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Abstract. This paper presents a retrospective view on probabilistic
model checking. We focus on Markov decision processes (MDPs, for
short). We survey the basic ingredients of MDP model checking and dis-
cuss its enormous developments since the seminal works by Courcoubetis
and Yannakakis in the early 1990s. We discuss in particular the manifold
facets of this field of research by surveying the verification of various
MDP extensions, rich classes of properties, and their applications.

1 Introduction

Markov decision processes (MDPs) have their roots in operations research and
stochastic control theory. They are frequently used for stochastic and dynamic
optimization problems and are widely applicable, see e.g., [I51]. For instance,
in 1957 Bellman [23] introduced MDPs by considering the following problem: a
machine can produce either perfect or defective items and can breakdown requir-
ing repair. Breakdowns and producing defective items are random phenomena,
e.g., depending on the machine’s age. When to decide whether to inspect the
machine for a failure, or to just wait until a defective item is produced? If a
defective item is produced, does one repair, inspect other sources of failure, or
order new machine parts? These decisions depend amongst other on the costs of
repair, inspection, and producing defective parts. This setting is naturally mod-
elled as an MDP: the number of items produced so far is the state, breakdowns
and producing defective or perfect items are probabilistic moves, inspections
and repairs are decisions (a.k.a.: actions), and costs are modelled as rewards
associated to actions in a given state.

The central problem for MDPs [74] is to find a policy (or strategy) required
to determine what action to take in the light of what is known about the system
at the time of choice. The typical aim is to optimize a given objective, such as
minimizing expected cost until a given number of repairs, maximizing the prob-
ability of a system being operational for a large number of steps or minimizing
the long-run average costs. The former two are known as finite horizon objec-
tives, the latter as infinite time horizon objectives. These optimization problems
can be cast as dynamic programming problems — Bellman equations — that are
typically solved by value or policy iteration [I33], or reinforcement learning [142].
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This paper surveys approaches to tackle MDP problems from the perspective
of probabilistic model checking (PMC) [ITUI07/I13]. It determines for an MDP M
and a property specification @, typically expressed as a formula in mathematical
logic or as a finite-state automaton, whether M satisfies ¢. Under the hood, it
uses graph algorithms, value or policy iteration, compact data structures, etc. so
as to achieve a fully automated procedure. The use of logics enables to express
the classical finite and infinite time-horizon MDP objectives, but also (new)
intricate and complex objectives, or even mixtures thereof.

The power of PMC is that no matter how complex the logical guarantee, it is
automatically checked which states in the MDP satisfy it. Neither manual ma-
nipulations of MDPs (or their high-level descriptions) are needed, nor expertise
on any of its analysis techniques is required. Effective abstraction, reduction,
and symbolic techniques curb the “curse of dimensionality” problem. Diagnostic
feedback is provided in case M does not satisfy ¢, giving useful insight in the
reason of the refutation. More importantly though, is that PMC automatically
obtains an optimal policy for the specification ¢ as a by-product of the verifi-
cation procedure. PMC thus offers a flexible and powerful framework for MDP
analysis.

In addition to the original application areas of MDP analysis such as opera-
tions research and stochastic control theory, MDP model checking is employed
in several areas of computer science. Examples are randomized distributed algo-
rithms, robotics, security and communication protocols, dynamic resource man-
agement, multimedia protocols and many more. We briefly give an idea for the
first two.

For the class of randomized distributed algorithms, randomization provides
an elegant way to break the symmetry between identical processes. This is per-
haps best illustrated by the consensus problem: how to get a distributed network
of processors to agree on a common bit. In the setting where processors com-
municate in an asynchronous manner and only one processor might crash, there
is no distributed algorithm that solves this problem. This is the well-known
FLP impossibility result [T7]. If, however, a process can make a decision based
on its internal state, its messages, and some coin-flip mechanism, consensus in
this setting is almost surely possible [24]. Randomized mutual exclusion and
leader-election algorithms naturally can be modelled as MDPs in which non-
determinism naturally models the concurrent evolution of processes [147].

Another emerging application area of MDP model checking is the field of
robotics. Robots have to perform tasks in uncertain environments (possibly in-
volving humans) and may operate with errors in their sensing and actuation re-
sulting in uncertainty when detecting and responding to its current state. Robot
movements are modelled as being non-deterministic, and planning amounts to
find an optimal control policy such that the robot achieves certain tasks (like
picking up objects in a given order) while traversing a safe trajectory. A spec-
ification ¢ formally specifies which tasks are to be executed. In contrast to
simulation, PMC offers formal guarantees about robot behaviour by providing
bounds on how likely the robot satisfies its specification. As a by-product of
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the model checking, an optimal robot strategy is synthesized that can be used
to construct controllers. PMC is applied in this context e.g., to analyze the
probabilistic behavior of a robot operating with errors in its sensing and actu-
ation [TI03] or to check whether robot swarms indeed behave as required [T12].
More advanced applications of PMC include the analysis and repair of control
policies using parametric probabilistic models [I31] and the generation of policies
using multi-objective model checking that ensure to achieve several objectives in
a given order of priority: maximize the probability of finishing a task; maximize
progress towards completion, if this is not possible; and minimize the expected
time or cost required [119].

Purpose and organization of this paper. This paper reflects on the developments
in MDP model checking and surveys its state-of-the-art. It is impossible to give
a complete treatment of all works and developments on MDP model checking;
this paper reflects the main directions and achievements from the perspective
of the authors. The paper is written in an informal manner; numerous citations
are provided to more detailed literature.

Section [2] introduces MDPs and the central problem in MDP model check-
ing: determining reachability probabilities. Section [3| discusses several facets of
MDPs such as costs, parametric probabilities, MDPs with intervals, MDPs with
random delays, and MDPs whose state is only partially observable. Section []
presents the kind of property specifications that can be treated by MDP model
checking. Section [5| gives some insight in the techniques in tackling the state-
space explosion problem in MDP model checking. Finally, Section [6] concludes
this survey paper.

2 MDP Model Checking in a Nutshell

2.1 What are MDPs?

Markov decision processes (MDPs [I02/133]) are transition systems in which in
any state a non-deterministic choice between a finite set of probability distri-
butions exists. On reaching a state s in an MDP, non-deterministically a dis-
tribution p € D(s) is selected, where D(s) is the set of available distributions
(over the MDP’s state space) in s. The next state is determined according to .
That is, state s’ is selected with probability p(s’). It is assumed that D(s) #
for each state s. Every MDP for which |D(s)| = 1 in every state s, is a Markov
chain (MC, for short). Paths in an MDP are infinite alternating sequences of
pairs of states and distributions: (s;, u;) where u; € D(s;) and p;(s;4+1) > 0, for
each 7. A probability measure Pr on such paths can be defined using the cylin-
der set construction provided for each state s; it is known which distribution p;
has been selected. This decision maker is a policy, also referred to as scheduler
or adversary, that in state s; selects a distribution p € D(s;). Several types of
policies do exist. Two ingredients are relevant: on the basis of which information
does a policy make a decision, and does it use randomization to do so, or not.
Positional policies decide solely on the current state s; and not on the history,
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i.e., the prefix of the path until reaching s;. Randomized positional policies select
u € D(s;) with a certain probability. Deterministic policies select a fixed distri-
bution from D(s;). History-dependent policies base their decision on the prefix
SoMoS1 M -+ - ti—1S¢- Such policies may thus depend on e.g., the states visited so
far, the actions taken so far, the frequency of visiting states, and the order in
which states have been visited. As a policy resolves the non-determinism in an
MDP, it yields an (possibly infinite-state) MC.

2.2 Reachability

One of the elementary questions in MDP analysis is whether a certain set T of
target states can be reached almost surely, i.e., with probability one. As the like-
lihood to reach T depends on how the non-determinism is resolved, one considers
minimal, or dually, maximal probabilities. Let Pry®* () T) denote the maximal
probability to reach some state in T starting from s. That is, Pri"®* (0 T) is the
supremum over all possible policies to reach T under such policy. A graph anal-
ysis suffices to determine all states s for which this probability equals one. It
does so by iteratively eliminating all states for which Pri®*(0T) < 1. First all
states that cannot reach 1" are removed as well as their incoming transitions. All
states without outgoing transitions are then deleted. This is repeated as long as
no change is possible anymore. Also all states for which Pri™* (0 T) = 0 can be
obtained by a polynomial-time graph analysis, and similar applies to minimal
reachability probabilities. Graph algorithms also suffice for checking whether any
w-regular property holds almost surely [147].

Quantitative reachability amounts to check whether the probability to reach
T exceeds a threshold different from one, like 4/7. For a finite-state MDP, let
variable z; = Pry'®*(0T) for state s. The following recursive characterization
will be helpful. If T" is not reachable from s, then z, = 0; if s € T, then z, = 1.
For all other cases:

Ts = max{ZP(s,u,t)mct | MED(S)}

tes

where P(s, i1, t) denotes the probability to move from state s to ¢ when select-
ing distribution g in s. This is an instance of the Bellman equation. It is well
known that for every finite MDP, a deterministic positional policy does exist
that attains Pry®*(0T'). Value or policy iteration, and linear programming are
computational techniques to obtain these policies. Linear inequation systems
are thus key for reachability objectives in finite-state MDPs. Value iteration
can be mildly amended such that it halts at the correct moment, i.e., when the
iteratively computed probabilities truly converge [88].

Ezample 1. Consider the following stochastic job scheduling problem: complete
n jobs on k identical processors under a pre-emptive scheduling policy. Once a
job completes, all k£ processors can be assigned any of the m remaining jobs.
Pre-empted jobs need to be started from scratch. When n—m jobs are finished,
this yields (7;) non-deterministic choices. A property of interest is: what is the
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minimal expected time to complete all jobs? Or: what is the maximal probabil-
ity to complete all jobs within 10,000 steps? We consider the scenario as given
in [40] where the service time of job i is given by a negative exponential distribu-
tion with rate X;. (Here, we do not consider the timing yet; only the branching
probabilities induced by these dealsy matter.) This job-shop scheduling problem
can be naturally modelled as an MDP, where a state corresponds to the jobs
that still need to be executed, scheduling decisions are actions, and the discrete
probability distributions D(s) in state s are determined by the rates of the ser-
vice times of the jobs that are being scheduled. The MDP for four jobs and
two machines is indicated in Fig[ll The initial state (left) contains all jobs, the

Fig. 1: Possible schedules for 4 jobs on 2 machines, modelled as an MDP.

rightmost state represents the completion of all four jobs. Each transition corre-
sponds to a selection of two jobs that are scheduled. Probabilities are determined
as follows. If one of the scheduled jobs, say job 4, finishes in a situation where
m jobs have not been processed yet, an event that happens with probability
Dij = Aiil)\] (where j is the number of the other selected, but unfinished job),
m—1 jobs remain, and a new selection is made. It is known that the largest-
expected-service-time-first-policy is optimal to minimize the expected time to

complete all jobs [40].

3 The Manifold Facets of MDPs

This section considers several features of MDPs: costs (where each transition
incurs a certain cost), parameters (where probabilities are unknowns and given
as e.g., polynomials over a set of variables), partial observability (where the state
of an MDP is only partially visible), and continuous time (where state residence
times are governed by negative exponential distributions).
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3.1 Costs

Already in Bellman’s treatment [23], MDPs have been equipped with rewards
(a.k.a.: gains), or dually costs. Costs are associated to transitions and are con-
stant non-negative real values that are incurred on taking a transition. Thus,
on selecting distribution g in state s a reward c¢(s,p) is earned. The cumula-
tive reward of a finite path fragment in an MDP is the sum of all transition
costs of the transitions on that path fragment. Typical MDP objectives are the
maximal expected cost to reach a state in T (provided T' can almost surely be
reached), the maximal long-run average cost, and so forth. These objectives can
be easily cast as Bellman equations and can be achieved by deterministic posi-
tional policies. If a constraint is imposed on the cumulative cost, e.g., what is
the minimal probability to reach a bad state with a cumulative reward below a
given threshold, finite-memory policies that keep track of the cumulative cost up
to the decision point, i.e., the current state, are needed. A simple cost function
associates cost one to each transition; in fact, the property “what is the maximal
probability to complete all jobs within 10,000 steps?” in Example [I] refers to the
cumulative cost in that case.

3.2 Parameters

In various circumstances, certain system quantities such as failure probabilities,
packet loss ratios, etc. are often not — or at the best partially — known. In
that setting, parametric MDPs where transition probabilities are specified as
polynomials over real-valued parameters are useful. The problem of parameter
synthesis is: Given a finite-state parametric MDP, what are all the parameter
values for which a given property exceeds (or is below) a given fixed threshold?
For the job-shop scheduling problem, an example of a synthesis problem is to
determine the unknown job durations such that all jobs can be completed with a
total expected duration of two days, say. Parameter synthesis typically amounts
to partition the parameter space into safe and unsafe regions. A safe region
contains all parameter valuations for which the property-of-interest is satisfied,
while the unsafe region is its complement. In practise, typically not a full cov-
erage can be achieved, but a large (say, >95%) coverage is aimed for. Existing
parameter synthesis techniques use heuristics and sampling [89], or obtain over-
approximations by replacing parametric transitions by non-deterministic choices
over extremal parameter values resulting in a two-player stochastic game that
is analyzed using standard means [I34]. If for certain parameter regions, the
result is inconclusive, the region is refined, and the procedure is repeated until
a certain coverage is achieved. Parameter synthesis for parametric MDP models
of about 100,000 states and two to four parameters have been reported [134].
Recently, geometric programming has been proposed to treat parameter synthe-
sis for multi-objective parametric MDPs [51]; this provides a polynomial-time
algorithm to obtain approximations that are arbitrarily close. Several instances
of parametric Markovian models have been discussed in the literature, such as
bounded-parameter MDPs [83] and interval MDPs [98/96], MDPs where the
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transition probabilities are known to lie within certain upper and lower bounds.
This model is rooted in interval Markov chains introduced by Jonsson and Larsen
[104] in the context of a specification theory for probabilistic systems.

3.3 Partial Observability

Partially observable MDP (POMDPs, for short) models generalize MDPs by
relaxing the assumption that the state of the system is completely observable.
POMDPs play an important role in, e.g., mobile robot navigation, probabilistic
planning and multi-agent systems where each agent can access its own variables,
but cannot view the variables and locations of the other agents. A POMDP
models a decision process in which it is assumed that the system dynamics are
determined by an MDP, but the policy cannot directly observe the underlying
state. Instead a policy considers equivalence classes of states, states for which the
observations are equal, and base their decision on these equivalence classes rather
than on the states themselves. A POMDP thus is an MDP M equipped with
an equivalence relation over its states. De Alfaro [59] has shown that checking
whether for some policy the POMDP stays within a set T" of target states is posi-
tive, is EXPTIME-complete. Many other model-checking problems for POMDPs
have shown to be undecidable using reductions from the emptiness (or other un-
decidable problems) for probabilistic language acceptors, which can be seen as
“fully blind” POMDPs where all states have the same observable [123I6/12]. Let
us give some simple examples for undecidable problems for POMDPs. Checking
the existence of a policy where the expected cost until reaching a goal state ex-
ceeds some threshold is undecidable, and so are other policy-existence problems
for alternative expected cost criteria such as discounted or long-run average cost
objectives [I123]. These results have been shown using reductions from the empti-
ness problem for probabilistic finite automata. The inapproximability results for
probabilistic finite automata carry over to POMDPs with expected total or long-
run average costs [123]. However, there are several algorithms for the analysis
of POMDPs under finite-horizon objectives as well as approximation algorithms
for infinite-horizon discounted cost objectives [122] or expected cost objectives
for POMDPs with positive cost functions [46]. The decidability of the value 1
problem that asks whether there are policies under which a reachability property
holds with probability arbitrarily close to 1, has been established for a subclass
of POMDPs [§T].

Qualitative verification problems for MDPs, such as the problem to decide
the existence of a policy ensuring that a goal state will be visited infinitely of-
ten almost surely, only depend on the graph structure of the MDP, but not
on the precise transition probabilities. This facilitates efficient graph algorithms
for checking qualitative verification problems in MDPs, possibly in combination
with automata-based approach to represent complex path properties. The sit-
uation in POMDPs is different as such qualitative properties can depend on
the transition probabilities. Indeed, the policy-existence problem for qualitative
repeated reachability properties where the task is to check whether for some
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policy some state in T is visited infinitely often with positive probability is un-
decidable. This has been shown using reductions from the emptiness problem
for probabilistic Biichi automata [6/12]. However, decidability and EXPTIME-
completeness has been established for qualitative verification problems against
w-regular specifications when restricting to finite-memory policies [47].

3.4 Exponential Delays

Continuous-time MDPs [85] (CTMDPs, for short) are MDPs in which the state
residence time is governed by a negative exponential distribution. The rate of
this exponential distribution depends on the current state and the probability
distribution p that is used to determine the next state. Accordingly, the average
residence time in state s under taking distribution p is given by 1/r(s,u). Rate
r(s, ) thus determines the random residence time in state s provided distribu-
tion p is selected in s by the policy. Paths in CTMDPs are infinite sequence
of triples (s;,t;, p;) where t; denotes the residence time in state s; given that
distribution u; has been selected. Policies in CTMDPs can decide on the basis of
the states visited and the selected distributions so far, but may also exploit the
elapsed time (in every state). This gives rise to uncountably many policies. It for
instance, makes a difference whether a policy decides on entering a state (early)
or on leaving a state (late) after delaying in that state. A categorisation of the
class of policies for CTMDPs is given in [127]. Costs can be added to CTMDPs
in the same vein as for MDPs except that the incurred cost linearly depends on
the state residence time. That is, on selecting action u after residing ¢ time units
in state s with cost rate c(s, i), the cost ¢(s, )t is incurred.

Ezample 2. Consider the stochastic job scheduling problem again (see Example
. Rather than considering time-abstract properties such as minimizing the ex-
pected completion time, we are now interested in: what is the maximal /minimal
probability to finish all jobs within a given deadline. This requires to considering
the timing behaviour of the job scheduling. Note that if jobs i and j are cur-
rently being scheduled, and ¢ finishes first, then the elapsed time is determined
by the rate A\;. Due to the memoryless property of the exponential distribution,
the remaining execution time of the pre-empted job j remains exponentially
distributed with rate A;.

Other forms of stochastic delays. Probabilistic extensions of timed automata ex-
ist [129); they are known as probabilistic timed automata (PTA). Their edges
are discrete probability distributions over states. PTA are finite symbolic rep-
resentations of uncountable MDPs—as clock valuations are real values. Non-
determinism is inherited from timed automata. Computing reachability prob-
abilities in PTA is decidable via a region graph-like construction. Whereas in
PTA clocks are deterministic, stochastic timed automata [25] (STA) provide a
stochastic interpretation to clocks. In STA, unbounded clocks are interpreted
as negative exponential distributions, whereas bounded clocks obey a uniform
distribution. Stochastic interpretations of TA are also used in statistical model
checking [55].
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4 The Manifold MDP Properties

This section considers a spectrum of properties that can be addressed by MDP
model checking: probabilistic CTL, various variations of reachability objectives
(expected cost until reaching a target state, total cost until reaching such state,
quantiles, reachability with time deadlines, repeated reachability etc.), multiple
objectives that need to be fulfilled simultaneously, mean payoff and long-run
objectives, as well as energy /weight objectives, conditional probabilities. We also
briefly discuss obtaining permissive policies, and counterexample generation.

4.1 Probabilistic CTL

PCTL [93127] is a variant of the well-known computation tree logic (CTL). It
replaces the universal and existential quantification over paths by an operator
that expresses a bound on the probability of all paths satisfying a path-formula.
In the setting for MDPs, the formula @ = P, () asserts that regardless of the
resolution of the non-determinism, the likelihood of the set of paths satisfying
¢ exceeds p. Formally, s |= Ps,(p) if and only if for all policies it holds that
Pr(¢) > p, where Pr? refers to the probability measure under the policy o
at hand. Stated differently, PCTL-formula P,(¢) holds in state s whenever
Pr™ () exceeds p. Here, Pr™"(y) denotes the infimum of the probability of
the set of p-paths under all policies. For finite MDPs, this corresponds to the
minimum over all policies, as a finite-memory policy suffices. A dual formulation
holds for P-formulas that have a probability upper bound. The model checking
of a finite MDP against a PCTL-formula @ can be done using a recursive descent
over the parse tree of @. For each sub-formula of @ the set of states is determined
that satisfy this sub-formula. For reachability objectives, and until-formulas —
reach a @o-state via @q-states only — this can be done using solving a linear
equation system whose size is proportional to the number of states in the MDP.
This yields a model-checking algorithm that is polynomial in the size of the MDP
M and linear in the size of the PCTL-formula @; for details we refer to [17, Ch.
10.6].

4.2 Expected Costs until Reaching a Target

For an MDP equipped with costs, a natural objective is to consider the expected
cost until reaching some target state in T'. For an infinite path through an MDP,
let the cumulative cost until reaching T' be defined as the sum of all costs until
reaching some state in T for the first time, and undefined in case such state
does not exist, i.e., the path does never reach T. A policy o is said to be proper
if T will be reached almost surely under o, i.e., Prl(0T) = 1 for all states s.
The expected reward for a state s under a given proper policy ¢ from which T’
will almost surely be reached is then the weighted sum over all o-paths from
s to T of their cumulative cost up to reaching T times their probability. If
there is at least one proper policy and all costs are non-negative, the minimal
expected cumulative costs are achieved by a deterministic positional policy and
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are computable in much the same way as extremal reachability probabilities by
linear programming techniques, policy or value iteration [26I58]. The supremum
of the expected cumulative costs until reaching T over all proper policies might be
infinite. If the costs are non-negative then the latter can be checked in polynomial
time. If the supremum is finite then a deterministic positional policy maximizing
the expected cumulative costs until reaching T' exist and is computable again
using similar techniques as for extremal reachability probabilities [58].

4.3 Cost-bounded Reachability

Whereas positional policies suffice for reachability (and long run) objectives,
step- or cost-bounded reachability objectives require finite-memory policies [97].
The same applies to w-regular properties. For O=F T i.e., can a state in T be
reached while the accumulated costs are bounded by k, this can be intuitively
understood as follows. Consider a state with two choices: one that almost surely
leads to T" but with high costs, and one that may lead to T' directly with low
costs, but with a certain probability ends up in a state from which T" can never
be reached. Then, depending on the cost bound left to reach T', an optimal policy
will decide for the (first) safe choice, whereas the remaining cost bound to reach
T is small, it picks the (second) unsafe strategy. Computing policies maximizing
the probability for a cost-bounded event (¢=F T is known to be computationally
hard, namely PSPACE-hard even for acyclic MDPs [86]. An exponential-time
algorithm is obtained by using an iterative approach that successively computes
the values p,; for the maximal probability to reach T" with cost-bound ¢ from
state s for ¢ = 0,1,...,k. For this, we can rely on a variant of the Bellman
equations

Ps,i = max{ Z P(S?Mat) * Pt,max{i—c(s,u),0} ‘ ne D(S) }
tes

for s ¢ T and T reachable from s. If 0 < ¢(s, ) is positive then the values
Dt,max{i—c(t,u),0) have been computed in a previous iteration. Zero-cost actions
can be treated using linear programming techniques [9].

4.4 Quantiles

In quantile objectives, one considers computing the minimal cost bound £k such
that with probability at least p the target set T" will be reached before the
cumulative costs exceeds k. Qualitative quantile objectives (i.e., p=0 or p=1)
can be determined in polynomial time, whereas an exponential-time algorithm
for quantitative quantile objectives (where p belongs to the open interval (0, 1))
exists that relies on the successive computation of cost-bounded reachability
probabilities [T46l9]. Quantile objectives for MDPs with multiple cost functions
for several pay-off criteria have been considered in [I37].
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4.5 Timed Reachability

In CTMDPs, policies that base their decision on the current state as well as the
total cumulative time so far, the so-called total-time positional deterministic poli-
cies are optimal for timed reachability objectives — given a set T of target states
and a deadline d, what is the maximal probability to reach T" within d? This is
the continuous counterpart of a policy in MDPs for bounded reachability ¢=FT
where the total number of steps taken so far is needed to achieve optimality.
PMC algorithms for timed reachability determine e-close approximations of the
optimal total-time positional deterministic policy. Timed reachability objectives
can be tackled via a discretization yielding an MDP on which a corresponding
step-bounded reachability problem is solved using value iteration. The smallest
number of steps needed in the discretized MDP to guarantee an accuracy of e
is %’:’2, where X is the largest rate of a state residence time in the CTMDP
at hand [12§]. In a similar way, minimal timed reachability probabilities can
be obtained as well as their corresponding policies. Tighter bounds with slightly
different discretization techniques have been obtained in [I36J42]. A comparative
empirical study shows that a simple greedy algorithm, originally developed for
uniform models [16], can be lifted to the general setting, where it often outper-
forms all other approaches [44]. The duality between costs (at states) and time
is discussed in [15] thereby enabling the use of algorithms for timed reachabil-
ity for the purpose of computing cost-bounded reachability. Optimal policies for
multi-cumulative cost reachability properties in CTMDPs are treated in [79].

Ezxample 3. Consider timed reachability for the job-shop scheduling problem of
Example [[| with exponential service times. That is, we focus on what is the prob-
ability to complete all jobs within a given deadline d? The results of applying this
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Fig. 2: Minimal and maximal reachability probabilities for finishing 4 jobs on 2 ma-
chines under a pre-emptive scheduling strategy.

discretization on the example with 4 jobs and two machines is shown in Fig. [2]
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where the deadline d is given on the x-axis and the reachability probability on
the y-axis. For equally distributed job durations, the maximal and minimal prob-
abilities coincide. Otherwise, the probabilities depend on the scheduling policy.
It turns out that the e-optimal policy that maximizes the reachability proba-
bilities adheres to the SEPT (shortest expected processing time first) strategy;
moreover, the optimal e-policy for the minimum probabilities obeys the LEPT
(longest expected processing time first) strategy.

4.6 Beyond Reachability

Repeated reachability events or persistence probabilities can be obtained by
considering maximal end-components [50J56], the MDP counterpart to bottom
strongly connected components in Markov chains. An end component £ of an
MDP M is a sub-MDP of M whose induced graph is strongly connected. & is
called maximal if there is no other end component £’ that contains £. A crucial
observation made by de Alfaro [56] is that under each policy o, the limit of
almost all o-paths constitutes an end component. Here, the limit of an infinite
path 7 is the set of state-distribution pairs that occur infinitely often in 7. Thus,
maximal probability for a repeated reachability condition OQT (“infinitely often
T”) is computable as the maximal probability to reach a maximal end component
containing at least one T-state.

Determining the maximal probability of an w-regular property ¢ in an MDP
M amounts to determining the maximal probability to reach an accepting
end component in the product of M with a deterministic w-automaton for
o [50I2T156]. An accepting end component is an end component that satisfies
the acceptance condition of the deterministic w-automaton at hand. This pro-
cedure involves a double-exponential blow-up caused by (1) transforming an
LTL formula into an w-automaton, and (2) determinizing this automaton. In
fact, no algorithm of lower complexity can be expected as the question, whether
Priyi’, (») = 1 for a given MDP M with initial state so and LTL-formula ¢, is
2EXPTIME-complete [50]. Recent practical advancements on converting LTL,
an important temporal logic for expressing a large class of w-regular properties,
into deterministic w-automata have been reported in [70].

4.7 Fairness

When using MDPs as an interleaving model for systems composed by several
probabilistic processes, establishing liveness properties often requires fairness
assumptions for the resolution of nondeterministic choices that rule out patho-
logical cases where, e.g., one process never performs an action. In this context,
one considers only fair policies, i.e., policies where a certain fairness assumption
holds almost surely. The analysis of MDPs under fair policies has been consid-
ered in the context of LTL and PCTL-like logics [148J21|T4]. Suppose fair is a
realizable fairness assumption in the sense that there exists a fair policy 7 such
that fair holds with probability 1 from each state under this policy 7. Then, a
fair policy maximizing the probability to reach a target 7" under all fair policies
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is obtained by first computing a positional (possibly unfair) policy o maximiz-
ing the probability for ¢T from each state where the maximum is taken over
all policies. We then modify o to a fair policy v that behaves as ¢ until reach-
ing T, in which case it switches mode and behaves as 7 from then on. Thus,
SUP, i PI0(OT) = max, ., PrI(0T) = Pri™(0T), which shows that
realizable fairness is irrelevant for maximizing reachability probabilities. This
does not hold when the task to find a fair policy minimizing the probability for
reaching T'. Consider, for example, an MDP with a state s that has two non-
deterministic alternatives: either stay in s via action a or to move to a target
state t € T via action 8 (both with probability one). If we suppose strong fair-
ness for action (3, i.e., each fair policy that visits s infinitely often with positive
probability needs to take eventually action § in state s. Then, the probability to
reach T' from s is one under each fair policy, while Pr™"(¢T) = 0. However, a
fair policy minimizing the probability for reaching T" can be obtained using the
following fact (again we suppose realizability of the fairness condition):
min Prl(0T) = 1—-Pri"™(=TUF)
o fair

where F' denotes the set of states u such that Pr{ (0T) = 0 for some fair policy o
and where U denotes the until operator. This set F' is computable using an anal-
ysis of the end components of the MDP and PCTL model-checking techniques.
Notions of fairness have also been used as an approximation of probabilistic ex-
ecutions and used in the context of proof systems for establishing qualitative
linear-time properties for MDP-like models [132].

4.8 Mean Payoff and other Long-run Averages

Given a weighted MDP, i.e., an MDP with a cost function assigning (possi-
bly negative) integers, called weights, to the state-distribution pairs (s, p) with
i € D(s), the mean payoff MP(7) of an infinite path 7 is defined as the limit
superior of the sequence wgt(mw,n)/n where wgt(r,n) denotes the accumulated
weight of the first n state-distribution pairs in 7. In finite-state MDPs, minimal
and maximal expected mean payoff always exist and are achieved by deter-
ministic positional policies. The minimal and maximal expected mean payoff
are computable in polynomial-time using linear programming techniques that
encode the long-run frequencies of the state-distribution pairs in randomized
positional policies [106/133]. MDPs with multiple mean-payoff objectives have
been studied in [34]. Other forms of long-run averages have been proposed by
de Alfaro [57] where finite-state automata serve to trigger so-called experiments
that monitor finite fragments of the paths generated by the MDP and evalu-
ate them in terms of a reward value. He presents polynomial-time algorithms
to check whether there is a policy ¢ ensuring that almost all o-paths satisfy a
threshold condition for the long-run average reward, defined as the mean payoff,
but the limit average is taken over the number of experiments rather than the
number of transitions. These concepts have been further developed for reasoning
about long-run ratios in MDPs and related synthesis problems using standard
and fractional linear programming techniques [56J149].
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4.9 Multiple Objectives

The properties discussed so far focused on single objectives such as reachability,
timed/bounded reachability, expected costs, and long-run averages. In practice,
a system is subject to multiple objectives that are mutually influencing each
other, like quickly reaching a target is more costly. Multi-objective model check-
ing aims at achieving multiple objectives on MDPs at once and to facilitate
trade-off analysis by obtaining Pareto curves. Multi-objective decision making
for MDPs with discounting and long-run objectives has been well investigated;
for a recent survey, see [I38]. Etessami et al. [(2] consider verifying finite MDPs
with multiple w-regular objectives. Other multiple objectives include expected
rewards under worst-case reachability [78J41], quantiles, long-run ratio objec-
tives, and conditional probabilities [10], multiple discounted rewards [49], mean
payoffs and stability [38], long-run objectives [33] and total average discounted
rewards under PCTL [I43]. Combinations of safety properties and expected cost
objectives have been considered for MDPs with unknown cost function [105].

I
o

e
=N

Prob. 6 jobs within 1 hour
=) =)
o ~

0
2.6 2.7 2.8 2.9 3
Expected completion time
Fig. 3: Approximate Pareto curve for stochastic job scheduling.

Ezxample 4. Consider again the job-shop scheduling problem. In addition to re-
quiring that all jobs need to be completed within a given deadline with a high
probability, let us impose extra constraints, e.g., requiring a high probability
to finish a batch of ¢ jobs within a tight deadline (to accelerate their post-
processing), or having a low average waiting time. Fig. [3| e.g., shows the results
of CTMDP multi-objective model checking for 12 jobs and 3 processors. It ap-
proximates the set of points (¢, p) for schedules achieving that (1) the expected
time to complete all jobs is at most ¢ and (2) the probability to finish half of the
jobs within an hour is at least p. The red area indicates the set of points (¢, p)
that cannot be attained by any policy, whereas the green area indicates the set
of points that are achievable by some policy; the white area is the “unknown”
area, due to the e-approximation. Whereas for MDP model checking [72], the
set of achievable points is a convex area with finitely many corner points, for
CTMDPs the convex area may have infinitely many corner points [I35]. This is
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why approximations of Pareto curves are obtained. Novel techniques for multi-
objective model checking and robust strategy synthesis of MDPs with uncertain
transition probabilities have also been discussed recently [139J90].

4.10 Energy and other Weight Objectives

There is a close relation between the mean payoff and the energy objective, which
again is closely related to the termination condition in one-counter systems. The
energy condition imposes the constraint that the total cumulative weight never
drops below 0 (or another constant) and is typically considered in conjunction
with other w-regular or weight conditions. In the case of MDPs the task is then
to find a policy o such that almost all o-paths satisfy both the energy condition
and the additional w-regular or weight conditions. Energy-parity objectives in
MDPs are solvable in pseudo-polynomial time and the decision problem is in
NP NcoNP [48/125]. Even the pure energy objective is known to be reducible to
(non-probabilistic) two-player mean-payoff games [32], for which no polynomial-
time algorithms are known. Energy-MDPs with other side conditions have been
studied, e.g., in [39] where multiple expected mean payoff constraints have been
considered.

MDPs with the energy condition can also be seen as infinite-state MDPs that
operate with a counter [36], or equivalently, with stacks over an unary stack al-
phabet, which again is closely related to the model of recursive MDPs [35/73].
Although reasoning about temporal properties with weight constraints is in gen-
eral undecidable, even in the non-probabilistic case [29], the maximal or minimal
probabilities for LTL formulas with constraints for the weight accumulated in
windows of a fixed length are computable using a reduction to standard LTL [19].

4.11 Conditional Probabilities

Reasoning about conditional probabilities (rather than unconditional ones) is
natural when the task is to analyze a system in specific (possibly rare) scenarios.
For example, to analyze the impact and cost of error-handling mechanisms, se-
lected error scenarios can be used as conditions. For another example, conditional
probabilities and expectations are used to define the semantics of probabilistic
programs in terms of weakest pre-expectations or to define conditional termina-
tion times [I08]. They have also been used to formalize a notion of anonymity
[3] by the requirement that the probability for an observable does not depend
on the secret.

In purely probabilistic models, such as MC, conditional probabilities are com-
putable directly by their definition Pr(y|y) = Pr(¢ A ¢)/Pr(y) as quotient of
“standard” probabilities. Such a simple approach is, however, not applicable in
MDPs when the task is to find a policy maximizing the probabilities for ¢, un-
der the condition of a temporal property . Suppose, e.g., that ¢ = ¢T and
1 = O A are reachability properties. A crucial observation to construct an opti-
mal policy is that after having reached T (resp. A), optimal policies maximize
the probability to reach A (resp. T') [4II8]. This observation allows to transform
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the given MDP M into a normal form MDP, which allows to assume that 7' C A.
Suppose now s is the initial state of M. By adding “reset transitions” s — sg
for all states s in M with Prﬂf‘s(OA) = 0 as additional nondeterministic alter-
natives, we obtain an MDP A such that the maximal conditional probability for
OT, given OA, in M from sq equals Priiy (OT'). Intuitively, the reset transition
serve to “discard” all paths violating the condition ¢0A and “re-distributing”
their probability mass to the paths satisfying ¢ A. Thus, maximal conditional
reachability probabilities are reducible to maximal (unconditional) reachability
probabilities. This approach can be generalized for the case where the objective
© and the condition 1) are w-regular properties using deterministic w-automata
for ¢ and .

The techniques for maximal or minimal expected costs until reaching target
states sketched above seek for the optimum under all proper policies, i.e., policies
under which the target will be reached almost surely. However, such policies
need not to exist. Computing maximal conditional expected costs until reaching
a target under the condition that the target will indeed be reached is more
involved as positional policies are no longer powerful enough. [20] presents an
exponential-time algorithm to compute maximal conditional expected costs until
reaching a target and proves PSPACE-completeness for the threshold problem
in acyclic MDPs that asks whether the maximal conditional expectation meets
a given lower or upper bound.

4.12 Permissive Policies

Whereas MDP model checking typically generates a single policy that is optimal
with respect to a given objective, recently this has been extended to obtaining
multi-policies [66]. Such multi-policies specify multiple possible actions rather
than a single possible action. The aim is to synthesize multi-policies that are
as permissive as possible, which one can quantify by assigning penalties to ac-
tions. These are incurred when a multi-policy disallows (does not make available)
a given action. Permissive controller synthesis aims to generate a multi-policy
that minimises these penalties, whilst guaranteeing the satisfaction of a specified
property ¢. Randomised multi-policies are strictly more powerful than determin-
istic ones, and the permissive controller synthesis problem is NP-hard for either
class with upper bounds in NP and PSPACE, respectively. Practical methods for
synthesising multi-policies exploit mixed integer linear programming (MILP).

4.13 Counterexamples

If model checking MDP M against specification ¢ with upper bound p, say,
yields an affirmative result, then a formal guarantee is obtained that M sat-
isfies ¢ with probability at most p, regardless of how the non-determinism is
resolved. As a by-product, most model checkers offer the possibility to obtain a
policy that maximizes the likelihood of ensuring . If however, the model check-
ing procedure yields a negative answer, then some diagnostic feedback would
be useful. PMC techniques have been therefore extended with the possibility
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to obtain counterexamples. Such techniques obtain a sub-MDP of M whose
maximal probability to satisfy ¢ exceeds p. Whereas obtaining such sub-MDP
of minimal size is computationally hard (the corresponding decision problem is
NP-hard [45]) for w-regular properties, good practical results have been obtained
using MILP [154].

5 Curbing State-Space Explosion

The often excessive size of the state space spanned by a concrete verification
problem is a major impediment to practicality across the entire spectrum of
verification methods, see e.g. [92I2]. This problem of state-space explosion also
affects negatively the basic probabilistic model checking procedures we discussed
thus far. A recent approach circumvents it by nevertheless explicitly enumerating
all states and transitions, but keeping only a minor portion thereof in main
memory at any time of the computation, storing the remainder almost exclusively
in secondary storage (usually an attached hard disk) [94]. Other, more conceptual
approaches consider abstraction and compression techniques for MDP models.
They indeed form an important area of probabilistic model checking research.
We can only present an abridged survey here, more detailed accounts can be
found for instance in [62]. Abstraction and compression techniques remove details
from concrete models provided these are not relevant to the property of interest.
In many cases, only this makes the analysis of the model feasible or at least
speeds up verification considerably. For real-world problems, abstraction and
compression is a prerequisite for successful verification.

5.1 Compress

Bisimulation minimization. A popular compression technique is bisimulation
minimization [31]. Here, the states of the compressed system represent equiva-
lence classes with respect to a bisimulation equivalence, ensuring that the com-
pressed system, the quotient, is guaranteed to preserve all relevant properties.
The basis thereof is an algorithm to decide the respective relation, which in
the MDP setting is probabilistic bisimulation, a concept introduced by Larsen
and Skou [120] in the early nineties, and adapted to MDPs by Segala [I41].
Probabilistic bisimulation can be decided in polynomial time [I1], and this ex-
tends to interval MDPs [98/96] with bounded nondeterminism, as well as to weak
variations of bisimulation, i.e., to variations where internal steps are considered
compressable [I45]. Minimality of the quotient construction requires some care
in the presence of probability, depending on the particular strong or weak bisim-
ulation employed [6§].

Compositional minimization. The relevant bisimulations are congruence rela-
tions, in the sense that they are compatible with the usual variants of parallel
composition and other composition operators. This enables the application of
bisimulation minimization to components, which can turn out to be extremely ef-
fective. Non-trivial examples are known where state spaces with 1.6 billion states
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and 7 billion transitions can be compressed to a very small minimal MDP [76]
prior to model checking.

Distribution-based bisimulation. Weaker equivalences lead to better model com-
pression since they induce coarser partitions of the state space, but might come
with higher algorithmic complexity. Weak distribution bisimulation is coarser
than the aforementioned relations [69]. It is not defined as a relation between
states, but instead between probability distributions on states. Exponential-time
algorithms deciding distribution-based bisimulations have been proposed [67J140/99].

Symmetry. On the other hand, strong bisimulation equivalence is often induced
by symmetries in the model, which in turn are generally easier to identify di-
rectly [II5I65] instead of running a dedicated decision algorithm, albeit at the
price of a possibly non-minimal result.

5.2 Be Symbolic

In non-probabilistic systems, symbolic data structures such as binary decision
diagrams (BDDs) have been investigated successfully [43] to mitigate the state
explosion phenomenon. For probabilistic systems, multi-terminal binary decision
diagram (MTBDDs) [80], also called algebraic decision diagrams [5], have been
introduced as a data structure for representing and manipulating functions from
a finite set to values in an algebraic structure. In the context of probabilistic
systems, they have been first used for computing steady-state probabilities [87]
and PCTL model checking [8] for Markov chains and later extended for MDPs
[60]. Among others, [60] demonstrate that model construction and reachability-
based model checking is possible in a matter of seconds for certain classes of
systems consisting of up to 103° states. While [60] follows a purely symbolic
approach, which causes the problem that the MTBDD-representation of the
probability vector can degenerate to a tree-like structure, [I30/114] introduces a
hybrid approach using an MTBDD-representation of the MDP and an explicit
representation of the probability vector.

Symblicit analysis. For certain problems, the benefits of explicit and of sym-
bolic analysis steps can be exploited in carefully crafted combinations, so-called
symblicit analysis approaches [15328]91].

Tool support. The probabilistic model checkers PRISM [IT4/T16] and storm [63]
both support the hybrid approach, but also offer a purely symbolic MTBDD-
based engine, a purely explicit engine, as well as a sparse engine that generates
the model symbolically, but carries out the numerical computations using sparse
data structures. The storm model checker [63] also implements bisimulation-
based minimization algorithms applicable to MDPs.

5.3 Abstract Safely

Most abstraction schemes are based on grouping states that are not necessarily
bisimilar. Abstract and original models are then no longer bisimilar but they
are related by a simulation relation. Abstraction is typically conservative in



The 10,000 Facets of MDP Model Checking 19

the sense that affirmative verification results for abstract models carry over to
concrete models. That is to say, if the abstract model satisfies a property, the
concrete one does so too. Probabilistic simulation preserves a safe fragment of
PCTL [100]. The converse does not apply, as spurious negative results may occur
due to over-approximation in the abstraction. This however can be detected by
checking the result on the concrete model, which in turn can be exploited for
refining the abstract model.

Abstraction-refinement. The use of abstraction-refinement for probabilistic sys-
tems has been pioneered by D’Argenio and coworkers [62/53]. In this approach
a first attempt is made to prove a reachability property on the coarsest imagin-
able abstraction of the system. If that verification fails, the system is successively
refined until a conclusive answer can be given.

Predicate and game-based abstraction. The above concept has been taken up
in combination with predicate abstraction and counterexample guided refine-
ment [I0145], so as to form probabilistic counterexample-guided abstraction-
refinement. Another important variation of this concept employs game-based
abstraction [TT0/T50]. Here, one player is representing the non-determinism that
is inherent in the MDP, while the other player controls the non-determinism in-
troduced by the abstraction, i.e., by the grouping of states into sets. The analysis
of the resulting two-player stochastic game yields lower and upper bounds for
the reachability properties of the MDP. The tightness of these bounds indicate
the quality of the abstraction and form the basis of refinement. This typically
relies on disagreeing strategies for the individual players to make the abstrac-
tion more precise when required. Magnifying-lens abstraction [61] uses a similar
scheme, but rather considers the concrete states contained in an abstract state
in each step, thereby magnifying the state as needed.

Three-valued abstraction. Three-valued semantics, i.e., an interpretation in which
a formula evaluates to either true, false, or indefinite may help out. In this setting,
abstraction is conservative for both positive and negative verification results.
Only if the verification of the abstract model yields an indefinite answer (“don’t
know”), the validity in the concrete model is unknown. This has been adopted to
interval MDPs [I09]. For a queueing system from performance evaluation, (hand-
crafted) three-valued abstraction shows that 1027® concrete states (calculated
analytically) can be reduced to 1.2 million states, while preserving six decimals
accuracy for timed reachability probabilities [I11].

Other approaches. A prominent technique to construct safe abstractions while
possibly working with an explicit-state representation is partial-order reduction.
This has effectively been lifted to the probabilistic setting [T3I54I82] where it ex-
hibits similarities with confluence reduction approaches [95]. Another approach
to perform abstraction for probabilistic automata [64] uses may and must modal-
ities, inspired by modal transition systems [121].

Ezxample 5. We provide a glimpse of the effectiveness of several of the approaches
mentioned above, especially symbolic representations and bisimulation-based
compression.
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Fig. 4: Explicit MDP model checking

Fig. [4] provides a log-log scale plot of the total time (i.e., MDP construction
from a high-level description plus the MDP model checking time) against the
number of MDP states. It indicates the maximal size of the MDP that can be
constructed and solved within 10,000 seconds when using an explicit engine, i.e.,
sparse matrix representations of the MDP. The results are obtained for all MDP
case studies taken from the PRISM benchmark [II7] suite. All MDPs model
randomized distributed algorithms as indicated in the legend. The largest solved
MDP instance within 10,000 seconds has about 130-10° states. The specifica-
tions are (minimal and maximal) reachability probability and expected reward
objectives. Fig. 5| provides a similar plot when carrying out the MDP model
checking in a fully symbolic manner using MTBDDs. All experimental results
are obtained using the storm model checker with accuracy 10~° [63].

For most cases, the best results are obtained using a mixture of symbolic
and explicit engines—this is also referred to as hybrid or symblicit. In that case,
operations that can be done more efficiently using an explicit representation are
done explicitly, whereas remaining operations are done on a symbolic representa-
tions. Fig[f] indicates the model sizes that can be treated within 10,000 seconds.
The hybrid engine solves the largest problem instance of 2-10° states within 26
minutes.

As mentioned before, another important technique to curb the state-space
explosion problem is bisimulation minimization. The effect of this technique on
the MDP benchmark is indicated in Fig. [7] The reduction factor depends on
the specification ¢. For some qualitative specifications even models of one state
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Fig. 5: Symbolic MDP model checking

remain. Reductions up to factor 10,000 are obtained. As indicated, for various
MDPs the minimization could not be completed within 10,000 seconds (TO) and
16 GB RAM (MO).

6 Epilogue

The previous sections surveyed various techniques for the analysis of MDPs and
related policy synthesis questions. This survey is by far not complete and there
are many other research directions addressing the analysis of MDP-like models.
Let us mention a few more recent developments.

A promising new direction is to combine verification and learning techniques.
On the one hand, model checking examines all possible behaviours, in particular,
certain corner cases are detected. An interesting question is if this information
can be leveraged to train Al models in the sense that these corner cases are con-
sidered for the observed data. On the other hand, employing learning techniques
could improve PMC’s scalability. Initial results are promising. For instance, [37]
exploits reinforcement learning so as to avoid treating fragments of the state
space that do almost not contribute to the probability of interest. For a mu-
tual exclusion protocol with 10'? states only less than 2,000 are visited by the
method ensuring a precision of 1075. Another example is the iterative combi-
nation of PMC and reinforcement learning to synthesize a safe policy whose
expected cost is low for an MDP with unknown costs [I05] as well as in the
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context of the compositional analysis of MDPs [75]. Learning has also been ap-
plied to continuous-time MDP (using gradient ascent) [22]. The use of automata
learning techniques for probabilistic models [124] is also an interesting future
direction.

Another future direction is the use of parallelization to exploit the presence
of multiple cores in modern computers for MDP model checking. It is fair to
say that this is still at its infancy. So far, determining maximal end components
in MDPs has been parallelized on GPGPUs [152], but apart from some initial
investigations in the setting of Markov chains [30], probabilistic computations
on MDPs seem not yet to be parallelized.

The treatment in this paper has primarily focused on finite-state MDPs. A
large variety of generalizations of infinite-state MDPs have been (and still are)
investigated. Timed automata equipped with discrete branching probabilities
give rise to uncountably large MDPs due to real-valued clocks. Using the region
construction technique from timed automata [I], the standard algorithms for
finite MDPs suffice for the analysis [I18]. Model checking of (discrete-time) un-
countable MDPs is treated in [I44]. Countably infinite variants of MDPs include
probabilistic lossy channel systems [7] where message losses have a probabilistic
behavior while the component finite-state processes behave nondeterministically,
one-counter MDPs [36], MDPs equipped with counters that can be arbitrarily
negative or positive, and recursive MDPs [73[71] (that subsume one-counter
MDPs). Recursive MDPs are equivalent to push-down MDPs. Deciding whether
there is a policy that yields termination probability one is undecidable for re-
cursive MDPs. Whereas in the finite-state setting, the least fixed point (least
non-negative) solution to a monotone system of linear equations is key to MDP
model checking, for termination probabilities of recursive MDPs these equations
are polynomial. Infinite MDPs are a natural operational model for probabilistic
programming with non-determinism [126//84].
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