there is no canonical fanout
minimal automaton.

By Lemma 23, we know that automata that are minimal with respect to
the number of states and transitions may not be minimal with respect to the
fanout. This implies that there exist automata that are minimal with respect
to the fanout but they have more states and transitions. Note that having the
same states but more transitions would just increase the fanout and anyway the
extra transitions would be redundant. A way to reduce the fanout is to add
some new state and transition that are then shared among other transitions;

essentially, we act as the inverse of
V
;. The following basic lemma shows that

non-näıvely vanishing states play a key role when fanout minimality will be
reached:

Lemma 27. Given a PA A = (S, s̄,Σ, T ) with fanout n, let n′ be the fanout of
the PA A = (S, s̄,Σ, T )′ obtained from A = (S, s̄,Σ, T ) by adding a vanishing
state v′ and merging transitions. If v′ is a näıvely vanishing state or a non-
trivially vanishing state, then A = (S, s̄,Σ, T )′ is not fanout-minimal.

Proof. Let A = (S, s̄,Σ, T ) be a PA with fanout n. We show first that adding
näıvely vanishing states is not beneficial for reaching minimal fanout. Assume
that we add a näıvely vanishing state v′ to get –after merging transitions– an
automaton A′ with fanout n′ < n. By definition of a näıvely vanishing state it
must hold that v′ e v for some v ∈ S. Therefore all transitions which share v′

could equivalently share v without losing bisimilarity. This implies that there
is surely a bisimilar automaton A′′ with state set S with fanout n′′ < n′ since
v′ and its transitions can be replaced by v and its transitions.

Next we show that adding a non-trivially vanishing state v′ to the automaton
A is not beneficial for reaching minimal fanout. By definition, non-trivially
vanishing states have other emanating transitions in addition to their vanishing
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representation (v′, τ, µ). Assume that adding the non-trivially vanishing state
v′ leads –after merging transitions– to an automaton A′ with fanout n′ < n.
By definition of non-trivially vanishing states it is clear that without losing
bisimilarity v′ can be replaced by a state v′′ having only the emanating transition
(v′′, τ, µ). This leads to an automaton A′′ with fanout n′′ < n′, because the
emanating transitions of v′ which are not equal to the vanishing representation
have been omitted.

So the proposal is to successively add non-näıvely vanishing states which are
trivially vanishing.

8.1. Equations for adding a single state

Let A = (S, s̄,Σ, T ) be a PA, n = |S|, and m = |T |. Our aim is to reduce
the fanout of A by modifying it while being weak distribution bisimilar; we
obtain this by adding a new state and a new transition that are then shared
among the original transitions so that the overall fanout is reduced. As an exam-
ple, consider an automaton having three transitions leading to the distributions
µ1 = {(s1,

1
4 ), (s4,

1
4 ), (s5,

1
4 ), (s6,

1
4 )}, µ2 = {(s2,

1
4 ), (s4,

1
4 ), (s5,

1
4 ), (s6,

1
4 )}, and

µ3 = {(s3,
1
4 ), (s4,

1
4 ), (s5,

1
4 ), (s6,

1
4 )}. We can see that such distributions share

the subdistribution {(s4,
1
4 ), (s5,

1
4 ), (s6,

1
4 )} so a way to reduce the overall fanout

is the following: if we add a fresh state s7 and the transition (s7, τ, ν4) where
ν4 = {(s4,

1
3 ), (s5,

1
3 ), (s6,

1
3 )}) and we replace the above distributions by ν1 =

{(s1,
1
4 ), (s7,

3
4 )}, ν2 = {(s2,

1
4 ), (s7,

3
4 )}, and ν3 = {(s3,

1
4 ), (s7,

3
4 )}, the over-

all fanout reduces from 12 to 9 and the two automata are weak distribution
bisimilar. We now formalise such a construction.

Definition 19. Let A = (S, s̄,Σ, T ) be a PA. Let n = |S|, m = |T | and assume
two sets of fixed indices IS = {1, . . . , n} for states and IT = {1, . . . ,m} for
transitions, respectively. In the following, let µi = trg(tr i) for each i ∈ IT and
denote by µi,j the value µi(sj) for each i ∈ IT and j ∈ IS . This gives rise to a
mapping M : PA→ Rm×n, where A 7→ (µi,j)i∈IT ,j∈IS .

Note that all labels of states and transitions as well as the information about
the initial state are lost by this mapping. However this mapping is sufficient
as it is always clear that we add a τ transition and leave the labels of the
existing transitions as they are. For an automaton as given in Definition 19
we construct a new automaton A′ = (S′, s̄,Σ, T ′) by adding a fresh state sn+1

and a fresh transition trm+1 = (sn+1, τ, νm+1), that is, S′ = S ∪ {sn+1} and
T ′ = T ∪ {trm+1}. It will suffice to consider νm+1 ∈ Disc(S) instead of νm+1 ∈
Disc(S′) since a loop to the new state sn+1 will surely not lead to fanout-
minimality. In fact, a trivial fact we can observe is that the newly introduced
state cannot have a non-trivial probability 0 < νm+1,n+1 < 1. This is justified
by the fact that rescaling at sn+1 would lead to a bisimilar automaton with
fanout reduced by one.

Fact 28. For fanout-minimal automata it must hold that νm+1,n+1 = 0.
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Denote by IS′ = {1, . . . , n, n+ 1} and IT ′ = {1, . . . ,m,m+ 1} the index sets
for S′ and T ′, respectively.

According to Definition 19, the mappingM(A′) would result in the following
matrix: 

µ1,1 . . . µ1,n 0
...

. . .
...

...
µm,1 . . . µm,n 0
νm+1,1 . . . νm+1,n 0


From the matrix it can be seen that the fresh state is so far unreachable.

The aim is to construct a new matrix (νi,j)i∈IT ′ ,j∈IS′ (that is, a new automaton)
with at least one non-zero entry in the (n+ 1)-th column of the first m rows.

In order to get identical successor distributions after the elimination of the
state sn+1, the following system of equations enriched by non-negativity con-
straints has to hold:

NSS =


νi,j + νm+1,j · νi,n+1 = µi,j for each i ∈ IT , j ∈ IS ,∑
j∈IS′

νi,j = 1 for each i ∈ IT ′ ,
νi,j ≥ 0 for each i ∈ IT ′ , j ∈ IS′ .

A solution of such a system represents how A can be modified so that the re-
sulting automaton A′ satisfies A e A′. Essentially, we replace the probability
of reaching sj according to the original distribution µ (i.e., µi,j) with the resid-
ual probability given by ν and the probability of the freshly introduced νm+1,
weighted by the probability of reaching sn+1 according to ν. More precisely,
for a given transition tr i = (s, a, µi), let νi be the distribution induced by the
solution NSS, i.e., νi is such that (νi − sn+1) + νi(sn+1) · νm+1 = µi; then the
transitions of A′ are { (s, a, νi) | (s, a, µi) ∈ T } ∪ {(sn+1, τ, νm+1)}.

For a fixed νm+1 ∈ Disc(S), the above problem can be seen as a Linear
Programming Problem where the objective function is constantly 0; on the other
hand, if we consider also νm+1,j as variables, the above problem can be seen as
a Quadratically Constrained Quadratic Problem. Since this system encodes all
transitions, including the newly added transition trm+1, it is immediate to see
that the fanout of A′ is the number of the non-zero entries νi,j of the solution
of the programming problem NSS, for i ∈ IT ′ and j ∈ IS′ . In general we can
observe:

Fact 29. For a PA A = (S, s̄,Σ, T ), its fanout is equal to the number of non-
zero entries of the matrix M(A).

A trivial fact about the above system, affecting the performance of the algo-
rithm, is that whenever µi,j is zero, that also νi,j is zero as well. This is because
all the summands in NSS are nonnegative.

Fact 30. When µi,j = 0, then also νi,j = 0 for all i ∈ IT , j ∈ IS.

By Fact 30, we can reduce the a priori number of variables in the problem
NSS to those which are actually needed. Of course those with index j = n+ 1
and the variables describing νm+1 remain untouched.
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Remark 3 (non-näıvely vanishing initial state). As recalled in Remark 2, one
can consider PAs with an initial distribution instead of an initial state. In this
setting, we can further reduce the fanout of the normal form whenever it contains
a (transient) non-näıvely vanishing initial state s̄. Assume that (s̄, τ, µ) is the
emanating transition of s̄; we can directly use µ as initial distribution and solve
NSS where we set νm+1,i = µi for i ∈ S; this means that only the remaining
νi,j variables of NSS have to be determined.

8.2. Extension to multiple states

The above approach can be easily extended to multiple additional states: a
first possibility is to add k new states and distributions, so that the mapping
applied to the resulting automaton A′ would result in the following matrix:

µ1,1 . . . µ1,n 0
...

. . .
...

...
µm,1 . . . µm,n 0
νm+1,1 . . . νm+1,n 0

...
. . .

...
...

νm+k,1 . . . νm+k,n 0


The resulting NSSk would then be:

NSSk =


νi,j +

∑k
l=1 νm+l,j · νi,n+l = µi,j for each i ∈ IT , j ∈ IS ,∑

j∈ISk
νi,j = 1 for each i ∈ ITk ,

νi,j ≥ 0 for each i ∈ ITk , j ∈ ISk ,

where Sk = S ∪ { sn+l | 1 ≤ l ≤ k } and Tk = T ∪ { (sn+l, τ, νm+l) | 1 ≤ l ≤ k }
for fresh states sn+1, . . . , sn+k.

Another possibility is to repeat the proposed approach for NSS on the ob-
tained automaton A′, i.e., to construct an automaton A′′ such that the mapping
M(A′′) gives: 

µ1,1 . . . µ1,n 0
...

. . .
...

...
µm,1 . . . µm,n 0
νm+1,1 . . . νm+1,n 0

ν(m+1)+1,1 . . . ν(m+1)+1,n 0


When repeated k times, this approach is a generalization of the first one, since
it permits to obtain the NSSk system. In addition, it allows us to have an
automaton where some distribution νm+l has the state sn+l′ in its support, for
1 ≤ l, l′ ≤ k, l′ 6= l. The order with which we insert new states does not affect
the final resulting automaton, as the following remark states.

Remark 4 (Commutativity of insertions). Given a PA A = (S, s̄,Σ, T ), con-
sider { si ∈ S� | i ∈ {1, . . . , n} }. We already mentioned in Section 7 that for the
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symmetric group of n elements Gn and each pair of permutations π1, π2 ∈ Gn,
we have that A′′1 = A′′2 where A′′l = (A′ŝπl(1) . . .)′ŝπl(n) , l ∈ {1, 2}. In other
words, eliminations of non-näıvely vanishing states commute. Therefore also
when inserting non-näıvely vanishing states one can also expect some kind of
commutativity. First note that by elimination of si ∈ S�, the actual vanishing
representation of every other state sj , i 6= j, might be changed. This means
that the same sj ∈ S� can have different vanishing representations before and
after the elimination of si. It is known (cf. [37, Lemma 9]) that there exist
canonical vanishing representations (s, µ̂) of (s, µ) which are unique on quo-
tient automata. They only consist of non-näıvely tangible states in Supp(µ̂).
By identifying (s, µ) with its canonical vanishing representation (s, µ̂) one can
speak of commutativity. This means inserting (s1, µ1) after (s2, µ2) leads to the
same results as inserting (s2, γ2) after (s1, γ1) if the results are fanout-minimal
automata and µ̂l = γ̂l, l ∈ {1, 2}.

8.3. Practical verification

To verify the effects of adding fresh states, we have developed a proof-of-
concept program for finding all possible automata corresponding to the solutions
of the NSS system. To this end, we encoded the NSS system as an SMT-LIB
instance [4] and then used Z3 [10] to find the minimum fanout by iteratively
reducing the possible value of the fanout, until the solver returns that the re-
sulting instance is not satisfiable. We have implemented in Python a program
that, given the SMT-LIB representation of NSS and the desired fanout, enu-
merates all different automata with at most the given fanout that are solutions
of NSS. This is obtained by iteratively inserting into the SMT-LIB instance
new constraints as follows: we first ask the Z3 library to return a model of the
current instance; if such model does not exist (because the instance is unsatis-
fiable), the program terminates. Otherwise, we add a constraint requiring that
not all variables are equal to their corresponding value in the returned model:
for instance, suppose that for the current instance Ik we get a model Mk as-
signing to each variable νi,j a value vki,j . We then define the new constraint

Ck+1 = ¬
∧
i,j(νi,j = vki,j) and we add it to Ik, obtaining the new instance

Ik+1 = Ik∧Ck+1; if Ik+1 is satisfiable, then a model Mk+1 for Ik+1 must ensure
that for at least one variable νi,j , it holds Mk+1(νi,j) = vk+1

i,j 6= vki,j = Mk(νi,j),
i.e., Mk+1 is different from Mk.

As an example, consider the PA shown in Figure 5, whose fanout is 19.
By encoding it as an instance of NSS and running the program, we obtained
12 different automata with fanout 18 in less than 4 seconds on a desktop PC
equipped with an Intel Core i7-4790 processor at 3.6GHz with 16GB of RAM;
some of the obtained automata are shown in Figure 6. We have also tried to
reduce the fanout to 17; for this experiment, after 16 seconds we have obtained
that NSS is unsatisfiable, i.e., there are no automata with fanout 17 that are
equivalent to the automaton in Figure 5.

We have also run the experiments on the extension to multiple states: the
problem NSS2 has no solution when the fanout is 18; on the other hand, if
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Figure 5: Example automaton
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Figure 6: Some fanout minimal automata with 8 states; the distribution νm+1 is represented
as vector with entries A, B, C, and D, respectively
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we take the more general approach where we apply twice the NSS approach,
then we obtain 21 automata with fanout 18 but no automaton with fanout
17. We want to remark that each of the above results on multiple states has
been obtained in around 20 seconds on a simplified version of the automaton,
where all self-loop transitions (e.g., (Z, z, δZ)) have been omitted. In fact, even
if it is clear that such self-loop transitions remain unchanged in the obtained
automata, their presence makes Z3 much slower: after 15 minutes we stopped
the execution without having obtained any automaton.

9. Application to Markov Automata

Section 2 recalled the mapping [17] E : MA → PA, defined in such a way
that for a MA A = (S, s̄,Σ, TI , TM ), the property of a state s being stable
(respectively instable) can be recovered from E(A): states with outgoing χ( · )
transitions are stable, the others must be instable. In a similar way we say that
a state s is non-näıvely vanishing (respectively non-näıvely tangible) when the
corresponding state in E(A) is non-näıvely vanishing (respectively non-näıvely
tangible).

While this mapping makes it possible to treat MAs and PAs uniformly, this
does not mean that the original MA definition is without use. In fact, the latter
is the one arising naturally if starting from a compositional syntax for MAs,
such as the MAPA language supported by the MaMa tool [24]. Especially
parallel composition ‖MA is straightforward to define on MAs [17] (combining
‖PA on PAs [40] with interleaving of Markov transitions). However, the two
operators do not commute with E : given two MAs A1 and A2, E(A1 ‖MA A2)
can differ from E(A1) ‖PA E(A2), due to the treatment of Markov transitions in
the former.

As a result, a compositional minimisation approach for MAs, where compo-
nents are replaced by their normal form (so as to alleviate state-space explosion)
prior to parallel composition is best done by recovering the MA representation
from the normal form PA of the embedding. This raises the question if this re-
covery is possible without destroying minimality on the MA level. In the sequel,
we answer affirmatively this question.

In order to define normal forms for MAs we shall introduce a reverse map-
ping, thus lifting PAs back to MAs, provided the former are obtained from
E . However using an arbitrary element in the preimage of E( · ) might result
in transitions which are superfluous due to the maximal progress assumption.
This is not opportune, since we target minimality. Apart from this, the defini-
tion of the lifting provided below is quite straightforward. The only special case
concerns the definition of TI , where we have to “pad” τ -loops wherever needed
in order to preserve stability and instability of states.

Definition 20 (Backward Lifting). Given the set image E(MA) and its corre-
sponding normal form images NF�(E(MA)) with � ∈ {∼,≈,e}, let E�(MA)
denote the set E(MA) ∪�∈{∼,≈,e} NF�(E(MA)). For a given A ∈ E�(MA),
A = (S, s̄,Σ, T ), we define the mapping E: E�(MA) → MA as follows: let
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T |χ = { (s, a, µ) ∈ T | ∃λ ∈ R≥0. a = χλ } and T |χ = T \ T |χ . Then,
E: A 7→ A′ = (S′, s̄′,Σ′, TI ′, TM ′) where

• S′ = S,

• s̄′ = s̄,

• Σ′ = Σ \ {χr ∈ Σ | r ∈ R≥0 },

• TI = T |χ ∪ { (s, τ, δs) | s ∈ S′ ∧ T |χ(s, · ) = ∅ ∧ T |χ(s, τ) = ∅ }, and

• TM = { (s, λ, t) | ∃r ∈ R>0. (s, χr, µ) ∈ T ∧ λ = r · µ(t) }.

Both E and Erespect unreachable parts of automata. For the normal forms
this will not play a role because our quotient mapping is defined to consider
only the reachable fragment of an automaton. The following lemma is clear by
construction of E and E:

Lemma 31. E|E(MA) is injective, so E|E(MA) is a bijection between E(MA) and
E(E(MA)).

Weak bisimulations for MA is defined by E using weak distribution bisimu-
lation on PA.

Definition 21 ([17]). Let A1, A2 be MA. Then A1 eMA A2 if and only if
E(A1) e E(A2).

Remark 5. In [16, 17] the symbol ≈ (called weak bisimilarity there) is used to
denote what is here referred to as eMA (and called weak distribution bisimilarity)
for consistency reasons.

Normal forms for MAs are defined as expected (cf. Definition 14): for a given
equivalence relation � over MAs, we call NF� : MA→ MA a normal form, if it
satisfies for every MA A that NF�(A) � A, and that for every MA A′ it holds
that A � A′ if and only if NF�(A) =iso NF�(A′).

The MA normal form is harvested from the PA context via embedding and
lifting.

Definition 22. The weak distribution bisimilarity normal form NFeMA
: MA→

MA is defined as
NFeMA

= E ◦NFe ◦ E

This definition can equally well be instantiated for ∼, ≈. For the canonicity
statement we need to spell out the relevant metrics on MAs.

Definition 23. Let A1 = (S1, s̄1,Σ1, TI 1, TM 1) and A2 = (S2, s̄2,Σ2, TI 2, TM 2)
be two MAs. We write

• A1 eMA

≺|S| A2 if A1 eMA A2 and |S1| ≤ |S2|,

• A1 eMA

≺|TI | A2 if A1 eMA A2 and |TI 1| ≤ |TI 2|,
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• A1 eMA

≺‖TI ‖ A2 if A1 eMA A2 and ‖TI 1‖ ≤ ‖TI 2‖, and

• A1 eMA

≺|TM | A2 if A1 eMA A2 and |TM 1| ≤ |TM 2|.

Canonicity with respect to weak distribution bisimilarity is induced by the
PA result (Lemma 24). The proof differs slightly since |TM |-minimality needs
to be ensured, taking into consideration Markovian multi-transitions in MA.

Lemma 32 (Canonicity of Normal Form). Let A′ = NFeMA
(A). Let ( · , · , · )

be the usual lexicographic ordering. Let Am be a (|S|, ‖TI ‖, |TM |)-minimal au-
tomaton with s̄ non-näıvely tangible satisfying Am eMA A. Then A′ =iso Am.

Remark 6. In a similar way as indicated in Remark 2, there is a stronger
canonicity result when the requirement for an explicit initial state is dropped
and initial distributions may be used instead. In this case the elimination of non-
näıvely vanishing states can also eliminate a non-näıvely vanishing initial state
and the canonicity result stated in Lemma 32 becomes: Let A′ = NFeMA

(A).
Let ( · , · , · ) be the usual lexicographic ordering. Let Am be a (|S|, ‖TI ‖, |TM |)-
minimal automaton satisfying Am eMA A. Then A′ =iso Am.

As a result, the MA counterpart of Theorem 8 can be established.

Theorem 33. Let ( · , · , · ) be the usual lexicographic ordering.

1. Minimality: NFeMA
(A) is (|S|, |TI |, |TM |)-minimal for any A ∈ MA.

2. Uniqueness of minimals: If A,A′ ∈ MA are (|S|, ‖TI ‖, |TM |)-minimal
(and (|S′|, ‖TI ′‖, |TM ′|)-minimal, respectively) automata with non-näıvely
tangible initial states and A′ eMA A, then also A′ =iso A,

3. Normal forms: NFeMA
is uniquely defined up to =iso, and is a normal

form.

Remark 7. For claim 1 in contrast to Theorem 8 fanout-minimality will not be
achievable when (on a quotient) the only non näıvely vanishing state is the start
state (which is assumed to be recurrent). Elimination of such a state would
increase the fanout as discussed in Section 8. Claim 2 follows immediately
from Lemma 32: both automata are isomorphic to their normal forms, and
by the definition of a normal form (cf. Definition 14) the result follows. The
precondition of non-näıvely tangible initial states is crucial here. For non-naively
vanishing initial states counterexamples to this statement can be constructed, as
Fig. 7 demonstrates. Both automata have a non-näıvely vanishing initial state
while all other states are non-näıvely tangible. It is easy to see that elimination
of Y ′ (that is: making it transitive) would increase the fanout. Both automata
have 8 states, fanout 19 and no Markovian transitions. With the methods of
Section 8 one verifies that this is the minimal fanout when using eight states.
The two automata are clearly not isomorphic, since X can (using a τ transition)
reach Y ′ with probability 0.5 in the automaton 2 but this is clearly not possible
in automaton 1.
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(b) Automaton 2

Figure 7: Bisimilar but non isomorphic minimal automata with non-näıvely vanishing initial
states

Example 5. The example in Figure 8 shows the MA weak distribution bisimula-
tion normal form by means of the examples from Figure 1 in [17]. Let us assume
that all state symbols with the same color and shape are weakly distribution
bisimilar. The mapping E then converts the automata to PAs by transforming
the Markovian transitions into χ transitions and by adding χ0-loops to every
stable state without any outgoing Markovian transition.

• The left automaton the normal form mapping reduces to quotienting, that
is aggregating the blue states. Note that the left of the blue states is
näıvely and trivially vanishing. Every other aspect is already in reduced
form. Now the normal form is lifted back to MA by reconstructing the
Markovian transition out of the transition labelled with χ3λ.

• The middle automaton is already in normal form.

• The right automaton the normal form mapping reduces to elimination
of the trivially vanishing non-näıvely vanishing yellow hexagonal state.
Every other aspect is already in reduced form.

�

10. Conclusion

In this paper we have successfully answered the question how to compute the
minimal, canonical representation of probabilistic automata under strong and
weak state-based bisimilarity, together with polynomial time minimization algo-
rithms. We considered as well the state- and transition-minimal, canonical rep-
resentation of probabilistic and Markov automata under the weak distribution-
based bisimilarity; in such a scenario, the minimization algorithms inherit the
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Figure 8: Normal form overview for Markov Automata

exponential complexity of computing the bisimulation relation [14, 37]. We have
also proposed an algorithm to compute all fanout minimal representations of a
given automaton under the weak distribution-based bisimilarity, but there is no
canonical representation for fanout-minimality.

Canonical forms have also appeared in axiomatic treatments of probabilistic
calculi [12], but are obtained by adding transitions via saturation, so without
aiming for minimality. Figure 9 summarizes what steps are needed to perform
the minimization in labelled transition systems (left), probabilistic automata
(center) and Markov automata (right). For the LTS and PA cases, the triplets
indicate minimality (�) or non-minimality (×) with respect to |S|, then |T |,
then ‖T ‖; for the MA case, the quadruplets indicate minimality (�) or non-
minimality (×) with respect to |S|, then |TI |, then ‖TI ‖, and finally |TM |. For
example, a triplet ��× for PAs indicates that state and transition numbers are
minimal, but transition fanout size can be non-minimal.

The algorithms we developed can be exploited in an effective compositional
minimization strategy for PAs (or MDPs), because strong and weak bisimilarity
are congruence relations for the standard process algebraic operators. With
this, we see a rich spectrum of potential applications in operations research,
automated planning, and in the decision support context.

Lastly, we give a short overview of some recent results on distribution based
bisimulation relations for PAs. For Rabin’s notion of probabilistic automata [35],
which is a special class of deterministic PAs where |T (s, a)| = 1 for all states s
and actions a, a distribution based bisimulation was proposed in [13]. For such
a sub-class of PAs, this relation can be decided in polynomial time [13, 42].
This definition is further extended in [22, 26, 28] to handle general PAs. The
relation between these bisimulations can be found in [21]. Further, in [43], an
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;

×××

�××

���

∼
;

C
;

×××

�××

��×

���

≈
;

T
;

R
;

not unique

×××

××× ×××

�××

��×

��×

××�

V
;

≈
;

eδ
;

V
;

T
;

R
;

NSS

not unique

not unique

××××

��××

E

E

Figure 9: Algorithmic steps in minimal quotient computation.
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even weaker notion of distribution based weak bisimilarity has been proposed.
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