
POWER TO THE PEOPLE
VERIFIED

This report contains an author-generated version of a publication in ISoLA 2018.

Please cite this publication as follows:

Pedro R. D’Argenio, Arnd Hartmanns, Sean Sedwards.
Lightweight Statistical Model Checking in Nondeterministic Continuous Time.
Leveraging Applications of Formal Methods, Verification and Validation. Verification - 8th International
Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part II. Lecture Notes
in Computer Science 11245, Springer 2018, ISBN 978-3-030-03420-7. 336-353.

POWVER
Technical Report 2018-15

Title: Lightweight Statistical Model Checking in Nondeterministic
Continuous Time

Authors: Pedro R. D’Argenio, Arnd Hartmanns, Sean Sedwards

Report Number: 2018-15

ERC Project: Power to the People. Verified.

ERC Project ID: 695614

Funded Under: H2020-EU.1.1. – EXCELLENT SCIENCE

Host Institution: Universität des Saarlandes, Dependable Systems and Software
Saarland Informatics Campus

Published In: ISoLA 2018

http://www.powver.org/publications/TechRepRep/ERC-POWVER-TechRep-2018-15.pdf
http://www.powver.org/
http://cordis.europa.eu/project/rcn/203431_en.html
http://cordis.europa.eu/programme/rcn/664099_en.html
http://www.uni-saarland.de/nc/startseite.html
http://depend.cs.uni-saarland.de/
http://sic.saarland/
http://dx.doi.org/10.1007/978-3-030-03421-4_22

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

Lightweight Statistical Model Checking in
Nondeterministic Continuous Time?

Pedro R. D’Argenio1,2,3, Arnd Hartmanns4, and Sean Sedwards5

1 Universidad Nacional de Córdoba, Córdoba, Argentina
2 CONICET, Córdoba, Argentina

3 Saarland University, Saarbrücken, Germany
4 University of Twente, Enschede, The Netherlands

5 University of Waterloo, Waterloo, Canada

Abstract. Lightweight scheduler sampling brings statistical model check-
ing to nondeterministic formalisms with undiscounted properties, in con-
stant memory. Its direct application to continuous-time models is ren-
dered ineffective by their dense concrete state spaces and the need to
consider continuous input for optimal decisions. In this paper we describe
the challenges and state of the art in applying lightweight scheduler sam-
pling to three continuous-time formalisms: After a review of recent work
on exploiting discrete abstractions for probabilistic timed automata, we
discuss scheduler sampling for Markov automata and apply it on two case
studies. We provide further insights into the tradeoffs between scheduler
classes for stochastic automata. Throughout, we present extended exper-
iments and new visualisations of the distribution of schedulers.

1 Introduction

Statistical model checking (SMC [24,33]) is a formal verification technique for
stochastic systems based on Monte Carlo simulation. It naturally works with
non-Markovian behaviour and complex continuous dynamics that make the exact
model checking problem intractable. As a simulation-based approach, however,
SMC is incompatible with nondeterminism. Yet (continuous and discrete) nonde-
terministic choices are desirable in formal modelling, for abstraction and to rep-
resent concurrency as well as the absence of knowledge. Nondeterminism occurs
in many popular formalisms, notably in Markov decision processes (MDP). In
the presence of nondeterminism, quantities of interest are defined w.r.t. optimal
schedulers (also called policies, adversaries or strategies) resolving all nondeter-
ministic choices: the verification result is the maximum or minimum probability
or expected value ranging over all schedulers. Many SMC tools appear to sup-
port nondeterministic models, e.g. Prism [28] and Uppaal smc [13], but use
a single implicit probabilistic scheduler that makes all choices randomly. Their
? This work is supported by the 3TU project “Big Software on the Run”, by ERC grant
695614 (POWVER), by the JST ERATO HASUO Metamathematics for Systems De-
sign project (JPMJER1603), and by SeCyT-UNC projects 05/BP12, 05/B497.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

results thus lie somewhere between the minimum and maximum. Such implicit
resolutions are known to affect the trustworthiness of simulation studies [3,27].

Sound SMC in the presence of nondeterminism is a hard problem. For MDP,
Brázdil et al. [4] proposed a sound machine learning technique, while Uppaal
Stratego [12] explicitly synthesises a “good” scheduler before using it for a
standard SMC analysis. Both approaches suffer from worst-case memory usage
linear in the number of states. Classic memory-efficient sampling approaches
(e.g. [25]) address discounted models only. In contrast, the modes tool [6], part
of the Modest Toolset [20], extends the lightweight scheduler sampling (LSS)
approach for MDP first implemented in Plasma [30]. LSS is the only technique
that applies to undiscounted properties, as typically considered in formal verifi-
cation, that also keeps memory usage effectively constant in the number of states.

The effectiveness of LSS depends on the probability of sampling near-optimal
schedulers. It works well for discrete-time discrete-state models like MDP, where
memoryless schedulers achieve optimal probabilities on a discrete state space.
Yet the concrete state spaces of continuous-time models may be uncountably
infinite, and optimal schedulers may need real-valued input based on model
time. This renders naive applications of scheduler sampling ineffective. However,
the use of suitable discrete abstractions makes the approach both feasible and
useful for some continuous-time formalisms.

This paper summarises, connects and extends previous work on LSS for
continuous-time models. After an introduction to the concept of LSS on MDP
in Sect. 2, we summarise recent extensions to probabilistic timed automata
(PTA [29]) using regions [22] and zones [9] in Sect. 3. We report extended ex-
perimental results, sampling more schedulers and reducing the statistical error
compared to our previous work. In Sect. 4 we investigate the challenges in ex-
tending LSS to Markov automata (MA [14]), a compositional nondeterministic
extension of continuous-time Markov chains. We introduce two new case stud-
ies to experiment with modes’ support for LSS on MA. In Sect. 5 we turn to
stochastic automata (SA [10]), which include general continuous probability dis-
tributions. We have recently shown that no simple class of schedulers achieves
optimal probabilities on SA [8]. We summarise these results and their effect on
LSS, and provide more detailed experimental results to investigate the tradeoffs
between restricted classes and discrete abstractions of the state space.

All methods described in this paper are implemented in the modes statistical
model checker [6], which was used to perform all the experiments. To investigate
the distribution of schedulers, we extended modes to create histograms that
visualise the distribution of schedulers w.r.t. the probabilities they induce. We
present histograms for all our experiments, providing deeper insights into the
character of the nondeterminism in the models and the behaviour of LSS.

2 Lightweight Statistical Model Checking

We summarise the lightweight scheduler sampling approach for Markov decision
processes [30], which is the foundation of our techniques for timed systems.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

Definition 1. A (discrete) probability distribution over a set Ω is a function
µ ∈ Ω → [0, 1] such that support(µ) def= {ω ∈ Ω | µ(ω) > 0 } is countable and∑
ω∈support(µ) µ(ω) = 1. Dist(Ω) is the set of all probability distributions over Ω.

Definition 2. A pseudo-random number generator (PRNG) U can be initialised
with a seed i ∈ N (U := PRNG(i)) and then iterated (U()) to produce a new
value pseudo-uniformly distributed in [0, 1) and pseudo-statistically independent
of previous iterates. For a given i, the sequence of iterates is always the same.
We denote by U(µ) the pseudo-random selection of a value from support(µ)
according to a value sampled from U and the probabilities in µ ∈ Dist(Ω).

Markov decision processes combine nondeterminism and probabilistic choices.
To move from one state to another, first a transition is chosen nondeterministi-
cally. Every transition leads into a probability distribution over successor states.

Definition 3. A Markov decision process (MDP) is a triple M = 〈S, T, sinit〉
where S is a countable set of states, T ∈ S → 2Dist(S) is the transition function
with T (s) countable for all s ∈ S, and sinit ∈ S is the initial state. If |T (s)| ≤ 1
for all s ∈ S, then M is a discrete-time Markov chain (DTMC).

A transition is a pair 〈s, µ〉 s.t. µ ∈ T (s). A path in an MDP is an infinite sequence
〈s0, µ0〉 〈s1, µ1〉 . . . of transitions with s0 = sinit . When the current state is si,
the nondeterministic choice of the next transition is made by a scheduler:

Definition 4. A (memoryless deterministic) scheduler for an MDP is a func-
tion s ∈ S → Dist(S) s.t. s(s) ∈ T (s) for all s ∈ S. S is the set of all schedulers.

Once a transition 〈si, µi〉 is chosen, the next state si+1 is selected randomly
according to µi. Restricting to the choices made by s induces a DTMC, and s
defines the probability measure Ps over paths [16]. Transient properties φ are
queries for the optimal probabilities opts∈SPs(¬avoid U target) where opt ∈
{ sup, inf } (for maximum and minimum probabilities, denoted pmax and pmin),
avoid , target ⊆ S, and ¬avoid U target is the set of paths with at least one state
in target such that no state in avoid has been visited earlier. For these prop-
erties, the restriction to memoryless deterministic schedulers preserves optimal
probabilities. For a finite trace ω, i.e. a path prefix projected to its states, let
φ(ω) be undecided if ω does not contain a state in ¬avoid ∪ target , true if φ is
satisfied on all paths that have a prefix projecting to ω, and false otherwise.

Using MDP to directly model complex systems is cumbersome. Instead,
higher-level formalisms like Modest [18] are used. They provide parallel compo-
sition and finite-domain variables. This allows to compactly describe very large
MDP. Modest in fact supports all of the formalisms introduced in this paper.

Statistical model checking (SMC) [24,33] is, in essence, Monte Carlo integra-
tion of formal models. It generates a large number n of simulation runs according
to the probability distributions in the model and uses them to statistically esti-
mate the probability for a given property. For transient property φ on a DTMC,

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

Input: MDP M = 〈S, T, sinit〉, transient property φ, scheduler identifier
σ ∈ Z32

Output: Sampled trace ω

1 s := sinit , ω := sinit
2 while φ(ω) = undecided ∧ T (s) 6= ∅ do // run until φ decided or deadlock
3 Und := PRNG(H(σ.s)) // seed Und with hash of σ and s
4 µ := dUnd() · |T (s)|e-th element of T (s) // use Und to select a transition
5 s := Upr(µ), ω := ω.s // use Upr to select next state, append to ω

6 return ω

Algorithm 1. Lightweight simulation for an MDP and a scheduler identifier

the runs are traces ω1, . . . , ωn such that φ(ωi) 6= undecided , and the estimate
is p̂n = 1

n

∑n
i=0 φ(ωi) when identifying true with 1 and false with 0. p̂n is an

unbiased estimator of the actual probability p. The choice of n depends on the
desired statistical properties of p̂, e.g. that a confidence interval around p̂ with
confidence δ has half-width w. For a detailed description of statistical methods
and especially hypothesis tests for SMC, we refer the reader to [32].

Lightweight scheduler sampling (LSS) extends SMC to the nondeterminis-
tic model of MDP by approximating optimal schedulers, i.e. those that realise
pmin or pmax, in constant memory relative to the size of the state space [30].
A scheduler is identified by a single (32-bit) integer. LSS randomly selects m
schedulers (i.e. integers), performs standard SMC on the DTMC induced by
each, and reports the maximum and minimum estimates over all sampled sched-
ulers as approximations of the actual respective probabilities. We show the core
of LSS—performing a simulation run for a given scheduler identifier σ—as Alg. 1.
It uses two PRNGs: Upr is initialised globally once and used to simulate the prob-
abilistic choices of the MDP in line 5, while Und resolves the nondeterministic
choices in line 4. We want σ to represent a deterministic memoryless scheduler.
Therefore, within one simulation run as well as in different runs for the same
value of σ, Und must always make the same choice for the same state s. To achieve
this, Und is re-initialised with a seed based on σ and s in every step (line 3).

The effectiveness of LSS depends on the probability of sampling a near-
optimal scheduler. Since we do not know a priori what makes a scheduler optimal,
we want to sample “uniformly” from the space of all schedulers. This at least
avoids actively biasing against “good” schedulers. More precisely, a uniformly
random choice of σ will result in a uniformly chosen (but fixed) resolution of all
nondeterministic choices. Alg. 1 achieves this naturally for MDP.

Bounds and error accumulation. The results of LSS are lower bounds for maxi-
mum and upper bounds for minimum probabilities up to the specified statistical
error. They can thus be used to e.g. disprove safety or prove schedulability, but
not the opposite. The accumulation of statistical error introduced by the re-

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

`0
x≤2

Mp:

`1
y ≤1 `2

`3

x>0

true

0.9, {x}

0.1,{y}

0.8

0.2
x−y>1

Fig. 1. Example PTA Mp

0

1

2

3

1 2 3

y

x

Fig. 2. Regions of Mp

0

1

2

1 2

y

x

Fig. 3. Representatives

peated simulation experiments over m schedulers must also be accounted for,
using e.g. Šidák correction or the modified tests described in [11].

Two-phase and smart sampling. If, for fixed statistical parameters, SMC needs
n runs on a DTMC, LSS needs significantly more than m · n runs on an MDP
to avoid error accumulation. The two-phase and smart sampling approaches can
reduce this overhead. The former’s first phase consists of performing n simulation
runs for each of the m schedulers. The scheduler that resulted in the maximum
(or minimum) value is selected, and independently evaluated once more with
n runs to produce the final estimate. The first phase is a heuristic to find a
near-optimal scheduler before the second phase estimates the value under this
scheduler according to the required statistical parameters. Smart sampling [11]
generalises this principle to multiple phases, dropping the “worst” half of the
schedulers in every round. It tends to find better schedulers faster, while the
two-phase approach has predictable performance: it always needs (m + 1) · n
runs. We use the two-phase approach for all experiments reported in this paper.

3 Probabilistic Timed Automata

Probabilistic timed automata (PTA [29]) combine MDP and timed automata [1].
We show an example PTA Mp in Fig. 1. It has two clocks x and y: variables
over [0,∞) that advance synchronously with rate 1 as time passes. As PTA are
a symbolic model, we speak of locations (in Loc) and edges instead of states and
transitions. Mp has locations `0 through `3. Every location is associated with a
time progress condition: x ≤ 2 in `0, y ≤ 1 in `1, and true elsewhere. These are
clock constraints: expressions of the form CC ::= true | false | CC ∧ CC | c ∼ n |
c1 − c2 ∼ n where ∼ ∈ {>,≥, <,≤}, c, c1, c2 are clocks, and n ∈ N. Every edge
is annotated with a guard clock constraint and sets of clocks to reset to zero.Mp

has one edge out of `0 with guard x > 0 that goes back to `0 with probability
0.9, resetting x, and otherwise to `1, resetting y. There are two edges out of `1.
The one with guard x− y > 1 goes to `3 with probability 1 and no resets.

Intuitively, the semantics of a PTA is an uncountably infinite MDP: Its states
are pairs 〈`, v〉 of the current location ` and valuation v for all clocks. In `, time

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

can pass (i.e. the values in v increase) as long as the time progress condition
remains satisfied. An edge can be taken if its guard evaluates to true at the
current point in time. Then a target is chosen randomly, the specified clocks are
reset to zero, and we move to the target location. Writing valuations as tuples
〈v(x), v(y)〉, one concrete trace in the semantics of Mp is
〈`0, 〈0, 0〉〉 〈`0, 〈0.8, 0.8〉〉 〈`0, 〈0, 0.8〉〉 〈`0, 〈1.1, 1.9〉〉 〈`1, 〈1.1, 0〉〉 〈`3, 〈1.1, 0〉〉.

The time spent in `0 and `1 is nondeterministic, as is the choice of edge in `1.
The transient properties defined for MDP in Sect. 2 apply analogously to

PTA. In addition, time-bounded properties—where target must be reached in
≤ d ∈ N time units—can be encoded as unbounded ones by adding a new clock cd
that is never reset and replacing target by { 〈`, v〉 | ` ∈ Loc∧v(cd) ≤ d }∩ target .
In Mp, the minimum probability to reach l3 is 0.2. The maximum is 1; it is only
achieved by always waiting in l0 until x > 1 before taking the edge.

A naive extension of lightweight SMC to PTA is to use Alg. 1 to generate
concrete traces like the one given for Mp above. The input to Und is then a
hash of σ and the current state 〈`, v〉. Und selects a delay in [0,∞) permitted by
the time progress condition, followed by an enabled edge, if available. However,
this can make (near-)optimal schedulers infeasibly rare. Consider Mp and the
maximum probability to reach `3. An optimal scheduler must always select a
delay > 1 in `0. Yet, for a fixed σ, we get to make a new decision every time we
come back to `0 because v(y) most likely is a different real number in [0, 2] every
time. The probability of choosing a σ that always makes the same decision is
zero, and even near-optimal schedulers are rare. The problem is that the number
of critical decisions is infinite, such that optimal schedulers have measure zero.
To be effective, LSS needs the number of critical decisions to be finite.

3.1 Lightweight SMC with Discrete Abstractions

To model-check transient properties, it suffices to consider the finite region graph
of a PTA [29], a concept first introduced for timed automata [1]. Since it is too
large to be useful in practice, timed automata verification tools instead use zones.

Definition 5. Let kc ∈ N be the maximum constant appearing in comparisons
with clock c. A zone is a non-empty set of valuations that can be described by
a clock constraint in which all comparisons have the form c1 − c2 ∼ nc1c2 for
nc1c2 ∈ { 0, . . . ,max{ kc1 , kc2 } } or c ∼ nc for nc ∈ { 0, . . . , kc }. A region r is
a minimal zone; its successor is the unique first other region encountered when
delaying from any valuation in r.

In Mp we have kx = 2 and ky = 1. The regions of Mp are visualised in Fig. 2:
Every gray point, line segment and area is a region. To find a region’s successor,
follow a 45-degree line from any point within the region up to the next region.

We could use Alg. 1 on the region graph. However, if the only available
operations on regions are to (1) reset a clock and (2) obtain the successor,

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

then performing a long delay needs many simulation steps to sequentially move
through several successors. This causes significant performance problems and
prevents uniform scheduler sampling: As long as the time progress condition is
satisfied, the only reasonable way to implement the scheduler is to let Und choose
uniformly between delaying to the successor or taking an edge. The total delay
thus follows a geometric distribution, biasing towards taking edges early.

A zone-based approach [9] using the standard difference-bound matrix (DBM)
data structure solves these two problems. We can easily obtain and represent an
entire sequence of regions as a single zone, determine the edges enabled through-
out that zone, and use Und to uniformly (but deterministically for fixed σ) select
one. The resulting algorithm (shown as Alg. 2 in [9]) is not a simple extension
of Alg. 1 for several reasons that we explore in that paper. In particular, when
taking an edge, it needs to select a single region from within the target zone. This
is to avoid over-/underapproximating probabilities, since it performs a forwards
exploration [29]. The drawback of zone-based LSS is performance: The runtime
of most DBM operations, such as intersecting two zones or resetting clocks, is
cubic in the number of clocks [2], and selecting a region uniformly at random is
exponential [9]. We use a faster quasi-uniform algorithm in our experiments.

Efficient simulation with regions became possible with our new efficient
data structure for regions that supports long delays without enumerating suc-
cessor regions [22]. It implements all operations with worst-case runtime linear
in the number of clocks. The problem of efficient data structures for regions had
received scant attention as the region graph is too large for exact model checking.

A straightforward symbolic representation of regions consists of a mapping
from each clock to the integer part of its value, plus a total order of the fractional
parts. Our data structure additionally provides a concrete representative value
in Q for every clock, and a function that, given a delay based on a representative
valuation, performs that entire delay in one go. The concrete choice of represen-
tatives is the main insight. For every clock, the representative value is a multiple
of 1/(2 · nd), where nd is the number of different fractional values among all
clocks. We show the representatives of regions of Mp as black dots in Fig. 3: the
one of region x = y = 0 (which has nd = 1), the one of 0 < x < y ∧ y = 0 (with
nd = 2), their successors, and so on. This choice of representatives is the only one
where representatives are equally spaced, allowing an efficient implementation
of the delay function. The resulting LSS core is shown as Alg. 3 in [22].

3.2 Experiments

In [22] we compared the zone- and region-based approaches on PTA models of
communication protocols from the literature. We estimated the probabilities of
– termination in 4000 ns in IEEE 1394 FireWire root contention (firewire),
– either of two stations’ backoff counters reaching value 2 within one transmis-

sion in IEEE 802.11 wireless LAN (wlan) using the original timing parameters
from the standard (e.g. a maximum transmission time of 15717µs), and

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

Table 1. Performance and results for PTA

model checking ad-hoc schedulers LSS with regions LSS with zones
model clocks pmin pmax ALAP Uniform ASAP time p̂min p̂max time p̂min p̂max

firewire 1+1 0.781 1.000 0.95 0.98 1.00 20 s 0.79 1.00 27 s 0.79 1.00
wlan 2 0.063 0.05 0.05 0.05 2 744 s 0.04 0.06 3 903 s 0.04 0.06

csmacd2 4+1 0.729 0.872 0.73 0.75 0.87 108 s 0.73 0.85 398 s 0.73 0.87
csmacd3 5+1 0.663 0.892 0.71 0.81 0.89 312 s 0.78 0.85 1 185 s 0.77 0.87
csmacd4 6+1 0.68 0.83 0.90 656 s 0.80 0.85 2 555 s 0.80 0.86

0%

10%

20%

30%

40%

0.
78

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Fig. 4. Histogram for firewire (regions)

0%

10%

20%

30%

0.
03
8

0.
04
2

0.
04
6

0.
05
0

0.
05
4

0.
05
8

0.
06
2

Fig. 5. Histogram for wlan (regions)

– all stations correctly delivering their packets withinDn µs on a shared medium
via the exponential backoff procedure in IEEE 802.3 CSMA/CD with n ∈
{ 2, 3, 4 } stations (csmacdn), using D2 = 1800, D3 = 2700 and D4 = 3600.

In Table 1 we report the results of a new set of experiments on these models
and properties. We have modified the zone-based approach to greedily try to
enter/avoid the target and avoid sets for maximum probabilities (and vice-versa
for minimum probabilities) after identifying the set of delays allowed by the time
progress condition but before selecting an edge. We also improved the fast quasi-
uniform region selection algorithm. Furthermore, we sample more schedulers
(m = 1000) and have reduced the statistical error: We use n = 372221 runs per
scheduler for wlan and 14889 for the other models. Via the Okamoto bound [31]
(as used in the “APMC method” [24]), which relates n to values ε and δ s.t.
P(|p̂ − p| > ε) < δ for estimate p̂ and actual probability p, this guarantees
ε = 0.001 for wlan and ε = 0.005 for the other models with confidence δ = 0.95.
We also compare with the probabilities induced by three ad-hoc schedulers:

– Uniform selects uniformly at random among the time points where ≥ 1 edge
is enabled before uniformly selecting one edge enabled after that chosen delay;

– ASAP instead selects the first time point where any edge is enabled; and
– ALAP always picks the last time point where at least one edge is enabled.

These are randomised schedulers: they may make a different choice every time
the same state is visited. They also require the intersections of guards and time
progress conditions to be bounded, which is the case for all three models. The
Uniform scheduler is similar to the implicit one of Uppaal smc [13]. All experi-
ments were performed on a cluster of 10 Intel Xeon E5520 nodes (2.26-2.53GHz)
with 64-bit Ubuntu Linux, providing 40 simulation threads in total (4 per node).
Every experiment was performed three times and we report the averages.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

0%

10%

20%

30%

40%

0.
72

0.
73

0.
74

0.
75

0.
76

0.
77

0.
78

0.
79

0.
80

0.
81

0.
82

0.
83

0.
84

0.
85

0.
86

0.
87

0.
88

regions

0%

10%

20%

30%

40%

0.
72

0.
73

0.
74

0.
75

0.
76

0.
77

0.
78

0.
79

0.
80

0.
81

0.
82

0.
83

0.
84

0.
85

0.
86

0.
87

0.
88

zones

Fig. 6. Histograms for csmacd2

0%

1%

2%

3%

4%

5%

0.
76

0.
77

0.
78

0.
79

0.
80

0.
81

0.
82

0.
83

0.
84

0.
85

0.
86

0.
87

regions

0%

1%

2%

3%

4%

5%

0.
76

0.
77

0.
78

0.
79

0.
80

0.
81

0.
82

0.
83

0.
84

0.
85

0.
86

0.
87

zones

Fig. 7. Histograms for csmacd3

Discussion. As expected and previously shown in [22], the region-based approach
significantly outperforms the zone-based one as the number of clocks grows. On
the larger csmacd models, however, the latter finds better schedulers. Comparing
with the ad-hoc schedulers reveals that long (short) delays lead to worse (better)
performance of the protocol, with the results of the ALAP and ASAP schedulers
being closer to the actual optimal probabilities (which we could exactly model-
check for the smaller models) than any scheduler found via LSS. So if always
scheduling fast or slow indeed is optimal, then near-optimal schedulers are rare:
they must always pick the min. or max. delay, with the delay choices increasing
as the number of stations grows. On firewire, ad-hoc schedulers only lead to
probabilities near the maximum, while LSS also finds near-minimal schedulers.

Scheduler histograms. We extended modes to also return the probabilities es-
timated for all m sampled schedulers. This allows us to create histograms that
visualise the distribution of schedulers w.r.t. the probabilities they induce. The
histograms for firewire and wlan using regions are shown in Figs. 4 and 5, respec-
tively, with the ones for zones being nearly identical. We see the reasons for the
success of LSS as well as the failure of the ad-hoc schedulers reflected in these his-
tograms: For firewire, maximal schedulers are very likely while minimal ones are
rarer, but still show decent probabilities. For wlan, every deterministic scheduler
sampled by LSS is either near-minimal or near-maximal; the randomised ad-hoc
schedulers however only realise an average of these two behavioural modes.

For csmacd, the distributions of schedulers found with regions and zones are
clearly different. With two stations (Fig. 6), there are distinct clusters of sim-
ilar schedulers, however the region-based approach does not find good ones in
the near-maximal cluster. As the number of stations and thus of nondetermin-
istic decisions increases, the average sampled scheduler leads to more average
behaviour (Fig. 7), yet the variance among zone-based schedulers is still wider.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

s0

Mm:

s1

s2

s3

a

3

1
0.5

0.5

b

Fig. 8. Example MA Mm

Table 2. Performance and results for MA

model m n |ω| time v̂min v̂max

queues
Unif. 1 372 k 25 1 s 0.096

LSS 100 372 k 25 91 s 0.043 0.144
1 000 372 k 25 872 s 0.031 0.170

bitcoin
Unif. 1 433 8 k 2 s 26 701

LSS 1 000 456 14 k 332 s 6 926 249 323
10 000 433 13 k 2 900 s 6 561 233 745

4 Markov Automata

Markov automata (MA, [14]) are a compositional model that combines the dis-
crete probabilistic branching of MDP with the exponentially distributed delays of
continuous-time Markov chains (CTMC). We show an example MA with states
s0 through s3 in Fig. 8. It has two types of transitions: Markovian ones (as in
CTMC) labelled with a rate in (0,∞) connect s0 to s1 and s2, while probabilistic
transitions (as in MDP) connect s1 to s3 and back to s0. The exit rate of s0 is
1 + 3 = 4. Probabilistic transitions are taken immediately when available, with
the choice between multiple transitions (like a and b in s1) being nondetermin-
istic. Markovian transitions become enabled after an amount of time has passed
that is exponentially distributed according to the rate of the transition. The
choice between multiple of them is resolved by a race between the distributions.

In terms of properties, we are interested in unbounded and time-bounded
transient properties, as for PTA. However, due to the absence of clocks, time-
bounded properties cannot be encoded as unbounded ones. They instead need to
be supported by dedicated analysis methods. We also use expected-time prop-
erties to calculate the minimum and maximum expected times tmin and tmax

until a set of target states is reached for the first time. We require probability 1
for true U target . For transient property true U { s3 } in Mm, we have pmin = 0.6
(always schedule a) and pmax = 0.75 (always schedule b). For the expected time
to reach { s2, s3 }, we have tmax = 0.4 and tmin = 0.25 with the same schedulers.

4.1 Lightweight SMC Possibilities and Challenges

The application of LSS to MA with unbounded transient and expected-time
properties is a straightforward adaption to MA of Alg. 1, since memoryless de-
terministic schedulers are sufficient to obtain optimal results [17,23].

For time-bounded properties, optimal schedulers need to take into account
the amount of time remaining until the time bound is reached. A naive extension
of LSS would thus face the same issues as with PTA. The current approaches
to perform exact model checking of a time-bounded property with bound d are
to use either digitisation [23] or uniformisation [7]. The former discretises the
MA by assuming that ≤ 1 Markovian transitions will fire within any small time
interval (0, δ], where δ > 0 is the digitisation constant such that ∃ kb ∈ N : d =
kb · δ. Every state of the digitised model is a pair of the original state in the MA

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

0%

1%

2%

3%

4%

5%

6%

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

Fig. 9. Histogram for queues

0%

1%

2%

3%

4%

5%

6%

7%

25
 k

50
 k

75
 k

10
0 
k

12
5 
k

15
0 
k

17
5 
k

20
0 
k

22
5 
k

25
0 
k

Fig. 10. Histogram for bitcoin

and the amount of time—a multiple of δ—remaining until d. That is, the model
is unfolded over the time bound. If the maximum exit rate λ in the MA is known,
then we also know that the max. probability computed on the digitised model
is at most kb · (λδ)

2

2 below the actual one. As the digitised model is discrete, a
variant of Alg. 1 could be applied to it directly. However, for the error to be small,
a fine digitisation is needed. For example, to achieve error ≤ 0.01 for d = 0.5 on
Mm requires δ = 0.0025 and kb = 200. That is, the model is unfolded 200 times,
so schedulers face the nondeterministic choice between a and b up to 200 times.
The probability of sampling an optimal scheduler (i.e. one that always makes the
optimal choice) is then 0.5200. Uniformisation, on the other hand, requires global
information—the maximum exit rate λ, or an overapproximation thereof—to be
applicable in the first place. Furthermore, it does not provide an a priori error
bound. When used for model checking, the error is bounded by simultaneously
computing an over- and underapproximation of the (max.) probability. However,
LSS intrinsically underapproximates and introduces a statistical error. Finally,
it is currently not clear how to efficiently apply the method of [7] in an on-the-fly
manner as required for simulation. Further research into methods for effective
LSS with time-bounded properties on MA is thus needed.

4.2 Experiments

We have implemented LSS for unbounded properties on MA in modes [6]. We
evaluate the implementation on two new case studies with properties based on
non-rare events (rather than the rare-event database model of [6]). We consider
– the queueing system with breakdowns (queues) of [26] where ten sources of

two types produce packets and fail at different rates. A single server processes
the packets and may also fail. We studied a deterministic version of this model
in [5]. To experiment with LSS, we now model a single repairman that repairs
one broken component at a time instead. If multiple components are broken,
the next one to repair is selected nondeterministically. We estimate the prob-
ability for ¬ reset U buf = 8: starting from a single broken source, what is the
probability for server queue overflow before all components are repaired?

– a Modest MA variant of the model of the Andresen attack on Bitcoin pre-
sented in [15] where a malicious pool of miners attempts to fork the blockchain
to allow e.g. double spending. The malicious pool’s strategy is kept open as

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

`0

M1: x∼Uni(0, 1)
y∼Uni(0, 1)

`1

`2 `3

3 7

∅
R({x})

∅
R({y})

∅
R({y})

{x}
{y} {y}

{x}

Fig. 11. SA M1

〈`0, 〈0, 0〉, 〈0, 0〉〉

〈`1, 〈0, 0〉, 〈0, 0〉〉 〈`1, 〈0, 0〉, 〈e(x), 0〉〉 〈`1, 〈0, 0〉, 〈1, 0〉〉
· · · · · ·

· · · · · ·
∼ Uni(0, 1)

· · · · · · · · · · · ·∼ Uni(0, 1) ∼
. . . 〈`2, 〈0, 0〉, 〈e(x), e(y)〉〉 〈`3, 〈0, 0〉, 〈e(x), e(y)〉〉 . . .

(assume e(x)<e(y))

〈`2, 〈e(x), e(x)〉, 〈e(x), e(y)〉〉 〈`3, 〈e(x), e(x)〉, 〈e(x), e(y)〉〉

〈3, 〈e(x), e(x)〉, 〈e(x), e(y)〉〉 〈7, 〈e(x), e(x)〉, 〈e(x), e(y)〉〉

e(x) e(x)

Fig. 12. Excerpt of the semantics of M1

nondeterministic choices in our model (bitcoin), and we estimate the expected
time in minutes until the malicious pool succeeds at 20% hash rate.

The experimental setup is as described in Sect. 3.2. All results are shown in
Table 2, again including the Uniform ad-hoc scheduler for comparison. v stands
for probabilities p for queues and for expected times t for bitcoin.

Discussion. To judge the rarity of near-optimal schedulers, we perform two LSS
runs where the second samples 10 times as many schedulers (column m). For
queues, sampling more schedulers improves the estimates: extremal schedulers
are neither frequent nor excessively rare. This is confirmed by the histogram
shown in Fig. 9. The Uniform scheduler again only obtains some average be-
haviour. When it comes to the bitcoin model, the histogram in Fig. 10 shows
that the most frequently sampled schedulers achieve low expected times, i.e. they
correspond to good strategies for the malicious pool. However, for the “default”
and “optimised” strategies of [15], the expected times are 5403 and 3582 min-
utes. It is clear from the results in Table 2 that the sampled schedulers only come
somewhat close to the default strategy in absolute terms. Relative to the worst
schedulers found, however, they are still close to both good strategies. Once
more, the Uniform scheduler is mostly useless here. In terms of performance,
simulations for bitcoin take relatively long, which is due to the many simulation
steps per run (column |ω|) until the malicious pool wins with a bad strategy.

5 Stochastic Automata

Stochastic automata (SA, [10]) go beyond MA by (1) allowing delays to follow
arbitrary probability distributions and (2) lifting the MA restriction of nondeter-
minism to (immediate) probabilistic edges. We show an example SAM1 with six
locations in Fig. 11. It has stochastic clocks x and y. The expiration times e(x)
and e(y) follow the continuous uniform distribution over the interval [0, 1]. An
edge in an SA is guarded by a set of clocks: the edge becomes enabled and time
cannot pass further as soon as all clocks in the guard set are expired. Thus no
time can pass in `0 and `1. When taking an edge, clocks can be restarted : their
values are reset to zero and their expiration times are resampled. On entering

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

`1, x is restarted: its value v(x) becomes zero and e(x) is set to a random value
selected from Uni(0, 1). The choice of going to either `2 or `3 from `1 is nonde-
terministic, since both outgoing edges become enabled simultaneously. Then y is
restarted. In `2, we have to wait until the first of the two clocks expires. If that is
x, we have to move to location 3; if it is y, we have to move to 7. The semantics
of an SA is an uncountably infinite MDP similar to the semantics of a PTA,
but additionally with continuous distributions. The states in the semantics of
M1 are tuples of the form 〈`, 〈v(x), v(y)〉, 〈e(x), e(y)〉〉: they comprise the current
location, the values of the clocks, and their expiration times. Nondeterministic
choices are finite since they are between edges only. We illustrate a part of the
semantics of M1 as intuitively explained above in Fig. 12.

5.1 The Power of Schedulers for SA

We consider unbounded transient properties only. On M1, the maximum proba-
bility for true U {3 } is 0.75. It is achieved by going from `1 to `2 iff e(x) ≤ 0.5:
although the scheduler does not know in `1 what the expiration time of y is
going to be after the restart of y, it is more likely to be higher than the (known)
expiration time of x if that is low. This example shows that, in order to schedule
optimally on SA, schedulers need to know the expiration times. We investi-
gated the power of various restricted classes of schedulers for SA [8] and found
that, aside from the history of previously visited states and delays, all compo-
nents of the states are relevant for optimal scheduling. Let us write Sa

`,b,c with
a ∈ { hist ,ml }, b ∈ { v, t, - } and c ∈ { e, o, - } to refer to a class of schedulers.
Class Shist

`,v,e is the most general one: it sees the entire history (hist), clock values
(v), and expiration times (e). We considered the following restrictions:
– memoryless schedulers that only see the current state (ml instead of hist),
– global-time schedulers that only see the total time elapsed since the initial

state instead of the values of all individual clocks (t instead of v),
– schedulers that see the relative expiration order, i.e. the order of e(z) − v(z)

over all clocks z, in place of the expiration times (o instead of e), and
– schedulers that do not see some of the information at all (indicated by -).
Our findings include that all history-dependent schedulers seeing e coincide with
class Sml

`,v,e, and that for memoryless schedulers, knowing the expiration order
o is incomparable to knowing e but not all of v. Where scheduler classes are
not equivalent, we provided small distinguishing SA similar to M1, which itself
distinguishes all pairs of classes that only differ in seeing either e or o. We refer
the interested reader to [8] (open-access) for a complete list of these six SA.

5.2 Lightweight SMC Possibilities and Challenges

Clearly, the naive extension of Alg. 1 to SA fails for the same reasons as for
PTA. However, as we explained above and in contrast to MA, not even un-
bounded properties can be analysed via LSS by relying on a discrete class of
schedulers. At the same time, many of the considered classes of schedulers are
unrealistically powerful to consider as adversaries in a safety model checking

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

Table 3. Results (p̂max) for SA

class q M1 M2 M3 M4 M5 M6

Shist
`,v,e

1 0.50
2 0.75
4 0.75

Shist
`,v,o

1 0.50
2 0.50
4 0.50

Shist
`,t,e

1 1.00
2 0.86
4 0.62

Shist
`,-,o

1 0.90
2 0.83
4 0.75

Shist
`,v,-

1 1.00
2 1.00
4 1.00

Shist
`,t,-

1 1.00
2 0.87
4 0.78

Sml
`,v,e

1 0.50 0.50
2 0.75 0.81
4 0.75 0.81

Sml
`,v,o

1 0.50 0.82
2 0.50 0.79
4 0.50 0.71

Sml
`,t,e

1 0.50 0.50 0.87
2 0.75 0.64 0.64
4 0.75 0.60 0.54

Sml
`,t,o

1 0.50 1.00 0.83
2 0.50 1.00 0.84
4 0.50 0.97 0.85

Sml
`,-,e

1 0.50 0.50 0.71
2 0.75 0.62 0.66
4 0.75 0.66 0.56

Sml
`,-,o

1 0.50 1.00 0.83
2 0.50 1.00 0.83
4 0.51 1.00 0.83

Sml
`,v,-

1 0.51 0.50
2 0.63 0.50
4 0.78 0.50

Sml
`,t,-

1 0.50 0.71
2 0.50 0.77
4 0.50 0.77

Sml
`,-,-

1 0.71
2 0.71
4 0.71

0%

5%

10%

15%

20%

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

q=2

0%

5%

10%

15%

20%

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

q=4

Fig. 13. Histograms for M3 and Sml
`,v,-

0%

2%

4%

6%

8%
0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

q=1

0%

2%

4%

6%

8%

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

q=4

Fig. 14. Histograms for M2 and Sml
`,v,o

scenario, and need too much information to be useful for implementation as
strategies in a planning setup. For example, in many models the expiration times
represent information about future events, thus using e or o leads to prophetic
schedulers [21]. LSS based on some of the restricted classes of schedulers will
thus arguably be (more) useful. However, as long as continuous information is
involved (such as the values v), some form of discretisation of the state space
is needed. As we show below, there is ample room for the development of good
discretisations and exploitation of the tradeoffs between classes in LSS for SA.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

5.3 Experiments

We have implemented a prototype of LSS for SA in modes. It performs simula-
tion on the exact concrete state space, but provides to schedulers a discretised
view: for each real-valued quantity, we identify all values in the same interval
[iq ,

i+1
q), for integers i, q. We report experimental results on M1 (Fig. 11) and

M2 through M6 (see [8]) using LSS with m = 10000 and n = 14889 (so that
ε = 0.005, cf. Sect. 3.2) for each set of scheduler classes distinguished by the
respective SA and discretisation factors q ∈ { 1, 2, 4 }. All models have a struc-
ture similar to M1, and in Table 3 we show the estimated lower bounds on the
max. probabilities p̂max of reaching 3. We highlight the best result among the
discretisation factors.

Discussion. Increasing the discretisation factor or increasing the scheduler power
generally also increases the number of decisions the schedulers can make. This
may also increase the number of critical decisions a scheduler must make to
achieve the max. probability. We clearly see this in the results. Some schedulers
achieve the best probability only with the finest discretisation, indicating cases
where fine discretisation is important for optimality and optimal schedulers in-
side the class are not rare. We show the histograms forM3, Sml

`,v,-, and q ∈ { 2, 4 }
in Fig. 13. Indeed many extremal schedulers are found, and the variance appears
to depend only on the discretisation. On the other hand, some classes perform
worse on some models as the discretisation gets finer, usually indicating that
optimal schedulers are rare. Several other patterns exist, including a case where
q = 2 yields the best results, clearly exhibiting the tradeoff between fine discreti-
sation (i.e. a good scheduler is in the class) and rarity of near-optimal schedulers
(i.e. the good schedulers will very rarely be sampled). However, these intuitions
do not always match; one interesting case is Sml

`,v,- for M2. Its expiration times
are drawn from a wide range, up to Uni(0, 8), compared to the other SA that use
at most Uni(0, 2). Thus q = 1 is already a relatively finer discretisation. Looking
at the histograms in Fig. 14, we see that the spread of schedulers is good for
q = 1, with schedulers on both ends of the spectrum being rather likely, and
results being near the actual maximum probability of approx. 0.82. However, as
the discretisation gets finer, the increase in the number of decisions dominates
the potential to make better decisions, resulting in schedulers almost normally
distributed around the “random guess” behaviour that leads to probability 0.5.

The experiments demonstrate that LSS can produce useful and informative
results with SA, but that there is a lot of potential for better discretisations.

6 Conclusion

We have taken a tour through the opportunities and challenges in LSS on three
continuous-time models. Thanks to discrete abstractions that fully preserve op-
timal probabilities developed for exact model checking, efficient techniques for
PTA now exist. However, tackling time-bounded properties for MA, and any kind

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

of efficient LSS at all for SA, remain open challenges. Our preliminary results for
these two continuous-time and continuously stochastic models indicate that LSS
shows potential for MA (as evidenced by our case studies), and offers a versatile
tool to experiment with different restricted classes of schedulers on SA. We plan
to develop better discretisations for SA, and apply LSS on larger case studies for
both MA and SA. The ability to visualise the distribution of schedulers provides
valuable insights into the character of a model’s nondeterminism.

Acknowledgments. The authors thank Yuliya Butkova (Saarland University) for
clarifying discussions on uniformisation and the time-bounded analysis of MA.

Experiment replication. We provide an artifact package [19] for independent
replication of our experiments. It contains modes, all model files, the raw results,
tabular views of those results (from which we derived tables 1 to 3 and the
histograms), and the Linux shell scripts that we used to perform the experiments.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Lec-
tures on Concurrency and Petri Nets, Advances in Petri Nets. Lecture Notes in
Computer Science, vol. 3098, pp. 87–124. Springer (2003)

3. Bohlender, D., Bruintjes, H., Junges, S., Katelaan, J., Nguyen, V.Y., Noll, T.:
A review of statistical model checking pitfalls on real-time stochastic models. In:
ISoLA. Lecture Notes in Computer Science, vol. 8803, pp. 177–192. Springer (2014)

4. Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretínský, J., Kwiatkowska,
M.Z., Parker, D., Ujma, M.: Verification of Markov decision processes using learn-
ing algorithms. In: ATVA. Lecture Notes in Computer Science, vol. 8837, pp. 98–
114. Springer (2014)

5. Budde, C.E., D’Argenio, P.R., Hartmanns, A.: Better automated importance split-
ting for transient rare events. In: SETTA. Lecture Notes in Computer Science, vol.
10606, pp. 42–58. Springer (2017)

6. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model
checker for nondeterminism and rare events. In: TACAS. Lecture Notes in Com-
puter Science, vol. 10806. Springer (2018)

7. Butkova, Y., Hatefi, H., Hermanns, H., Krcál, J.: Optimal continuous time Markov
decisions. In: ATVA. Lecture Notes in Computer Science, vol. 9364, pp. 166–182.
Springer (2015)

8. D’Argenio, P.R., Gerhold, M., Hartmanns, A., Sedwards, S.: A hierarchy of sched-
uler classes for stochastic automata. In: FoSSaCS. Lecture Notes in Computer
Science, vol. 10803. Springer (2018)

9. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation
of optimal schedulers for probabilistic timed automata. In: iFM. Lecture Notes in
Computer Science, vol. 9681, pp. 99–114. Springer (2016)

10. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: stochastic
automata. Inf. Comput. 203(1), 1–38 (2005)

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

11. D’Argenio, P.R., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for
lightweight verification of Markov decision processes. Software Tools for Technology
Transfer 17(4), 469–484 (2015)

12. David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Uppaal
Stratego. In: TACAS. Lecture Notes in Computer Science, vol. 9035, pp. 206–211.
Springer (2015)

13. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: CAV. Lecture Notes in Computer Science,
vol. 6806, pp. 349–355. Springer (2011)

14. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS. pp. 342–351. IEEE Computer Society (2010)

15. Fehnker, A., Chaudhary, K.: Twenty percent and a few days – optimising a Bitcoin
majority attack. In: NASA Formal Methods. Lecture Notes in Computer Science,
vol. 10811, pp. 157–163. Springer (2018)

16. Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D.: Automated verification
techniques for probabilistic systems. In: SFM. Lecture Notes in Computer Science,
vol. 6659, pp. 53–113. Springer (2011)

17. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.P., Timmer, M.: Modelling, re-
duction and analysis of Markov automata. In: QEST. Lecture Notes in Computer
Science, vol. 8054, pp. 55–71. Springer (2013)

18. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods in
System Design 43(2), 191–232 (2013)

19. Hartmanns, A.: Lightweight statistical model checking in nondeterministic contin-
uous time (artifact). 4TU.Centre for Research Data (2018), http://doi.org/10.
4121/uuid:1453a13b-10ae-418f-a1ae-4acf96028118

20. Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment for
quantitative modelling and verification. In: TACAS. Lecture Notes in Computer
Science, vol. 8413, pp. 593–598. Springer (2014)

21. Hartmanns, A., Hermanns, H., Krcál, J.: Schedulers are no prophets. In: Semantics,
Logics, and Calculi. Lecture Notes in Computer Science, vol. 9560, pp. 214–235.
Springer (2016)

22. Hartmanns, A., Sedwards, S., D’Argenio, P.R.: Efficient simulation-based verifi-
cation of probabilistic timed automata. In: Winter Simulation Conference. pp.
1419–1430. IEEE (2017)

23. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. Elec-
tronic Communications of the EASST 53 (2012)

24. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: VMCAI. Lecture Notes in Computer Science, vol. 2937, pp.
73–84. Springer (2004)

25. Kearns, M.J., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Machine Learning 49(2-3), 193–208
(2002)

26. Kroese, D.P., Nicola, V.F.: Efficient estimation of overflow probabilities in queues
with breakdowns. Performance Evaluation 36, 471–484 (1999)

27. Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: the incred-
ibles. Mobile Computing and Communications Review 9(4), 50–61 (2005)

28. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: CAV. Lecture Notes in Computer Science, vol. 6806,
pp. 585–591. Springer (2011)

http://doi.org/10.4121/uuid:1453a13b-10ae-418f-a1ae-4acf96028118
http://doi.org/10.4121/uuid:1453a13b-10ae-418f-a1ae-4acf96028118

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
18

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
IS

O
L

A
20

18
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

29. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002)

30. Legay, A., Sedwards, S., Traonouez, L.M.: Scalable verification of Markov decision
processes. In: WS-FMDS at SEFM. Lecture Notes in Computer Science, vol. 8938,
pp. 350–362. Springer (2014)

31. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Annals of the Institute of Statistical Mathematics 10(1), 29–35 (1959)

32. Reijsbergen, D., de Boer, P., Scheinhardt, W.R.W., Haverkort, B.R.: On hypothesis
testing for statistical model checking. Software Tools for Technology Transfer 17(4),
377–395 (2015)

33. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: CAV. Lecture Notes in Computer Science, vol. 2404,
pp. 223–235. Springer (2002)

	Lightweight Statistical Model Checking in Nondeterministic Continuous Time

