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Abstract. Markov automata are a compositional modelling formalism
with continuous stochastic time, discrete probabilities, and nondetermin-
istic choices. In this paper, we present extensions to the MODEST lan-
guage and the mcsta model checker to describe and analyse Markov au-
tomata models. MODEST is an expressive high-level language with roots
in process algebra that allows large models to be specified in a succinct,
modular way. We explain its use for Markov automata and illustrate
the advantages over alternative languages. The verification of Markov
automata models requires dedicated algorithms for time-bounded prob-
abilistic reachability and long-run average rewards. We describe several
recently developed such algorithms as implemented in mcsta and evalu-
ate them on a comprehensive set of benchmarks. Our evaluation shows
that mcsta improves the performance and scalability of Markov automata
model checking compared to earlier and alternative tools.

1 Introduction

Studying dependability and performance aspects of critical designs or imple-
mentations [4] requires a formal mathematical model that captures the core
quantitative aspects of such systems. In particular, we need stochastic continu-
ous time to model delays of which we only know averages, e.g. the mean time
to failure, discrete probabilistic choices to describe instantaneous uncertain deci-
sions, as in e.g. randomised algorithms, and nondeterminism to be able to deal
with underspecification, abstraction, unquantified uncertainty, and concurrency.
Markov automata (MA, [18}20]) extend the classical formalisms of continuous-
time Markov chains and discrete-time Markov decision processes (MDP) to en-
compass all three of these aspects. In contrast to continuous-time MDP (CT-
MDP), they are compositional: there is a natural parallel composition operator
for networks of MA that provides for both interleaved and synchronising transi-
tions without the need for ad-hoc operations to combine transition rates.

MA are the semantic basis for generalised stochastic Petri nets [19] and dy-
namic extensions of fault trees [6,|31]. Several publications studied algorithmic
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problems related to the efficient analysis of MA [2,/12H15}[23}24,(30]. In this
light, it is disappointing that tool support for MA is thus far rather brittle. The
one dedicated tool for compositional modelling with MA, Scoop |3§|, is unmain-
tained, as is the corresponding lower-level MA model checker IMCA [22]. The one
other actively developed tool with comprehensive MA support is STORM [17],
which however lacks built-in support for high-level compositional modelling.

Using the mathematical formalism of MA directly to build complex models
is cumbersome. For their use to be practical, we need a higher-level modelling
language. Aside from a parallel composition operator, such languages typically
provide variables over finite domains that can be used in expressions to e.g. en-
able or disable transitions. Their semantics is then an MA whose states are the
valuations of the variables, allowing to compactly describe very large MA. In
this paper, we present recent extensions to MODEST [27], a high-level modelling
language for stochastic hybrid systems, that add support for expressing MA
models. Rooted in process algebra, MODEST provides various composition op-
erators that allow large models to be assembled from small, easy-to-understand
components. In Sect. [} we illustrate the use of MODEST for MA, and we compare
its succinctness, expressivity, and readability with alternative languages.

We build MA models to compute quantitative properties of systems such as
safety (the probability to reach an unsafe state), reliability (doing so within a
time bound), or throughput (the long-run average amount of work completed
per time unit). Probabilistic model checking techniques [3| can be applied to
MA to effectively compute or approximate such values. While the computation
of unbounded reachability probabilities and expected accumulated rewards can
be reduced to checking the MA’s embedded MDP, time-bounded probabilities
and long-run average rewards require dedicated algorithms. We summarise the
currently available algorithms, their particular characteristics, and notable im-
plementation considerations, in Sect. To complement our extension of the
MODEST language with suitable analysis facilities, we have implemented the
most promising of these algorithms in the mcsta model checker of the MODEST
TOOLSET [28]. We use the MA models of the Quantitative Verification Bench-
mark Set [29] to evaluate the performance of our implementation and of the
different algorithms in Sect. [f]] We compare the results with IMcA and STORM.

2 Markov Automata

The mathematical formalism of Markov automata provides nondeterministic
choices as in labelled transition systems (LTS, or Kripke structures or finite
automata), discrete probabilistic decisions as in discrete-time Markov chains
(DTMC), and states with exponentially distributed residence times as in continu-
ous-time Markov chains (CTMC). The relationships between these formalisms
are visualised in Fig.[I] We now define MA formally and describe their semantics.

Preliminaries. We write {21 — y1,...} to denote the function that maps all
x; to y;, and if necessary in the respective context, implicitly maps to 0 all x
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Fig. 1. The MA family tree Fig. 2. Example Markov automata

for which no explicit mapping is specified. Given a set S, its powerset is 2°. A
(discrete) probability distribution over S is a function p € S — [0, 1] such that
spt(p) ¥ {s € S| u(s) >0} is countable and Zsespt(u w(s) = 1. Dist(S) is the
set of all probability distributions over S, and p1 ® po is the product distribution
of 1 and pg defined by (pu1 @ p2)(s) = p1(s) - ps(s). We refer to discrete random
choices as probabilistic and to continuous ones as stochastic.

Definition 1. A Markov automaton (MA) is a tuple

M = (S, s, A, P,Q,rr, br)
where
— S is a finite set of states, with so € S being the initial state,
— A is a finite set of actions,
— P e § — 24%Dist(S) s the probabilistic transition function,
— Q€ S — 29%5 the Markovian transition function,
— rr €5 — [0,00) is the rate reward function, and
—breSx Tr(M) xS —[0,00) is the branch reward function
with Tr(M) = U,es P(s) UUseq Q(s). P(s) and Q(s) must be finite sets for all
s € S. We define the exit rate of s € S as E(s) =3, syeq(s) M

Ezample 1. Fig. |2| shows two MA M7 and M, without rewards. We draw proba-
bilistic transitions as solid, Markovian ones as dashed lines. If a transition leads
to a single target state, we omit the intermediate probabilistic branching node.

The semantics of an MA is that, in state s, (1) the probability to take Markovian
transition (\,s’) € Q(s) and move to state s’ within ¢ time units is
A E(s) - (1 —e P,

i.e. the residence time follows the exponential distribution with rate E(s) and
the choice of transition is weighted by their rates; and (2) at any point in time,
a probabilistic edge (a,pu) € P(s) can be taken with the successor state being
chosen according to u. MA thus separate interaction from timing: the former
is represented by the action-labelled probabilistic transitions, and the latter is
governed by the rates of the Markovian transitions. This is the key difference
to CTMDP, which have one kind of transitions with both actions and rates.
It enables parallel composition operators with action synchronisation for MA
without any need to prescribe an ad-hoc operation for combining rates.



Definition 2. Given two MA M; = (S;, so,, Ai, Pi, M), i € {1,2}, their par-
allel composition is My || My = (Sy x Sa,(s0,,50,), A1 U A, P, M) with P the
smallest function such that

({a,p)ePi(s1) Nad Ay = (a, p®@{s2— 1})€P((s1,$2)))
A({a, 1) € Pa(s2) Nag Ay = (a,{s1— 1} @ p) €P((s1,52)))
A ((a,u1> EPl(Sl) N <a,u2>€Pg(52) Na€A1 NAy = <a,u1 ®,u2> GP(<81,52>))

and Q is the smallest function s.t. ((A,s])€Q1(s1) = (A, (s],52)) €Q((s1,52)))
and vice-versa for Qs.

The operator above uses multi-way synchronisation on the shared alphabet of
the two automata; similar operators could be defined for other synchronisation
mechanisms, e.g. to define input-output MA. Fig. [2includes the parallel compo-
sition of the example M; and My, where we write nm for state (n,m). The two
automata synchronise on the shared actions a and c.

We defined MA as open systems [8]|: probabilistic transitions can interact
with, wait for, and be blocked by other MA in parallel composition. For veri-
fication, we make the usual closed system and mazimal progress assumptions,
i.e. we assume that probabilistic transitions face no further interference and
take place without delay. If multiple probabilistic transitions are available in
a state, however, the choice between them remains nondeterministic. Since the
probability that a Markovian transition is taken in zero time is 0, the maximal
progress assumption allows us to remove all Markovian transitions from states
that also have a probabilistic transition. In such closed MA, we can thus dis-
tinguish between Markovian states (where P(s) = @) and probabilistic states
(where Q(s) = @). The behaviour of a closed, deadlock-free MA M is defined
via its paths:

Definition 3. A path © € II(M) is an infinite sequence
T =Sototrosy... € (S x[0,00) x Tr(M))®
such that Q(s;) = @ = t; =0 and tr; € P(s;) UQ(s;). We write II{(M) for the
set of all path prefixes 7y ending in o state. Let m<; f soto...s;. The duration
dur(my) of a path prefiz is the sum of its residence times t;. A path’s reward is
rew(m) = Y oo ti - r(s;) + br(si, tri, Si41)

and is analogously defined for prefizes.

A path prescribes a resolution of all nondeterministic, probabilistic, and stochas-
tic choices. To define a probability measure, we resolve nondeterminism only:

Definition 4. Given an MA M as above, a scheduler in &(M) is a function o €
Iy (M) — Tr(M) s.t. Vs € S: o(s) = tr = tr € P(s)UQ(s). A time-dependent
scheduler is in S x [0,00) = Tr(M); a memoryless one in S — Tr(M).

We define deterministic schedulers only since randomised schedulers are in prac-
tice only needed for multi-objective problems [34]. We note that CTMDP with
early schedulers [36] can be encoded as closed MA. A scheduler induces a prob-
ability measure over sets of measurable paths in the usual way [30]. For all of



the following types of properties, we are interested in the maximum (supremum)

and minimum (infimum) values when ranging over all schedulers o € G(M):

Reachability probabilities: Given a set of goal states G C S, compute the
probability of the set of paths that include a state in G. Memoryless schedulers
suffice to achieve optimal results (i.e. the max. and min. probabilities).

Time-bounded reachability: Additionally restrict to paths where the sum of
delays up to reaching the first state in G is below a bound b € [0, c0). Here,
time-dependent schedulers with input b — dur(my) suffice.

Expected accumulated rewards: For G C S, compute the expected value of
the random variableﬂ that assigns to path 7 the value rew(my) where 7y is the
shortest prefix of m with a state in G. Memoryless schedulers suffice.

Long-run average rewards: Compute the expected value of the random vari-
able that assigns to path « the value lim;_, o, rew(7m<;)/dur(r<;). Memoryless
schedulers suffice.

Ezample 2. Consider MA M; || M, of Fig. 2] and the 0.6
probability to reach state (4,4) within 1 time unit. In
state (0, 1), we have to decide whether to choose action g4 -
a or b. The optimal decision depends on the amount
of time ¢ that has passed in state (0,0). In the plot
on the right, we show the probability of reaching state
(4, 4) (y-axis) depending on 1—t (x-axis). The blue line

represents the reachability probability for the memo- 0 0"25 0i5 0_‘75 1
ryless scheduler that always chooses a and the red one

is for the scheduler that always takes action b. A time-dependent scheduler can
make better decisions than either of these two by determining the values of ¢
for which a results in a higher probability than b and vice-versa. The optimal
scheduler thus chooses a if and only if 1 — ¢ < 0.63 approximately.

0.2 |- —

3 Modelling

Tools for the automated analysis of MA need a syntax in which the model and
the properties of interest are specified. As noted in Sect. |1} such a modelling
language needs to provide a parallel composition operator such that large MA
can be built from small specifications, and will typically support modelling with
variables that can be used in guards and assignments. In the context of such
symbolic formalisms, we have locations and edges that each induce (many) states
and transitions, respectively, in the formalism’s plain-MA semantics.

3.1 MOobDEST for Markov Automata

As part of implementing the JANI [10] model exchange format, we recently in-
troduced support for MA into the syntax and semantics of the MODEST mod-
elling language [27]. MODEST previously supported MDP and more complex

4 This is well-defined if the maximum (minimum) probability to reach G is 1; other-
wise, we define the minimum (maximum) expected accumulated reward to be oo.



const real B; ma

int(0..2) succ = 0; const double B
action a, b, c; module M1
property P_Min = Pmin(<>[T<=B] (succ == 2)); si: [0..4];
property P_Max = Pmax(<>[T<=B] (succ == 2)); [a] s1=0 -> 0.5:(s1’=1) + 0.5:(s1°=2);
process M1() [c] s1=0 -> 1:(s1°=3);
{ <> sl=1 | s1=3 -> 2:(s1’=4);
bool fail = false; endmodule
alt { module M2
: a palt { s2: [0..4];
11 {==} ) <> 52=0 -> 2:(s2’=1);
:1: {= fail = true =} [a]l s2=1 -> 1:(s2°=4);
¥ [b] s2=1 -> 1:(s27=2);
i:c <> §2=2 -> 2:(s2°=3);
}; [c] s2=3 -> 1:(s27=4);
when(!fail) rate(2) {= succ++ =} endmodule
b "P_Min": Pmin=7 [F<=B (s1=4 & s2=4)];
Erocess M2 () "P_Max": Pmax=7 [F<=B (s1=4 & s2=4)];
rate(2) tau; . . .
alt { Fig. 5. Prism dialect supporting MA
i1 a {= succ++ =}
:: b; rate(2) tau; c {= succ++ =}
¥
3 #INITIALS
par { s00
cr M1Q) #GOALS
1 M20) s44
} #TRANSITIONS
s00 !
Fig. 3. MoDEST for MA * s01 2
s01 a
* s02 1
global succ:{0..2} =0 s01 b
DONE = done.DONE[] * s14 0.5
M1l = a.psum(0.5 -> Mia[] ++ 0.5 -> DONE[]) % 524 0.5
++ c.Mla[] s14 !
Mia = <2>.setGlobal(succ, succ + 1) x s44 2
.DONE[] s02 !
M2 = <2>.(a.M2a[] ++ b.<2>.c.M2a[]) * 503 2
M2a = setGlobal(succ, succ + 1).DONE[] s03 ¢
init M1[] || M2[] * s34 1
comm (a, a, a), (c, ¢, c) s34 !
reachCondition (succ = 2) * s44 2
Fig. 4. MAPA process algebra Fig. 6. IMcA state space format

continuous-time formalisms such as stochastic hybrid automata, but did not
have provisions for succinctly annotating edges with rates. We added the rate (e)
construct for this purpose, which behaves analogously to the existing when (e)
construct for specifying the enabling condition of an edge. MODEST enforces
the separation of probabilistic and Markovian transitions by requiring edges for
which a rate is specified to have the predefined and non-synchronising 7 action
label. If this restriction is not met, the model is recognised as a CTMDP.

At its core, MODEST is a process algebra: it provides various operations such
as parallel composition (par), sequential composition (;), parameterised process
definitions, process calls, and guards (when) to flexibly construct complex models
out of small and reusable components. Its syntax however borrows heavily from



commonly used programming languages, and it provides high-level conveniences
such as do loops and a full-fledged mechanism for throwing (throw) and han-
dling (try-catch) exceptions. As such, MODEST tends to be more verbose than
classic process algebras, but also more readable and beginner-friendly. To spec-
ify complex behaviour in a succinct manner, MODEST also provides variables of
standard basic types (e.g. bool, int, or bounded int), arrays, and user-defined
recursive datatypes akin to functional programming languages. Its syntax for
expressions again is aligned with C-like programming languages for ease of use.
In Fig. 3] we show a MODEST representation of the parallel composition of
MA M, and M of Fig.[2l M7 has been slightly optimised by merging states 1 and
3 into the last line of process M1; this actually came naturally when modelling due
to the ease in which behaviours can be combined and shared in MODEST. The
model also includes the declaration of two properties of interest for verification,
P_Min and P_Max, which ask for the probability to reach state (4,4)—made
observable via the global variable succ—within time B akin to Example [2| B is
an open parameter for which values can be specified at verification time. There
are many features of MODEST not used in this small model; the interested reader
may find more complex MODEST MA models, in particular with arrays and
rewards, in the Quantitative Verification Benchmark Set |29 at |qgcomp.org.

Tool support. The MODEST TOOLSET [28] is a comprehensive suite of tools for
quantitative modelling and verification. Its primary input languages are MODEST
and JANI. MA are supported in its mosta, mocon\ﬂ mcsta, and modes tools.
mosta visualises the symbolic semantics of models and is useful for model de-
bugging. moconv transforms models between modelling languages (it can e.g.
convert MODEST to JANI) and performs syntactic rewriting and optimisations.
mcsta is an explicit-state model checker; we present and evaluate its MA-specific
algorithms in sects. [4| and [5| modes [9] is a statistical model checker with auto-
mated rare event simulation capabilities. It implements the lightweight scheduler
sampling approach [32] for nondeterministic models, including MA [16]. The
MODEST TOOLSET is written in C#, works cross-platform on Linux, Mac OS,
and Windows, and is freely available at modestchecker.netl All its tools share
a common infrastructure for parsing and syntactic transformations. mcsta and
modes additionally build on the same state space exploration engine that com-
piles models to bytecode at runtime for memory efficiency and performance.

3.2 Alternative Modelling Languages

MODEST is not the only modelling language for MA. These are the alternatives:

State space files for IMCA. The first MA-specific algorithms were implemented
in the IMCA tool [22]. Tts only input language is a text-based explicit state space
format as illustrated for our example of M; || M in Fig. @ This is clearly not a
useful modelling language, but a format to be automatically generated by tools.

5 moconv can also export CTMDP to JANI, but due to their lack of a natural parallel
composition operator, the analysis of CTMDP is not supported in the other tools.
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Guarded commands with STORM. Of the alternative tools for MA, STORM [17] is
the only one that is actively maintained. It provides many input languages, with
MA being supported through a state space format similar to IMCA’s, via JANI, as
the semantics of generalised stochastic Petri nets [19] in GREATSPN format [1],
and through an extension of the PRISM guarded command language. We show
our example in the latter in Fig. bl It is a very simple, small language that is
easy to learn, however it completely lacks higher-level constructs to structure
and compose models aside from the implicit parallel composition of its modules.

Process algebra with SCOOP. MAPA [38] is a dedicated process algebra for MA. Tt
is supported by SCOOP |3§|, which can linearise, reduce, and finally export MAPA
models to IMCA for verification. We show the example of My and Ms in MAPA in
Fig.[dl As a classic concise process algebra, MAPA tends to be very succinct, but
also difficult to read. MAPA models can be much more flexibly composed than
PrisM models, yet there is less syntactic structure than in MoODEST—although
the languages conceptually share many operators. MAPA notably has a prede-
fined queue datatype, and users can specify custom non-recursive datatypes.

JANT |10] is a model interchange format designed to ease tool development and
interoperation. It is JSON-based and thus human-debuggable, but not intended as
human-writable. It represents networks of automata with variables symbolically.
Since both the MODEST TOOLSET and STORM support JANI, it is possible to e.g.
build MA models in the MODEST language, export them to JANT with moconv,
and then verify them with STORM. Likewise in the other direction, we can e.g.
create a Petri net with GREATSPN, convert to JANI with STORM, and analyse it
with mcsta or modes. In this way, the most appropriate modelling language can
be combined with the best analysis method and tool for every specific scenario.

4 Algorithms

While the values for some classes of properties can be computed by checking
the embedded MDP of an MA, most need dedicated MA-specific algorithms.
We briefly describe the algorithms implemented for MA in mcsta, STORM and
ImcA.

4.1 Untimed and Expected-Reward Properties

Like for CTMC, properties that do not refer to time, or that only refer to ex-
pected times, can be computed on the embedded MDP of the Markov automaton.
These properties include unbounded as well as branch reward-bounded reach-
ability probabilities and expected accumulated rewards. For simplicity, we will
refer to all of these as “unbounded properties”. The available algorithms include
all the standard exhaustive model checking algorithms for MDP [33], in partic-
ular using linear programming (LP), policy iteration, value iteration, interval



iteration [5}25], and sound value iteration [35]. Standard “unsound” value iter-
ation and typical LP solvers do not provide any guarantees (such as e-closeness
to the true probability or value) on their results, while interval iteration and
sound value iteration do. To combat the state space explosion problem of the
exhaustive methods, the BRTDP learning-based approach [7| can be used for
probabilities. It attempts to explore only a small part of the state space that
is sufficient to provide a lower and an upper bound on the result that are close
enough. Its efficiency both in terms of runtime and in terms of memory reduction
highly depend on the structure of the model, though.

Tool support. mcsta implements value iteration, LP, and interval iteration for
expected rewards and unbounded reachability probabilities. It is being extended
to support sound value iteration. It also provides BRTDP as in [2] where sim-
ulations with the uniform probabilistic scheduler are used to explore a part of
the state space. After every batch of simulation runs, interval iteration is used
to compute bounds. STORM implements value and policy iteration, LP, interval
iteration, sound value iteration, and a variant of BRTDP. It also provides algo-
rithms to compute exact (rational) solutions using exact arithmetic, but they
are currently limited to small models. IMCA supports value iteration only.

4.2 Time-Bounded Reachability

Time-bounded properties pose one of the most challenging problems in MA
model checking. Several algorithms with rather different characteristics are cur-
rently available for approximating time-bounded reachability probabilities: The
discretisation approach [23| discretises the time horizon into small intervals,
such that the MA will likely perform at most one Markovian transition within
each interval. Unif+ was first presented for CTMDP [13] and later extended to
MA |21] in the straightforward way. It is based on an approximation of the opti-
mal time-bounded reachability probability over timed schedulers with that same
value but ranging over untimed schedulers. The switch-step algorithm [12] at-
tempts to compute switching points: the points at which the optimal scheduler
changes the action for at least one state, as illustrated in Example [2] Finally, the
BRTDP idea for time-bounded reachability properties on CTMDP |2]| can be
extended to MA straightforwardly: the simulation phase performs CTMC-style
simulation for Markovian states and MDP-style simulation over probabilistic
states. Time progresses only over Markovian states and the simulation stops
whenever the time bound expires or a target state is reached. Resolution of non-
determinism is performed via the randomised scheduler that samples the next
action uniformly at random from the enabled actions. The analysis phase can
be performed by any of the other algorithms for time-bounded analysis on MA.

Tool support. mcsta implements Unif+ and switch-step while STORM supports
Unif+ and the discretisation approach. Both provide sound implementations of
these algorithms (i.e. they guarantee e-correct results). IMCA implements only
discretisation and uses unsound techniques for certain subproblems.



4.3 Long-Run Average Rewards

There exist two approaches for computing long-run average rewards: one based
on a reduction to a linear program [24], and a value iteration-based algorithm [14]
that approximates the reward up to a user-specified (and guaranteed) precision.
In both cases, first the long-run average reward is determined for each maximal
end component, then the end components are collapsed, and the overall result
is computed as an expected reward value on the collapsed state space.

Tool support. mcsta and STORM implement both of the algorithms while Imca
implements only the linear programming-based approach.

4.4 Other Verification Problems

We now briefly summarise other MA verification problems, name the correspond-
ing available algorithms, and mention where they are implemented.

Time-bounded expected rewards extend the time-bounded reachability problem
to rewards. The property represents the expected accumulated reward until a
time bound is reached. Algorithmic support for this property is limited to the
discretisation-based approach of [24], which is implemented in IMCA.

Resource-bounded rewards generalise both time-bounded reachability and time-
bounded expected rewards. A resource-bounded reward property represents the
expected accumulated reward within a finite resource budget. The resource is
formally represented by a second type of (branch or rate) reward in the model.
The only algorithm available to date is presented in [30], with no tool support.

Discounted rewards. Expected discounted reward properties ask for the expected
total reward where rewards collected at a certain time point are discounted with
a value, depending on this time point. For example, when dealing with income,
discounted rewards allow to take inflation into account. Iterative algorithms for
computing and approximating the value exist, such as policy and value itera-
tion |15]. There is however no tool support so far.

Multi-objective tradeoffs. Multi-objective MA model checking allows finding a
scheduler that is optimal for several objectives, rather than only one. The only
algorithm available to date and implemented in STORM is presented in [34]. It
does not support the full range of properties, in particular excluding long-run
average and discounted rewards. For the underlying time-bounded analysis, it
resorts to discretisation, which tends to not scale well (see Sect. |5 below).

5 Experiments

The Quantitative Verification Benchmark Set (QVBS, [29]) currently contains 18
MA models, specified in MODEST, STORM’s extension of the PRIsM language for



MA (cf. Sect.[3.2)), as GREATSPN Petri nets, and as fault trees in the GALILEO
format [37]. For every model, there is also a JANI version. All models have open
parameters (like B in our MODEST example of Fig. to be scaled up from
small to huge state spaces. We use most of these models, selecting parameters
that make for challenging, but not impossible, state space sizes (up to a few
millions of states), to compare the performance and scalability of the algorithms
implemented in mcsta with IMmcA and STORM. The models include variations of
queueing systems, dependability models, scheduling problems, and security case
studies. We excluded those models that only have spurious non-determinism
(i.e. they are equivalent to a CTMC), and those that can be fully checked in
just a few seconds for the given parameter valuations. Due to the absence of
long-run average reward properties in most MA models of the benchmark set,
we added sensible long-run average properties to most of the MODEST models
(which are easy to modify by hand, in contrast to JANI) in order to be able to do a
meaningful performance comparison. Those are mainly steady-state probabilities
(i.e. the special case of a rate reward of 1 in some states and of 0 in all others),
or properties describing long-run average costs of running the modelled system.
All experiments were conducted on two servers with Intel Core i7-4790 pro-
cessors and 16 resp. 32 GB of RAM running 64-bit Ubuntu Linux 18.04. We
keep the default values for all the command line arguments of the tools, unless
we explicitly mention specific parameters being used. When we request a certain
precision for results (with sound methods), we request absolute, not relative,
precision. We show all results as scatter plots like the one below, with log-log
axes. Every benchmark instance—a model, a valuation for its parameters, and a
property to check—results in one point in these plots. A point (z,y) states that
the runtime of the tool noted on the x-axis on one instance was = seconds while
the runtime of the tool noted on the y-axis was y seconds. Thus points above
the solid diagonal line indicate instances where the x-tool was the fastest; it was
more than ten times faster (slower) on points above (below) the dotted line. We
set the timeout to 30 minutes; a timeout is denoted by an “x” dot in the plots.

5.1 mcsta and Imca

The plot on the right compares the
runtime of mcsta and IMCA on time-
bounded (“tbr”), long-run average (“lra”),
and unbounded properties (“unb”). The
input of IMCA is an explicit represen-
tation of a state space (cf. Sect. [3.2).
Thus, before a model can be analysed
with IMcCA, the state space has to be
fully explored, transformed into this for-
mat, and saved to disk. This takes addi-
tional time and memory. Models of a few 100
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transformation, which took up to 200 seconds on each of the benchmarks we
selected for our experiments. The runtime presented for IMCA does not include
the time to generate input models, but only the time it takes to load them
into memory and analyse them. For mcsta, we do include the time for state
space exploration (from MODEST or JANI input). For all experiments, we chose
the best runtime among all algorithms provided in each tool. For time-bounded
properties we set the precision to 1073 and 1076. The same holds for long-run
properties for mcsta, but not for IMCA since its command-line interface does
not support setting the precision for these properties. For unbounded properties
we use the default parameters of both tools, including precision, since this once
again cannot be changed for IMCA.

We see that IMCA performs far worse than mcsta. This is despite the fact that
the considered runtime does not include time for model generation and that its
only algorithm for time-bounded properties is unsound (with unsound methods
tending to be faster than sound ones [35]), while the one of mcsta is sound. The
performance gap is likely due to IMCA only implementing the discretisation-
based approach, which is known to be inefficient [12[13|, and not providing the
most recent model checking algorithms for any of the property types.

5.2 mcsta and STORM

STORM, like mcsta, implements multiple and current algorithms. We thus present
the results of this comparison in more detail. The runtimes for both tools include
the time for state space exploration and for the numeric computations.

Time-bounded properties. Figure [7]summarises the comparison of time-bounded
solvers in mcsta and STORM. Once again we run experiments with precision
values 1072 and 1076 and configure the tools to produce sound results. In the
top-left plot we compare the best runtime for each tool among the algorithms
that it implements; in the bottom-left plot, we compare mcsta’s and STORM’s
implementations of Unif+. In both comparisons, mcsta achieves better runtimes
than STORM. In particular, mcsta has no timeouts in the best-algorithm com-
parison. In the Unif+ comparison, mcsta and STORM both time out in some
cases, yet whenever mcsta times out on a model, STORM does so, too (the “x”
dot on the 45° line is actually a superposition of several such dots here). The
two plots on the right compare the runtime of the switch-step implementation in
mcsta with Unif+ in both tools. We do not compare to the discretisation algo-
rithm for time-bounded properties implemented in STORM due to the consistent
reports |12}13| of its inefficiency (which we confirmed in Sect. with IMCA).
We observe that neither Unif+ nor switch-step dominates the other, no matter
which tool is used. This is because none of the two algorithms is strictly better
than the other. Consider the top-right plot: it compares switch-step and Unif+ in
mcsta and confirms the results presented in [12] that the algorithms are good in
complementary scenarios. There are cases where one of them times out while the
other finishes quite fast, and vice-versa. In particular, Unif+ performs somewhat
better when a lower precision is required. Overall, the individual algorithms for



10 108 ¢ E
Q E
2 10%F 2 102t e
= © b
2 38
n £
-
10t £ 10! E E
E "
E A ]
» 41073
A mip¢ [ ad 106
! Ll Lol Lol Ol Lol Lol
101 10? 103 10! 102 103
mesta (best) mesta (switch-step)
[
10° 0%}
. £
S o102k 5
2 107 = 107
= [ = =
o o r
e [ e [
n n L
10t £
F 10t E
0 Y R AT \\\\\\\‘.1076 Y R T R
10° 10t 102 103 10t 102 103
mesta (Unif+) mesta (switch-step)

Fig. 7. Runtime of mcsta and STORM on time-bounded properties

time-bounded reachability in mcsta perform competitively, and especially when
combined in a portfolio approach (i.e. using the best for each model, which could
practically be done by running both concurrently on a multi-core system), offer
noticeably better performance and scalability than STORM overall.

Long-run average properties. Figure[§summarises the comparison of algorithms
for model checking long-run average properties in mcsta and STORM. For value
iteration-based algorithms (“VI”), we run experiments on precision values 10~3
and 1075, and use only its sound variations. For the linear programming-based
approaches (“LP”), we set mcsta and STORM to use linear programming at all
steps of the algorithm. The LP-based algorithms run with default parameters
in both tools. For the top-left plot, we again chose the best runtime over the
two algorithms for each tool. The LP-based approaches are not competitive: this
can be seen from the three other plots. Here, the bottom-right plot shows that
the LP-based algorithms in both mcsta and STORM run out of time on most
of the benchmarks. In contrast, the VI-based solutions in both tools finish the
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Fig. 8. Runtime of mcsta and STORM on long-run average reward properties

computations on the same benchmarks within the given time bound, as can be
seen from the bottom-left and top-right plots. The exact reason for this is hard to
extract. It may be possible that, when dealing with long-run properties, the LP-
based approach itself is not as efficient as the one using VI, at least on existing
benchmarks. Alternatively, it may be that the underlying LP algorithms or their
implementations are not efficient. Overall, mcsta and STORM are roughly on
par, albeit with mcsta having a few instances where it is significantly faster.
The overall similarity is likely due to the set of implemented algorithms being
exactly the same. We do notice, though, that specifically STORM’s LP method
appears to work better than mcsta’s.

BRTDP. We compared exhaustive algorithms, i.e. those that perform compu-
tations on the full state space, with their BRTDP extensions in mcsta on a few
benchmarks for time-bounded and unbounded properties. Table [I] summarises
the results. BRTDP is useful in cases where the property under consideration
does not require the full state space to be explored in order to achieve results



Table 1. Runtime of BRTDP vs. exhaustive algorithms on time-bounded properties

vgs (5,10000) stream (20000) ftwe (512, 10) hecs (false, 4, 3)
BRTDP 6.07 sec 1.91 sec 6.69 sec 5.78 sec
exhaustive > 30 min > 30 min 1077 sec > 30 min

with specified precision. In fact, the explored state space might be only a few
percent of the full state space. Table [I] confirms that, in certain cases, these
approaches can perform substantially better than their exhaustive counterparts.
Precision is set to 1073 here.

Unbounded properties. We finally add a small
evaluation for model checking unbounded
properties. These properties can be checked
via standard MDP algorithms and are thus
not the focus of this paper. An extensive eval-
uation of such properties for both mcsta and
STORM was done for the QComp 2019 tool
competition [26]. The plot on the right con-
firms the QComp results of the two tools be- 100
ing competitive with no absolute winner.

STORM

mcsta

6 Conclusion

We have presented a fully integrated toolchain to create and model check Markov
automata models based on the high-level compositional modelling language
MODEST and the mcsta model checker of the MODEST TOOLSET. Other tools
of the MODEST TOOLSET complement the approach, such as the modes sim-
ulator that helps deal with models too large for traditional model checking, or
the moconv tool that can export MODEST models to JANI. We have compared
the performance of the dedicated MA model checking algorithms in mcsta with
Imca and STORM. We found mcsta to significantly outperform IMcA, and to
be faster than STORM in many cases. The JANI support in both the MODEST
TOOLSET and STORM allows the user to choose the most appropriate tool in
every instance, thus mcsta and STORM ought to be seen as complementary tools
for a common goal. Overall, Markov automata now have user-friendly modelling
and efficient verification support in tools that are actively maintained.

Data availability. The data generated in our experimental evaluation as well
as instructions to replicate the experiments are archived and available at DOI
10.4121 /uuid:98d571be-cdd4-4eba-a589-7c5Hb1320e569 |11].
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