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Concurrent Programming from pseuCo to Petri

Felix Freiberger1,2 and Holger Hermanns1

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus,

Saarbrücken, Germany

Abstract. The growing importance of concurrent programming has
made practical concurrent software development become a cornerstone
of many computer science curricula. Since a few years, a sound bridge
from concurrency theory to concurrence practice is available in the form
of pseuCo, a light-weight programming language featuring both message
passing and shared memory concurrency. That language is at the core of
an award-winning lecture at Saarland Informatics Campus. This paper
presents a novel two-step semantic mapping from pseuCo programs to
colored Petri nets, developed for the sake of further strengthening the
educational concept behind pseuCo. The approach is fully integrated
in pseuCo.com, our open-source teaching tool for pseuCo, empowering
students to interact with the Petri-net-based semantics of pseuCo. In ad-
dition, we present a source-level exploration tool for pseuCo, also based
on this semantics, that gives users an IDE-like debugging experience
while enabling full control over the nondeterminism inherent in their
programs. The debugger is also part of pseuCo.com, allowing students
to access it without any set-up.

Keywords: Concurrency · Education · Colored Petri nets · Program-
ming · Semantics

1 Introduction

Over the past decades, concurrent computation has grown tremendously in im-
portance within computer science. This concerns both the theoretical modeling
of concurrent systems with formalisms like Petri nets as well as the practical
development of concurrent programs in real-world programming languages. The
latter has made modern concurrent programming an integral part of computer
science education. The ACM curricula recommendations [1] advocate a strong
educational component on “Parallel and Distributed Computing” and stipulate
that “Communication and coordination among processes is rooted in the message
passing and shared memory models of computing and such algorithmic concepts
as atomicity, consensus, and conditional waiting”.

At Saarland University in Saarbrücken, Germany, this is addressed since 2005
in the mandatory Bachelor-level Concurrent Programming lecture [7], which in
2013 was awarded with the German “Preis des Fakultätentages Informatik” for its
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2 F. Freiberger and H. Hermanns

Listing 1. A message passing pseuCo program. Expressions having the form c <! x
(lines 11, 18 and 21) send the value of x on channel c. Expressions having the form
<? c (lines 4, 19 and 22) receive a value from channel c.

1 void factorial(intchan c) {
2 int z, j, n;
3 while (true) {
4 z = <? c; // receive input
5

6 n = 1;
7 for (j = z; j > 0 ; j--) {
8 n= n*j;
9 }

10

11 c <! n; // send result
12 };
13 }
14

15 mainAgent {
16 intchan cc;
17 agent a = start(factorial(cc));
18 cc <! 3;
19 int mid = <? cc;
20 println("3! evaluates to " + mid + ".");
21 cc <! mid;
22 println("(3!)! evaluates to " + (<? cc) + ".");
23 }

“innovative concept combining classical process calculi with practical program-
ming challenges”. At its core, the lecture revolves around pseuCo, a light-weight
programming language featuring both message passing and shared memory con-
currency concepts, with its message passing syntax being inspired by Go [10].
It includes support for data structures with condition synchronization. Listing 1
shows a small message passing pseuCo program that computes the factorial of
the factorial of 3.

PseuCo is overarching the lecture topics and bridges from a theoretical part –
introducing process calculi in the form of Milner’s CCS [16] – to a practical part
dealing with Go and Java. The latter is effectively accomplished by providing
a transpiler from pseuCo to Java source code which can either be output for
inspection or immediately be compiled to Java byte code and executed.

To facilitate foundational reasoning about and analysis of concurrent pro-
grams, pseuCo also has a formal semantics mapping to value-passing CCS. A
corresponding pseuCo-to-CCS-compiler, plus tools to facilitate analysis of the
resulting transition system, are provided to students as part of an IDE called
pseuCo.com [4]. It is based on web technologies to ensure it is easy to use for
students. It requires no setup, updates automatically and works in all modern

https://pseuco.com/#/sku/default/tool/edit/remote/o95e9upltn981b51uw75
https://pseuco.com/#/sku/default/tool/edit/remote/o95e9upltn981b51uw75
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Concurrent Programming from pseuCo to Petri 3

1 2 3

Fig. 1. PseuCo.com showing Listing 1 and the CCS-based semantics.

browsers including on tablets. All computations are performed on the client
side (except for some advanced analysis tasks such as checks related to memory
models) so the tool works offline after initial use. The Concurrent Program-
ming lecture also uses pseuCo.com for the theoretical part as an IDE for CCS
terms. Figure 1 shows a screenshot of pseuCo.com showing the program from
Listing 1 1 , a fraction of its corresponding CCS term 2 and the resulting
LTS 3 , minimized up to observational congruence.

Over the years, both pseuCo and pseuCo.com have been subject to con-
tinuous improvement and have become an integral part of the annual lecture
editions. While being an overall success, room for disruptive improvement has
become apparent. Pragmatically speaking, this concerns readability of the com-
piler output and debugging. Conceptually speaking, it concerns a structured and
concurrency-preserving and hence more faithful formal semantics.

– Students typically have a very hard time understanding the CCS terms pro-
duced by the compiler because the latter uses several low-level hacks. Among
them:
• Control flow is resolved into goto-style [5] spaghetti-code in CCS syntax.
• The CCS terms generated contain many static helper constructs, such

as an AgentManager, responsible for assigning unique ids to agents.
• Synchronous (handshaking) and asynchronous (buffered) communication

channels are internally distinguished by mapping them to negative, re-
spectively positive integer identifiers. Every time a channel is used, the
CCS term branches depending on the sign of the channel identifier.

– PseuCo.com lacks debugging support. It can show the LTS induced by the
CCS term (induced by the pseuCo program), but this does not provide an
adequate debugging experience. The LTS is notoriously large, very often too
large to grasp – Listing 1 already induces an LTS with 48 states.
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4 F. Freiberger and H. Hermanns

– The students lack a feeling of the true concurrency inherent to a pseuCo
program since the CCS translation comes with an interleaving semantics.

All in all, the lesson the students learn is thus typically restricted to “OK, there
is a formal – but messy – semantics”, instead of “There is a natural way of giving
a formal concurrency semantics to a concurrent programming language”.

A deeper analysis of the problems led to the insight that all these prob-
lems can be overcome by instead providing a Petri-net-based semantics for
pseuCo. This is indeed what the paper develops. It describes a novel extension
to pseuCo.com that aims at (i) providing easy-to-understand compiler output,
(ii) providing a debugging experience that matches the usability and feature set
of classic IDEs while being based on a complete semantics preserving nonde-
terminism, allowing full exploration of all nondeterministic possibilities during
debugging, (iii) exposing students to Petri nets as a natural true concurrency for-
malism, and (iv) laying the basis for analysis of pseuCo programs using Petri net
techniques. At the core of this work is a two-level formalization of the semantics
in terms of colored Petri nets.

Related Work. Higher-level Petri nets are an attractive base for the formal se-
mantics of programming languages or process calculi. Among the pioneering
works, B(PN)2 [3] has been proposed as a concurrent programming notation
geared towards Petri nets. A compositional semantics maps B(PN)2 to M-Nets,
a Petri net dialect specifically designed as a vehicle for giving semantics to con-
current programming languages [2]. Just like our approach, M-Nets are based on
colored Petri nets. They support CCS-style composition which is coherent with
their unfolding operation. This is orthogonal to the approach presented here,
which does not provide composition operations, but focuses on providing a Petri-
net-based semantics for a programming language closely resembling traditional
imperative programming, together with tool support for use in teaching. Petru-
chio [15] is a tool-supported approach that focuses on dynamically changing
communication structures in Petri nets, especially rooted in the π-calculus [17].
It comes with a translation of the latter into Petri nets, so as to enable anal-
ysis with net verification tools. More recently, Nested-Unit Petri Nets [9] have
been proposed as an extension of (uncolored) Petri nets, to be used when map-
ping compositional, process calculi-inspired programs to Petri nets. The addition
of units allows more efficient storage of markings, speeding up analysis in the
presence of appropriately-defined units.

Organization of the Paper. Section 2 reviews the main features of the pseuCo
programming language. Section 3 introduces colored Petri nets and a JavaScript
library for handling them. Section 4 introduces CPPN , a higher-level Petri net
notation that is used as an intermediate step, its implementation and a transla-
tion from pseuCo to CPPN . Section 5 details how this translation and a debugger
based on it are included in the pseuCo.com web application. Finally, Section 6
concludes this paper.
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Concurrent Programming from pseuCo to Petri 5

2 PseuCo in a Nutshell

To set the stage for what follows, this section reviews the most important aspects
of the pseuCo language design, closely following its presentation in [4].

Mainstream programming is nowadays dominated by imperative program-
ming languages. PseuCo is an imperative language featuring a heavily simpli-
fied Java-like look and feel paired with language concepts inspired by the Go
programming language [10]. It also has similarities with Holzmann’s Promela
language [11].

A very simplistic pseuCo example is depicted in Listing 2. This program
implements concurrent counting. A shared integer, n, is initialized to 10. The
procedure countdown() decrements this counter five times. The mainAgent, which
is run when the program is started, starts a second agent that runs countdown()
before calling countdown() itself. After both agents have executed this procedure,
the mainAgent prints the final value of n. To ensure mutually exclusive access to
the shared variable, a globally defined lock named guard_n is used within the
countdown() procedure.

PseuCo also provides native support for message passing concurrency. An
example is presented in Listing 1. An agent running the procedure factorial
interacts via a channel with the mainAgent. In a nutshell, factorial computes
the factorial of a number received from channel c and reports the result on
the same channel c. This channel is declared locally in line 16 and passed as a
parameter of factorial. Its type intchan indicates that it accepts integers and is
unbuffered, meaning that it induces a handshake between the agents sending to
(via <!) and receiving from (via <?) it. PseuCo also has channels that can hold

Listing 2. Shared memory concurrent counting in pseuCo.

1 int n = 10;
2 lock guard_n;
3

4 void countdown () {
5 for (int i = 5; i >= 1; i--) {
6 lock(guard_n);
7 n--;
8 unlock(guard_n);
9 }

10 }
11

12 mainAgent {
13 agent a = start(countdown ());
14 countdown ();
15 join(a);
16 println("The␣value␣is␣" + n);
17 }

https://pseuco.com/#/sku/default/tool/edit/remote/48m0sy341xhucb34j2vo
https://pseuco.com/#/sku/default/tool/edit/remote/48m0sy341xhucb34j2vo
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6 F. Freiberger and H. Hermanns

Listing 3. Replacement for lines 4 to 11 in Listing 1.

1 select {
2 case <? t: {
3 return;
4 }
5 case z = <? c: { // lines 6 to 11 identical to Listing 1
6 n = 1;
7 for (j = z; j > 0 ; j--) {
8 n= n*j;
9 }

10

11 c <! n; // send result
12 }
13 };

strings or Booleans. After starting the agent, the mainAgent feeds the number 3
into the channel cc and then waits for results to be sent back to him. The result
is returned back to the factorial agent. After the second round, the main agent
prints the result.

This program does not terminate the factorial agent. Explicit termination
can be achieved by applying three changes. First, the expansion uses a new chan-
nel declared by inserting boolchan2 t; before line 1. This channel is a FIFO buffer
which can hold up to 2 Booleans. Second, the main agent is instructed to send
a message on that channel at the end of its execution by inserting t <! true;
after line 22. Finally, the factorial agent may now receive a message on two
different channels (t and c) and therefore a select-case statement is used to
specify dedicated reactions by replacing lines 4 to 11 with Listing 3. In case any
message on t is received, the agent immediately terminates. Otherwise, it pro-
ceeds as previously. PseuCo has borrowed the select-case concept from Go [10].
A select statement consist of several cases. Except for default cases, each case
has a guard and a statement. The guard contains exactly one send (<!) or receive
operation (<?). At runtime, a case can be selected only if the message passing
operation of the guard is possible, i.e. if the channel can be read or be written
to, respectively. One of those cases is selected nondeterministically and its guard
and statement are processed. A default case can always be selected. If there are
multiple cases that can be selected, one of them is selected nondeterministically.

These examples give an impression of the features provided by pseuCo, all of
which are given semantics by translation to CCS. In addition, pseuCo supports
arrays, structs and monitors with condition synchronization, however, these can
be viewed as syntactic sugar and are not considered in this paper.

https://pseuco.com/#/sku/default/tool/edit/remote/x1qnfzmhvq93letxn6ts
https://pseuco.com/#/sku/default/tool/edit/remote/x1qnfzmhvq93letxn6ts
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Concurrent Programming from pseuCo to Petri 7

3 A Library for Colored Petri Nets

PseuCo is an imperative programming language, and as such any pseuCo pro-
gram operates on variables. In this context, colored Petri nets [12] offer a clear
advantage over basic Petri nets as a semantic model for the language.

Colored Petri Nets. We generally follow the definitions from [13] and assume
any syntax for expressions where Exp is the set of expressions, Types is a set
of types and Vars is a set of variables. Let B ∈ Types be the set of Booleans.
Let Values :=

⋃
t∈Types t be the set of all values. We use Type : Vars → Types

to express the type of a variable and Type : Exp → Types for the type of an
expression. For a set of variables Vars, let Type(Vars) denote the set of types
{Type(v) | v ∈ Vars}. We assume a function Var : Exp → Vars that returns
the variables in an expression. A binding b is a function b : Vars → Values
such that ∀v ∈ Vars : b(v) ∈ Type(v). Let Bindings be the set of bindings.
Lastly, we assume an evaluation function eval : Exp × Bindings → Values such
that ∀e ∈ Exp : ∀b ∈ Bindings : eval(e, b) ∈ Type(e). When evaluating closed
expressions, we omit the second argument to eval . Let XMS be the set of all
multisets over X.

Definition 1 (Colored Petri net). A colored Petri net is a tuple CPN =
(Σ,P, T,A,N,C,G,E, I) satisfying the requirements below:

(i) Σ is a finite set of non-empty types, called color sets.
(ii) P , T and A are pairwise disjoint sets of places, transitions and arcs.
(iii) N : A→ P × T ∪ T × P is a node function.
(iv) C : P → Σ is a color function.
(v) G : T → Exp is a guard function such that
∀t ∈ T : Type(G(t)) = B ∧ Type(Var(G(t))) ⊆ Σ.

(vi) E : A→ Exp is an arc expression function such that
∀a ∈ A : Type(E(a)) = C(p(a))MS ∧ Type(Var(E(a))) ⊆ Σ
where p(a) is the place of N(a).

(vii) I : P → Exp is an initialization function such that
∀p ∈ P : Type(I(p)) = C(p)MS and ∀p ∈ P : Var(I(p)) = ∅,
i.e. all expressions returned by I are closed.

CPN in JavaScript. Colored Petri nets will serve as a semantic model for pseuCo,
and tool support for experiencing and exploring this semantics is at the core of
our educational approach. For this purpose, we provide a JavaScript library to
express and evaluate colored Petri nets, which we will call colored-petri-nets.
The library implements support for the concepts needed to materialize Defini-
tion 1 and its semantic underpinning by introducing a syntax for arc expressions,
implementing a data structure for Petri nets and providing an algorithm for find-
ing enabled steps. In addition, for nets where only a finite number of values are
reachable, it allows converting the colored Petri net into a basic Petri net. For
simplicity, the library enforces some restrictions and simplifications:
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8 F. Freiberger and H. Hermanns

1. In Definition 1, arc expressions evaluate to a multiset of colors. Our expres-
sion syntax only allows expressing single colors, which are always treated as
singleton multisets. Multiple tokens can be consumed or produced by the
use of multiple arcs.

2. Usually, colored Petri nets are defined over an arbitrary set Σ of color sets (or
types). Our implementation, however, only supports a single type, Σ = {V},
with V containing numbers, booleans, arrays and objects (where keys are
strings and values are valid colors).

3. In full generality, both arcs from places to transitions (“incoming” arcs) and
arcs from transitions to places (“outgoing” arcs) are inscribed with the same
kind of expression. However, allowing arbitrary expressions on incoming arcs
complicates computing the set of enabled markings because the binding are
to be guessed or deduced. CPN tools [13] solve this problem by using a so-
phisticated algorithm [14] to compute the values of variables that can be
deduced and by restricting unbounded variables to small color sets. For rea-
sons of simplicity, we instead use a restricted pattern syntax on incoming
arcs. When given token colors to read, these patterns evaluate to partial
bindings. If they are compatible, they combine to the single binding under
which the guard and the outgoing arcs’ expressions are evaluated, assuming
no unbound variables remain. While this restricts a single token read to re-
turn only one specific binding, nondeterminism can be retrieved by allowing
expressions with inherent nondeterminism or by duplicating transitions.

The restricted pattern syntax for incoming arcs is inspired by JavaScript [6],
especially by valid left-hand sides of JavaScript assignments. Various extensions
and modifications aim to provide a more complete set of matching capabilities.
The constructs in Table 1 can be used in patterns.

For outgoing arcs, the syntax and semantics of expressions are also based
on a fragment of JavaScript, but feature some additions. These mostly serve
the purpose of increasing the expressiveness without needing to allow proce-
dural code. Just as in traditional JavaScript, we support (i) conditionals (x ?
42 : 1337); (ii) logical or (||) and and (&&); (iii) equality (==) and inequal-
ity (!=) checks; (iv) numerical comparison (>, <, >= and <=); (v) division-free
basic arithmetic (+, - and *); (vi) boolean negation (!); (vii) property access
(point.coordinates.x), including the length property of arrays; (viii) group-
ing with ( and ); (ix) integer and boolean literals; (x) variables; (xi) array liter-
als ([4, 5, 6]); and (xii) object literals ({ a: 1, b: 2 }), including ES6-style
shorthand notation ({ a, b }). In addition, support is provided for (xiii) array
concatenation via the new @ operator; (xiv) spreads in object literals ({ a: 1,
...x, b: 2, ...y, a: 2 }) which copy in all keys and values from another
object, using the rightmost value if a key is duplicated; and (xv) an evaluation
function (eval(a + b, vars)) that evaluates a subexpression in a separate en-
vironment that is passed in object form as the second argument.

The JavaScript library colored-petri-nets is freely available at https://
dgit.cs.uni-saarland.de/pseuco/colored-petri-nets.

https://dgit.cs.uni-saarland.de/pseuco/colored-petri-nets
https://dgit.cs.uni-saarland.de/pseuco/colored-petri-nets
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Concurrent Programming from pseuCo to Petri 9

Table 1. Constructs allowed in colored-petri-nets patterns.

Name Example Description

variable x matches anything and binds the value

wildcard _ matches anything and drops the value

array patterns [a, b, c] matches any array of matching length
and recursively matches the components

empty slots in
array patterns

[a, , c] act as a wildcard

spread in array
pattern

[hd, ...tl] matches the remainder of the array, only
allowed in the last slot

object pattern { a, b: c } matches objects having all required keys
and matches the values to the pattern, if
one is specified, or binds it to a variable
named like the key

spread in
object pattern

{ one, two, ...rest } matches all unmentioned keys into a
new object, only allowed in the last slot

4 Augmenting CPN for Concurrent Programming

As discussed in Section 1, there are three problems impeding readability of the
CCS terms produced by the current pseuCo to CCS compiler: (i) hard-to-follow
program flow, (ii) an abundance of static helper constructs and (iii) the insertion
of runtime logic into user code (e.g. for message passing). While the switch to
Petri nets (and using a graphical representation for them) inherently improves
on problem (i), without additional care, issues (ii) and (iii) would resurface.

For example, when considering message passing in pseuCo, Petri nets are ob-
viously capable of expressing both synchronous and asynchronous message pass-
ing channels. However, since channel variables can be dynamically reassigned,
static analysis cannot always determine whether a channel variable refers to a
synchronous or an asynchronous channel, or whether two channel variables in
different agents could refer to the same channel. Therefore, a naïve implementa-
tion would be bound to introducing a central storage place for the contents of all
asynchronous channels. Each use of a channel would then have to perform a run-
time check to determine the type of channel, and in the case of an asynchronous
channel proceed by synchronizing with the central storage place. Such constructs
blow up the resulting Petri net and impede readability. They also hinder graph
layout by their introduction of highly interconnected places. In addition, these
constructs are not specific to pseuCo, so we would like to make them reusable
for compiling other programming languages to Petri nets.

To this end, we introduce an abstraction layer between pseuCo and colored
Petri nets, called colored program Petri nets (CPPN). This is a high-level notation
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10 F. Freiberger and H. Hermanns

call(x, x1 := e1, . . . , xn := en) return(e) start-agent(a, x1 := e1, · · · , xi := ei) join(a)

Fig. 2. Calling and agent management.

based on colored Petri nets tailored to concurrent programs using shared memory
and/or message passing concurrency. As CPPN are meant as an easily visualizable
and reusable intermediate form between an imperative concurrent programming
language and Petri nets, we do not define an executable semantics for them, but
instead provide a translational semantics to ordinary colored Petri nets.

4.1 CPPN Overview

At a glance, a CPPN is very similar to a colored Petri net. However, in CPPNs,
tokens are strictly associated with agents (or threads) on the program level,
and token colors can be viewed as object valuations together representing the
states of local variables of the agent. Agents have an identity that becomes
relevant when waiting for an agent’s termination or when handling reentrant
locks. On the CPPN level, this is echoed by regular (i.e. CPN-typical) transitions
being restricted to always consume and produce exactly one token, and the
initial marking being constrained to contain a single token. In return, CPPN
includes command transitions to handle (i) procedure calls, (ii) agent creation
and management, (iii) message passing, (iv) global variables and (v) mutexes.

Calling and Agent Management (see Figure 2). For both call and start-agent,
the xi are local variables representing the arguments of the called procedure and
the ei are expressions representing their values. For call, x is the variable that
captures the return value. Similarly, for start-agent, a captures the identity
of the newly started agent. This allows waiting for the termination of the agent
with a join(a) transition. For return, e is an expression representing the return
value.

Note that call and start-agent have two outgoing arcs, one of which is
dashed. The dashed arc represents the called procedure or the newly started
agent, while the solid arc represents the caller.

Message Passing Support (see Figure 3). init-chan creates a new channel of
capacity c, assigned to variable x. Sending and receiving messages is handled
by send, receive and default transitions. Any place that has an outgoing arc
to such a transition may not have an outgoing arc to other transitions. The
default transition is always allowed and allows bailing out of a place that has
message passing transitions.
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Concurrent Programming from pseuCo to Petri 11

init-chan(c, x) send(c, e) receive(c, v) default

Fig. 3. Message passing support: Channel creation and sending/receiving messages.

read-global(x, v) write-global(x, e) init-mutex(v) lock-mutex(m) unlock-mutex(m)

Fig. 4. Shared memory support: Global variables and mutexes.

Shared Memory Support (see Figure 4). CPPNs support the use of global vari-
ables that all agents can access. These variables cannot be used directly but
can be accessed using two dedicated commands: read-global(x, v) copies the
value of the global variable x to the local variable v, and write-global(x, e)
writes the result of evaluating the expression e to x. Coordination is possible
through the use of mutexes (or locks). They are initialized with init-mutex,
which saves their identity in variable v. Then, they can be used with lock-mutex
and unlock-mutex.

Example. Figure 5 depicts a CPPN for the pseuCo program listed in Listing 1. In
the visual representation, the three lines labeling the transition bodies indicate
the name of the transition, which kind of command transition it is and the guard
(which defaults to true).

Syntax of CPPN . The ensemble of structures enabled by CPPN is as follows.
Let GlobVars be a set of identifiers for global variables. We define a set Cmds
of commands that can be associated with transitions to make them command
transitions. For example, the transition factorial-send in Figure 5 has the
command send(c, n) associated with it, indicating that the result of evaluating
the expression n is sent over the channel returned by evaluating the expression
c. Similarly, we define commands for all types of command transitions appearing
in Figures 2 to 4. Let MPCommCmds ⊂ Cmds be the set of possible mes-
sage passing commands, i.e. sending, receiving or default transitions. Similarly,
StartAgentCmds, CallCmds and ReturnCmds refer to the corresponding respec-
tive subsets of Cmds.



P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
19

-0
7

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
P

E
T

R
IN

E
T

S
20

19
.

P
L

E
A

S
E

C
IT

E
T

H
A

T
P

U
B

L
IC

A
T

IO
N

IN
S

T
E

A
D

O
F

T
H

IS
R

E
P

O
R

T.

12 F. Freiberger and H. Hermanns

mainAgent-16 1 {}

init-chan-cc
init-chan(0, cc)

mainAgent-17 0

start-agent-1

start-agent(a, c := cc)

mainAgent-18 0

send-1
send(cc, 3 )

mainAgent-19 0

receive-1
receive(cc,mid)

mainAgent-20 0

println-1

println("3! evaluates to "+mid + ".")

mainAgent-21 0

send-2
send(cc,mid)

mainAgent-22-1 0

receive-2
receive(cc, tmp)

mainAgent-22-2 0

println-2

println("(3!)! evaluates to "+ tmp + ".")

mainAgent-23 0

factorial-2 0

factorial-init-local-vars

factorial-4 0

factorial-receive
receive(c, z)

factorial-6 0

factorial-set-n

factorial-7 0
factorial-loop

j > 0

exit-loop

j ≤ 0

factorial-11 0

factorial-send
send(c, n)

factorial-12 0
factorial-outer-loop

vars

{. . .vars, z : 0, j : 0, n : 0}

{n, . . .vars}

{n : 1, . . .vars} {j, n, . . .vars}

{j : j − 1, n : n · j, . . .vars}

vars

vars

Fig. 5. A CPPN for Listing 1. The notation adheres to certain simplifications that are
introduced in Section 4.2.
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Concurrent Programming from pseuCo to Petri 13

Definition 2 (CPPN). A CPPN is a tuple CPN = (Σ,P, T,A,Cmd , S,N,C,G,
E, I) satisfying the requirements below:

(i) (Σ,P, T,A,N,C,G,E, I) is a colored Petri net.
(ii) Cmd : T → Cmds ∪ {⊥} is a command function.
(iii) S : A→ B indicates for each arc whether it is starting a new procedure or

agent.
(iv) The arc expression function E only returns expressions that always eval-

uate to singleton multisets:

∀a ∈ A : ∀b ∈ Bindings : |eval(E(a), b)| = 1.

(v) The initialization function specifies a single token:

∃p ∈ P : |eval(I(p))| = 1 ∧ ∀p′ ∈ P \ {p} : |eval(I(p))| = 0.

(vi) Let post(x) := {y | ∃a ∈ A : N(a) = (x, y)} denote the set of successors
and pre(x) := {y | ∃a ∈ A : N(a) = (y, x)} denote the set of predecessors
of a place or transition. For each transition, the number of incoming and
outgoing arcs must be correct, in the following sense:
1. ∀t ∈ T : |pre(t)| = 1

2. ∀t ∈ T : |post(t)| =


2 if Cmd(t) ∈ StartAgentCmds ∪ CallCmds

0 if Cmd(t) ∈ ReturnCmds

1 otherwise
For call and start transitions, exactly one arc must be marked as starting:
3. ∀t ∈ T : |{a | a ∈ post(t) ∧ S(a) = true}| = 1

(vii) Let TMPComm := {t ∈ T |Cmd(t) ∈ MPCommCmds} be the set of message
passing communication transitions. If a transition has an outgoing arc to
any transition in TMPComm , all outgoing arcs must lead to such transi-
tions, i.e. ∀p ∈ P : post(p) ∩ TMPComm 6= ∅ =⇒ post(p) ⊆ TMPComm .

Relative to Definition 1, we can note the following differences:

– There is a command function (see (ii)) assigning commands to transitions. If
Cmd(T ) = ⊥, we call T a Petri transition, otherwise, it is a command tran-
sition.

– The arc expression function must yield expressions that always return a
single token. This, together with condition (vi), ensures that Petri transitions
must consume and produce exactly one token at all times.

– The initial marking is now restricted to contain a single token.
– Condition (vi) and the new function S (see (iii)) ensure command transi-

tions have the correct number of incoming and outgoing arcs, and call and
start-agent transitions have one outgoing arc designated as the starting
arc, represented by a dashed line in the graphical representation.

– An additional restriction, item (vii), ensures that any place that has an
outgoing arc to a message passing command transition can only have arcs
to such transitions.
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14 F. Freiberger and H. Hermanns

read-global(x, p) ⇒
read-global

$global-x 1 0

{agent , vars}

{agent , vars : {. . .vars, p : d}}

d

d

write-global(x, e) ⇒
write-global

$global-x 1 0

{agent , vars}

{agent , vars}

_

eval(e, vars)

Fig. 6. Unfolding of shared memory command transitions. Each read-global and
write-global command transition is replaced by the construct above, creating a new
place global-x (initialized with a token of color 0) whenever a global variable named x
is seen for the first time.

4.2 Translation from CPPN to CPN

As mentioned previously, CPPNs do not posses an executable semantics, but in-
stead are translated to regular colored Petri nets. At its core, the construction
unfolds the command transitions into the structures corresponding to their in-
tended functionality.

1. All arc expressions and the initial marking are updated by adding an agent
property that contains an agent id and the current recursion depth, initially
both 0. This enables e.g. join transitions to recognize agents and allows
matching the token of a returning procedure to its caller. The color sets of
all places are adjusted accordingly.

2. A fixed set of management places is added to handle id generation for locks,
channels and agents, manage agent termination and store channel contents
and lock states.

3. For each global variable, a management place is added to store its value.
4. Each command transition is replaced with a specific construct implementing

the command functionality, typically by synchronizing with one or more
management places. For example, Figure 6 shows the unfolding for shared
memory command transitions. For message passing command transitions,
these replacement constructs in addition can synchronize with each other
to implement handshaking over synchronous channels. Similarly, each pair
of call and return command transitions causes a linking transition to be
inserted that handles returns from that specific return transition to that
call transition.

The various details of the needed constructions are too verbose to include them
in all detail here due to lack of space. A majority of these constructions result
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Concurrent Programming from pseuCo to Petri 15

in a linear increase in the size of the net, similar to Figure 6. However, over-
all, the size of the resulting CPN is quadratic in the number of call, return,
send and receive transitions due to the additional transitions needed to handle
handshaking and returns.

Implementation. The JavaScript library colored-petri-nets introduced in
Section 3 has full support for CPPN and for the translation to colored Petri
nets. On top of the restrictions and simplifications that apply to plain colored
Petri nets (see Section 3), two additional simplifications are added: First, com-
mand transitions are not allowed to have a guard different from true. Second,
arcs belonging to command transitions do not have arc inscriptions. Therefore,
command transitions are not allowed to change the token color except in the
way dictated by their command. For command transitions where arc inscrip-
tions seem necessary, e.g. when passing arguments to a called procedure or newly
started agent, the behavior is instead controlled by additional parameters within
the command. The notation used in Figures 2 to 6 matches these simplifications.

4.3 From pseuCo to CPPN

As per the design goals of CPPN , compiling pseuCo programs to CPPN is rather
straightforward. This task is taken care of by pseuco-cpn-compiler, a Java-
Script-based implementation of such a compiler. The compiler starts with a
net consisting of a single place, then simply traverses the abstract syntax tree
of the input program, processing children in reverse order while building up
the net from bottom to top. This direction is advantageous because it sim-
plifies building a source map, indicating which program statement each place
belongs to, as the compiler creates the place representing the program state
before a certain statement while processing that statement. The JavaScript li-
brary pseuco-cpn-compiler is freely available at https://dgit.cs.uni-saarland.
de/pseuco/pseuco-cpn-compiler. It currently supports the array- and structure-
free subset of pseuCo. In conjunction with the colored-petri-nets library, it
allows compiling pseuCo programs into regular colored Petri nets or, for pseuCo
programs with a bounded state space, basic Petri nets.

5 pseuCo.com: An Educational Tool Backed by Petri Nets

As previously discussed, the main motivation of this work has been to enhance
pseuCo.com by providing a more easily digestible semantics of pseuCo programs
and by providing IDE-like debugging capabilities. This section details the result
of these efforts.

Colored Petri Nets in pseuCo.com. To integrate the colored-petri-nets li-
brary and pseuco-cpn-compiler into the educational tool pseuCo.com, an ap-
pealing way is needed to visualize Petri nets. For the purpose of working with
labeled transition systems, pseuCo.com does already employ a force-directed

https://dgit.cs.uni-saarland.de/pseuco/pseuco-cpn-compiler
https://dgit.cs.uni-saarland.de/pseuco/pseuco-cpn-compiler
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16 F. Freiberger and H. Hermanns

1 2 3

Fig. 7. PseuCo.com showing a sample pseuCo program and its Petri net semantics.

graph layout system allowing the user to interactively explore a transition sys-
tem by expanding or collapsing states (i.e. showing and hiding their successors).
Petri nets incur less need for interactive exploration as they tend to stay small
even for pseuCo programs resulting in thousands of LTS states using the existing
CCS-based compiler. Still, the integration of Petri nets into pseuCo.com uses a
force-based graph layout, so as to allow users to influence the layout of the net
by dragging and dropping, similarly to what is supported for LTS. In addition to
standard forces like electrical charges and spring forces along arcs, pseuCo.com
employs custom forces to orient graphs. They ensure that regular arcs typically
point downwards, while called agents and procedures are positioned horizontally.
This is demonstrated in Figure 7, showing a sample pseuCo program 1 and
two graphs describing the corresponding CPPN 2 and a fragment of its unfold-
ing 3 . To speed up convergence, the force layout is initialized by node positions
precomputed with dagre which employs an algorithm similar to Graphviz [8].
The force layout can be disabled to fall back to the static layout provided by
dagre.

Debugging pseuCo Programs in pseuCo.com. The CCS-based semantics em-
ployed by pseuCo.com so far has been of little help for students seeking to
understand the behavior of their programs. At its core, this problem is rooted in
the difficulty of mapping a state of the resulting LTS to the state of the underly-
ing pseuCo program, a process that requires parsing convoluted CCS terms and
an understanding of the internal low-level hacks used by the pseuCo to CCS
compiler. While switching to the Petri-net-based semantics alleviates this by
replacing CCS terms with markings in a fixed net, significantly improving read-
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Concurrent Programming from pseuCo to Petri 17

ability, a partial understanding of the compiler’s internals is still required. To
resolve this, we present the pseuCo.com debugging feature. While designed to be
usable even without an understanding of Petri nets, it is based upon the seman-
tics described above and backed by the CPPN -based pseuCo compiler included
in pseuCo.com.

In its core, the debugger is a tool to explore the marking graph of the under-
lying Petri net. However, instead of showing the current marking directly, the
debugger translates the marking into pseuCo terminology. Figure 8 shows the
debugger in action, demonstrating its main features: It allows the user to

– inspect the console output 1 ,
– see running agents and their local variables and call stack 2 ,
– identify the statement an agent is currently executing 3 ,
– see global variables and the state of asynchronous channels and locks (not

present in the example),
– see which agents are currently waiting for message passing synchronization

to happen 4 ,
– single-step agents 5 , manually resolving nondeterminism if present,
– automatically execute single agents 6 as long as their behavior is determin-

istic,
– automatically execute the whole program 7 , resolving nondeterminism ran-

domly,
– set breakpoints 8 to interrupt automatic execution and to
– return to any previous state of the program 9 .

All of this functionality is rooted in the linkage between the pseuCo program
and the Petri net levels, mentioned above. The compiler, pseuco-cpn-compiler,
annotates its output CPPN with a source map allowing the debugger to link
elements of the net to the original program. When converting the CPPN to a
colored Petri net, the colored-petri-nets module preserves these annotations
and generates additional metadata identifying the newly introduced places.

When inspecting a marking, the debugger uses the agent id and recursion
depth embedded in the token colors (see Section 4.2) to identify running agents,
their local variables and stack frames. The source map information of an agent
tokens’ place identifies that agent’s position in the source code. Global variables
and their values are identified by looking for places added by the replacement
rule introduced in Figure 6 and tokens stored in them. Asynchronous channel
contents and in-progress handshaking events are handled similarly.

In summary, this approach allows pseuCo.com to present a debugger that
supports a similar feature set and user experience than a traditional IDE. Being
built upon on the complete Petri-net-based semantics, however, allows preserving
the full nondeterministic behavior of the program, ensuring that every execution
of the program that can occur in practice can not only be reproduced but also
specifically chosen in the debugger.
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Fig. 8. PseuCo.com in a debugging session for the program from Listing 1.

6 Conclusion and Future Work

This paper has presented a translational semantics for pseuCo to Petri nets tai-
lored to the use in education. Its intermediate step, the higher-level Petri net
formalism CPPN , is geared towards easy visualization of program semantics and
reusability for other programming languages. The transpiler is highly integrated
into pseuCo.com, providing easy access to it to students and teachers and extend-
ing pseuCo.com with a structured and concurrency-preserving semantics and a
nondeterminism-preserving debugging facility. The transpiler and its underly-
ing colored Petri nets implementation are available as open-source JavaScript
libraries.

There is obvious room for improvement in these tools, most importantly
expanding the transpiler to support the full feature set of pseuCo, which includes
arrays, data structures and monitors with condition synchronization. Doing so
cleanly requires the introduction of additional command transitions in CPPN .

The Petri net extension is brand-new and has as such not been used in a
lecture edition so far. This is planned for summer 2019, together with a shift in
the theoretical course focus, now embracing the Petri net perspective on concur-
rency.
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