
POWER TO THE PEOPLE
VERIFIED

This report contains an author-generated version of a publication in Frontiers of Computer Sci-
ence 14.

Please cite this publication as follows:

Kangli He, Holger Hermanns, Hengyang Wu, Yixiang Chen.
Connection Models for the Internet-of-Things.
Frontiers of Computer Science, Volume 14, 2020, Article 143401.

POWVER
Technical Report 2020-15

Title: Connection Models for the Internet-of-Things

Authors: Kangli He, Holger Hermanns, Hengyang Wu, Yixiang Chen

Report Number: 2020-15

ERC Project: Power to the People. Verified.

ERC Project ID: 695614

Funded Under: H2020-EU.1.1. – EXCELLENT SCIENCE

Host Institution: Universität des Saarlandes, Dependable Systems and Software
Saarland Informatics Campus

Published In: Frontiers of Computer Science 14

http://www.powver.org/publications/TechRepRep/ERC-POWVER-TechRep-2020-15.pdf
http://www.powver.org/
http://cordis.europa.eu/project/rcn/203431_en.html
http://cordis.europa.eu/programme/rcn/664099_en.html
http://www.uni-saarland.de/nc/startseite.html
http://depend.cs.uni-saarland.de/
http://sic.saarland/
https://doi.org/10.1007/s11704-018-7395-3

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

Connection Models for the Internet-of-Things

Kangli HE 1, Holger HERMANNS 2, Hengyang WU 1, Yixiang CHEN 1

1 MoE Engineering Research Center for Software/Hardware Co-design Technology and Application,
East China Normal University, 200062 Shanghai, China

2 Saarland University, Saarland Informatics Campus, 66123 Saarbrücken, Germany

Abstract The Internet-of-Things (IoT) is expected to
swamp the world. In order to study and understand the emer-
gent behaviour of connected things, effective support for their
modelling is needed. At the heart of IoT are flexible and
adaptive connection patterns between things, which can natu-
rally be modelled by channel-based coordination primitives,
and characteristics of connection failure probabilities, exe-
cution and waiting times, as well as resource consumption.
The latter is especially important in light of severely lim-
ited power and computation budgets inside the things. In
this paper, we tackle the IoT modelling challenge, based on
a conservative extension of channel-based Reo circuits. We
introduce a model called Priced Probabilistic Timed Con-
straint Automaton, which combines models of probabilistic
and timed aspects, and integrates pricing information. An
expressive logic called priced probabilistic timed scheduled
data stream logic is presented, so as to enable the specifica-
tion and verification of properties, which characterize data-
flow streams and prices. A small but illustrative IoT case
demonstrates the principal benefits of the proposed approach.

Keywords IoT, Reo, cost, time, probability, automaton.

1 Introduction

As one of the most prominent emerging technologies, the In-
ternet of Things (IoT) is expected to change the world as we
know it. The IoT connects not only traditional end devices in
the internet, but also more general physical things, such as a

E-mail: yxchen@sei.ecnu.edu.cn

robot that can sense the outer world and give an independent
interaction. Any system composed of such things and the as-
sociated coordination and communication infrastructure such
as the internet, real-time systems or local networks can be
considered as fractions of IoT.

The essential characteristics of IoT systems cover real-
time behaviour (e.g., a smart pen is able to indicate to the out-
side ink tank to stop refilling no more than 0.01s after reach-
ing its maximum capacity bound), probabilistic behaviour
(e.g., the chance of the ink tank failing to release ink is at
most 5% after a request from the pen) and non-deterministic
behaviour (e.g., once the ink tank is empty, one can either
refill the tank or replace with a new tank). These charac-
teristics are partly present in ordinary distributed systems.
But in addition, power considerations (e.g., the initial elec-
tric power budget of a smart pen is 30 Kilo Joule) is at the
core of IoT systems, because of their predominantly wireless
nature. Other resources (e.g., the memory) are also severely
limited due to portability and budget considerations. These
aspects are central to IoT systems, in comparison with most
other distributed systems. As mentioned by Borgia [1], self-
organization and flexibility are general features of IoT sys-
tems. In other words, despite the diverse, often intricate and
topologically varying phenotypes, we find the need for flex-
ible and adaptive connection patterns between things being
at the heart of IoT. These are meant to enable advanced as
well as radically new emerging functionalities and compo-
nents. To ease their development, effective support for the
modelling of IoT systems is forthwith needed.

Furthermore, the diversity on research areas and profes-
sional abilities of stakeholders (which for instance consist of
researchers, project leaders, company managers etc.) in IoT
systems makes an important motivation for a lightweight for-

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

2
Kangli HE et al.: Connection Models for the Internet-of-Things

mal notation that, on the one hand, provides an easy interface
for design engineers (which can be any stakeholder) and, on
the other hand, supports the description of quantitative IoT
system aspects.

The formal treatment of IoT behaviour was pioneered by
Lanese et al. [2] and later taken up by Lanotte et al. [3],
employing approaches based on process calculi. This line
of work focusses on compositionality principles, network-
ing primitives, and their theoretical underpinning, but with-
out considering quantitative notions like time, probability or
cost. The work presented here instead puts all those aspects
in its joint focus, so as to make formal verification possible
for IoT systems.

Arbab [4] proposed a coordination language Reo, which
offers a powerful glue language for implementation of co-
ordination mechanisms via connectors, based on a calculus
of mobile channels. This naturally yields a friendly and
easy-understanding user interface. The extensions of non-
function/quantitative requirements have been studied, for in-
stance by Meng et al. [5] and Arbab et al. [6]. IoT systems
consist of distributed components (i.e., physical things) co-
ordinated with each other under different distributed commu-
nication mechanisms, and are maintained by resources. One
of the most important aspects in IoT is the data-acquisition-
driven interaction among such components which can natu-
rally be viewed as exogenous interactions. In this paper, we
focus on that exogenous interactions in IoT systems, leav-
ing the interesting interior mechanisms of each component
for later research. The Reo language appears as a convenient
lightweight formalism, where physical things are represented
as nodes and communication mechanisms give rise to chan-
nels or connectors.

When exploring this approach, it soon becomes apparent
that extensions to the original Reo syntax and underlying se-
mantics are needed to better fit relevant aspects of the IoT
domain. In IoT systems, resource consumption is pivotal for
mission accomplishment and self-sustainability. This asks for
matching support in the language to specify such aspects, in
the form of a notation for reward or cost decorations of the
model, together with appropriate extensions of the seman-
tic model. This extension enables analyses of several other
features including, for instance, the amount of tasks finished
within a given duration. The present paper develops such an
extension, and places it into the system context of IoT.

On the semantic level, Reo has a basic semantics defined in
terms of so-called Constraint Automaton (CA) [7] with sev-
eral variants [8]. It is understood how to include nondeter-
ministic aspects in CA, as well as timed aspects – forming

pPTCA

PCA TCA

CA

+price

+probability +time

−price

−time

−price

−probability

Fig. 1 Pedigree of pPTCA.

Timed Constraint Automaton (TCA) [9] – and probabilistic
aspects – forming so-called Probabilistic Constraint Automa-
ton (PCA) [10]. Since these aspects exist naturally and are of
crucial relevance to interesting properties in the IoT domain,
our approach is based on these extensions.

1.1 Our contribution

In order to enable a faithful modelling of IoT systems, we
propose a model called Priced Probabilistic Timed Con-
straint Automaton (pPTCA). pPTCA combines features to
represent nondeterministic, probabilistic, and timed aspects
with aspects of energy consumption (or any kind of re-
source consumption considered important). The model is
constructed on the basis of PCA and TCA, and it combines
these two models together with dedicated support for cost as-
pects. The extension is strictly conservative in the sense that
all existing PCA and TCA models are valid pPTCA models
as well, and pPTCA is more expressive and capable to rep-
resent timed phenomena (which PCA can not), probabilis-
tic phenomena (which TCA can not) and cost considerations
(which PCA and TCA both can not). The relationship be-
tween our model and the base models (i.e., CA, TCA and
PCA) is shown in Figure 1.

This work constitutes the first approach joining probabilis-
tic, timed and priced aspects effectively in a single model
within the domain of Reo and Constraint Automata. It no-
tably goes beyond a mere combination and conservative ex-
tension, by an elaboration that provides compact and con-
sistent value on both theorem and practice. With our pro-
posed method, one can straightforwardly generate the IoT
systems without much learning efforts, and work on the se-
mantic models for further formal verification.

Due to the data-acquisition-driven feature in IoT systems,
interesting properties for the Reo or pPTCA models are to
be constructed with relation to data flows. For instance, ‘a
sequence of data monitored through input/output ports with
specific patterns, the values of which form a Fibonacci se-
quence, are required in the system’. Moreover, the pricing
information is also another essential component in the prop-

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

3

erties, like ‘the highest energy cost is within the battery stor-
age’. In this paper, we extend the traditional PCTL∗ logic
[11] with reward structure, to model the pricing information,
and so-called pTsD expressions, to model the data flows. In
virtue of pPTDL, properties involving probabilistic, timed,
priced and data-flow features can be expressed integrally and
verified for pPTCA models.

1.2 Organisation of the paper

We first review a primer of Reo circuits, and the seman-
tic model of constraint automata together with the variants
adding timed and probabilistic aspects to it in Section 2. Sec-
tion 3 presents the details of Reo with priced, probabilis-
tic and timed features and its semantic constraint automata
model. Section 4 gives the semantics of pPTCA in terms
of probabilistic times systems with reward structures. The
pPTDL logic are introduced in Section 5. A case study of
an IoT scenario is presented in Section 6, demonstrating the
expressiveness and principal benefits of our model in such
domains. Section 7 presents the related work. Section 8 con-
cludes this paper.

This paper is an extended and substantially revised version
of a paper published at COMPSAC [12].

2 Preliminaries

2.1 A primer of Reo

Reo is a channel-based exogenous coordination model where
complex coordinators for component instances, called con-
nectors, are compositionally built out of simpler ones. Reo
is entirely exogenous in that only the communication and co-
ordination among components are taken into account without
considering the inner activities or communications of each
component. The basic connectors are a set of channels with
well-defined behaviour. Each channel has two channel ends,
which can be seen as ports through which data items can
enter or leave the channel. The channel ends are classified
as source ends, providing input data items into the channel
through write operations, and sink ends, taking data items
from the channel by read operations. Reo generalizes this
channel notion by allowing arbitrary channel ends accord-
ing to different channel types with user-defined semantics, as
shown partly in Figure 2. Synchronous channels require that
write operations at source ends synchronize with matching
read operations at sink ends, whilst asynchronous channels
(e.g., FIFO-1, t-timer) do not. A classical channel type is

A B

À syn

A B

Á lossy syn

A B

Â syn drain
A

1
Ã FIFO-1

B A

Ä t-timer

t
B

Fig. 2 Some basic Reo channels.

a synchronous channel (i.e., Figure 2.À), which has a source
end and a sink end. The write operations at its source end and
the matching read operations at its sink end are restricted
to succeed only simultaneously. Other two variants of syn-
chronous channels are introduced. A lossy synchronous chan-
nel (i.e., Figure 2.Á) allows write operations on the source
end are always enabled. If no matching read operations on
the sink node, then the input data items are lost. Otherwise, it
behaves like a standard synchronous channel. A synchronous
drain (i.e., Figure 2.Â) has two source ends, so no read oper-
ations can be taken to obtain the input data items. The write
operations on two source ends are required to be synchro-
nized, and both written values are lost. FIFO-1 channel (i.e.,
Figure 2.Ã) is a typical type of asynchronous channel with
one buffer cell. It has a source end and a sink end, and the
box in the middle stands for the buffer cell. The buffer can be
initiated empty or with a data item defined by users (here is
the latter case). The write operations on source end can only
succeed if the buffer is empty, while the read operations on
sink end can only fire when some data item is stored in the
buffer. A t-timer (i.e., Figure 2.Ä) is triggered by some write
operation on the source end, and outputs time-out after exact
t time units.

A complex connector is built out of basic channels of arbi-
trary types by so-called topological operations, namely join
and hide. The result is a graphical representation, called a
Reo circuit. Every basic channel is straightforwardly one
Reo circuit. The compositional framework provides features
of composability and dynamic reconfigurability in Reo. The
nodes of a Reo circuit are considered as pair-wise disjoint
and non-empty sets of channel ends. The edges represent the
connecting channels. For a node A, S rc(A) denotes the set of
source ends coinciding on A, and S nk(A) denotes the set of
coincident sink ends. A node A in Reo circuit is classified as
a source node (where S rc(A) , ∅ and S nk(A) = ∅), a sink
node (where S rc(A) = ∅ and S nk(A) , ∅), or a mixed node
(where S rc(A) , ∅ and S nk(A) , ∅). A write operation on
one node succeeds only if all the coincident source ends ac-
cept the data item. A read operation on one node succeeds
if and only if at least one of the coincident sink ends offers

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

4
Kangli HE et al.: Connection Models for the Internet-of-Things

A B C

syn syn

Fig. 3 A complex Reo circuit.

suitable data items, and only one is selected nondeterministi-
cally. The join operation on two nodes with the same name
creates a new node (with the same name) and combines all
channel ends coincident on original ones. We use hide op-
erations to encapsulate mixed nodes inside a circuit, making
them invisible and unaccessible to the environment.

Since flexible and adaptive communication and interaction
patterns in IoT systems are determined by topological char-
acteristics, they can naturally be modelled by channel-based
Reo circuits.

Example 1. As in Figure 3, a complex Reo circuit is built
by join operation on two synchronous channels AB and BC
on the common node B. Nodes A, B,C are source, mixed
and sink nodes respectively. If we take hide operation on
the mixed node B, then we get a new Reo circuit of one syn-
chronous channel AC, where B is invisible to the environ-
ment.

2.2 Constraint Automata

The semantics of Reo can be defined in terms of relations on
timed data streams (TDSs) [13]. In [7], Baier et al. intro-
duced Constraint Automaton (CA) as an operational seman-
tics for describing the behaviour of Reo circuits. They relate
the languages of these automata with TDSs, where CA accept
TDS-tuples rather than strings, as for ordinary automata. CA
are variants of labelled transition systems where transitions
are labelled with pairs 〈N, g〉 instead of action labels, where
N ⊆ N stands for a finite set of nodes and g is a boolean con-
dition on the observed data items. The nodes play the role
of input and output ports of components and connectors to
model several channels gluing together. The locations of a
CA refer to the network configurations, and transitions out of
a location represent the possible data-flow according to the
current configuration and the effect on it.

Notation 1 (Data assignments and data constraints). In the
sequel, we assume a finite and non-empty set Data consisting
of data items that can be transmitted through channels, and a
finite set of nodes N . A data assignment denotes a function
δ : N → Data where ∅ , N ⊆ N . We use δ.A ∈ Data
to denote the data item assigned to every node A ∈ N under
δ and DA(N) for the set of all data assignments of node set

N. If M ⊆ N ⊆ N and δ ∈ DA(N) then δ|M stands for
the data assignment for M that assigns data item δ.A to each
A ∈ M, and δ|∅ = ∅. Given δ1 ∈ DA(N1) and δ2 ∈ DA(N2), if
δ1.A = δ2.A for all A ∈ N1 ∩ N2, then δ1] δ2 stands for the
data assignment for N1 ∪ N2 that assigns data item δ1.B1 to
each B1 ∈ N1 and data item δ2.B2 to each B2 ∈ N2.

Data constraints can be viewed as a symbolic represen-
tation of data assignments. Formally, data constraints are
propositional formulae built from the atoms dA = dB, dA = d,
and dA ∈ D (plus the standard boolean connectors ∧,∨,¬,
etc.) where A, B ∈ N , dA and dB are symbols for the ob-
served data item at node A and B respectively, d ∈ Data and
D ⊆ Data. For a node set N ∈ N , DC(N) denotes the set of
data constraints that refer to the terms dA for A ∈ N. We write
DA for

⋃
∅,N⊆N DA(N) and DC for

⋃
∅,N⊆N DC(N). Given a

data constraint g ∈ DC(N), the semantics for each g is a data
assignment δ ∈ DA(N), where δ |= g. Here |= stands for the
general satisfaction relation which results from interpreting
data constraints over data assignments. g = true is equivalent
with δ = ∅ which stands intuitively for no constraints on the
set of nodes N.

Definition 1 (CA). A constraint automaton (CA) is a tuple
A = (L,N ,−→, L0) where L is a finite set of locations,N is a
finite set of nodes, disjointly partitioned into N src, N snk, and
Nmix. The transition relation−→ is a subset of L×2N×DC×L,
and L0 ⊆ L the set of initial locations.

We write l
N,g
−−→ l′ instead of (l,N, g, l′) ∈−→ and refer to N

as the node-set and g the guard of the transition, where N , ∅

and g ∈ DC(N). The semantics for an instance of l
N,g
−−→ l′

is a transition of the form l
N,δ
−−→ l′ where δ |= g. If the cur-

rent location is l then an instance of the outgoing transitions
from l is chosen nondeterministically, and the corresponding
I/O-operation (i.e., 〈N, δ〉) is taken leading to the next loca-
tion l′. The formalization of such behaviour can be specified
by the notion of a path. Given a CA A = (L,N ,−→, L0), a
path for A is a (finite or infinite) sequence of consecutive

transition instances ε = l0
N0,δ0
−−−−→ l1

N1,δ1
−−−−→ l2

N2,δ2
−−−−→ . . .

where l0 ∈ L0. We require that paths are either infinite
or end in a location that does not have any outgoing transi-
tion, where the node-set N only consists of mixed nodes (i.e.,
N ⊆ Nmix). This requirement can be understood as a maximal
progress assumption for the mixed nodes. For a finite path

ε f in = l0
N0,δ0
−−−−→ l1

N1,δ1
−−−−→ . . .

Ni−1,δi−1
−−−−−−→ li, i ∈ N+, we define

Last(ε f in) = li as the last reachable location on this path.

Example 2. An FIFO-1 (first-in first-out with one buffer
place) channel and its CA are shown in Figure 4. Loca-

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

5

l l′(d)

{A}, dA = d

{B}, dB = d

Fig. 4 CA for FIFO-1 channel.

A

≤ t
1

B
l l′(d)

x ≤ t

{A}, dA = d, x := 0

x = t
{B}, dB = d, x < t

Fig. 5 Timed Reo circuit and TCA for an expiring FIFO-1 channel.

tion l represents the initial configuration with the buffer be-
ing empty, while l′(d) stands for the configuration where data
item d is stored in the buffer. Note that this is a simplified
parametric model where we use parameter d ranging over all
data items. A corresponding non-parametric CA has for each

d ∈ Data a location l′(d) and transitions l
{A},dA=d
−−−−−−→ l′(d) and

l′(d)
{B},dB=d
−−−−−−→ l.

Reo supports a hide operation, realized on CA by a hiding
structure, and a join operation, realized by two constructions.
For the join of a source node with another (sink, source or
mixed) node, we can use their product, while joining sink or
mixed nodes can be specified by a merger CA. The reader
interested in more details with respect to basic Reo channels
and the corresponding CA is referred to [4, 7].

2.2.1 Timed Constraint Automata

Arbab et al. introduced timed constraint automata (TCA)
in [9] extended from the original CA by adding real-time
aspects to describe the behaviour specification of channels
and component interfaces involving timing constraints. As
in classical timed automata with location invariants [14, 15],
TCA have two kinds of transitions: (i) Internal changes of the
locations caused by some time constraints and (ii) transitions
that represent the synchronized execution of I/O-operations
at some of the ports.

Notation 2 (Clock assignments and clock constraints). Let C
be a finite set of clocks. A function ν : C → R≥0 is referred to
be as a clock assignment (CA). For a clock assignment ν and
a time t ∈ R≥0, ν+ t denotes the clock assignment that assigns
the value ν(x)+t to every clock x ∈ C. If C ⊆ C then ν[C := 0]
stands for the clock assignment that returns the value 0 for
every clock x ∈ C and the value ν(x) for every clock x ∈
C \ C. A clock constraint (CC) for C is defined as cc ::=
true|x�n|cc∧cc, where x ∈ C,� ∈ {<,≤,≥, >,=}, n ∈ N, and
CA(C) (or CA) denotes the set of all clock assignments and
CC(C) (or CC) the set of all clock constraints. If B ⊆ C ⊆ C
and cc ∈ CC(C) then cc|B stands for the clock constraint for B
out of C, i.e., a conjunction of atoms of the form y � n where
y ∈ B and � is defined as above. With 0 we denote the clock
assignment with all clocks reset to 0, namely 0(x) = 0 for all
x ∈ C.

Example 3. Now let us consider expiring FIFO-1 channels
in Figure 5, which extend from FIFO-1 with a max time con-
straint for the data residing in the buffer. After that time, the
data is forced to be lost. A clock x is declared in TCA. A
time constraint ≤ t equipped under the buffer in Reo circuit
is used to specify the expiring time aspect, which is denoted
by a clock constraint CC(x) as an invariance condition for lo-
cation l′(d) in TCA. The two edges from l′(d) to l represent
the event where a data item is discarded upon timer expira-
tion and the event where B reads the data out of the buffer
respectively.

2.2.2 Probabilistic Constraint Automata

In [10], Baier introduced probabilistic constraint automata
(PCA) for describing probabilistic connectors in Reo cir-
cuits built out of unreliable channels with known failure
probabilities, so as to support the modelling of probabilis-
tic lossy synchronous channels or randomized synchronous
channels. Baier also defines a probabilistic model, called
simple probabilistic constraint automata (SPCA), that appear
natural to model various kinds of unreliable FIFO channels.
SPCA only treat probabilistic choices over configurations
but fail to model two important aspects: (i) Channels where
synchronous I/O-operations might fail with some probabil-
ity, such as in probabilistic lossy synchronous channels; (ii)
Coin tossing actions where different data items are produced
through sink nodes. PCA allow to model these common as-
pects of IoT systems. In this paper, we consider probabilistic
aspects as those representable in PCA.

Merger structures are (again) used for joining sink or
mixed nodes in a preprocessing step. The product opera-
tion on PCA constitutes the semantics for the join operation
(i.e., joining one source node with another one) in Reo cir-
cuits. This enables to construct complex connectors out of
simpler ones. According to Baier, generating the product of
two PCA is much more difficult compared to SPCA that we
might need to match (i) one transition with one transition in
the other PCA deterministically, or (ii) one transition where
none of the sink or mixed nodes of the other PCA is involved
with several transitions in the other PCA. This is rooted in
the fact that PCA allow distinct I/O-operations on probabilis-

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

6
Kangli HE et al.: Connection Models for the Internet-of-Things

1

2

3

4

5

6

1 4

2 5

3 6

./ ⇒

1
2 , {A}, dA = 0

1
2 , {A}, dA = 1

{A}, dA = 0

{A}, dA = 1

1
2 , {A}, dA = 0

1
2 , {A}, dA = 1

Fig. 6 A case for product for PCAA1 andA2.

A
1

B

p
l l′(d)

[p], {A}, dA = d

[1 − p]
{A}, dA = d

{B}, dB = d

Fig. 7 Probabilistic Reo circuit and PCA for faulty FIFO-1 channel.

tic branches. Let us consider the case in Figure 6: A1 offers
I/O-operations with a probabilistic effect for a sink node A
that in turn is a source node in A2. Then A2 can react on
the outcome of A1’s probabilistic choice (namely dA = 0 or
dA = 1). In this case, the conventional product operation is
not handleable, and A1 is a perfect example for the inability
of SPCA.

Notation 3 (Probability distribution). A (discrete) probabil-
ity distribution over a countable set S is a function π : S →
[0, 1] satisfying

∑
s∈S π(s) = 1. We call the elements of S

probabilistic events. We use Distr(S) to denote the set of
distributions over S .

We use D(s) to denote the deterministic (often called
Dirac) distribution that assigns probability 1 for s, defined by
D(s)(s) = 1 and D(s)(s′) = 0 for all s′ , s. Let support(π)
be the subset of S such that s ∈ support(π) if and only if
π(s) > 0.

Example 4. We consider another variant of FIFO-1, called
faulty FIFO-1 in Figure 7, where the data fails to be writ-
ten into the buffer with some probability p. In PCA, the
‘arc’ notation is used to connect probabilistic branches of
one transition. The I/O-operations on each pair of proba-
bilistic branches out of l (modelled by 〈{A}, dA = d〉 and
〈{A}, dA = d〉) stand for the writing failure and success re-
spectively. In this case, SPCA is capable of modelling.

3 Priced Probabilistic Timed Constraint Au-
tomata

As mentioned above, real time aspects and probabilistic as-
pects are two vital aspects to be considered in models of
IoT. In these contexts, distributed components (i.e., physical
things) coordinate with each other using different kinds of
communication channels. We intend to employ Reo and CA
(and their underlying semantics) as the scripting language to
specify components as nodes in Reo and connections as chan-
nels or connectors. To this end, they are to be enhanced to
support those two features properly. For instance, let us con-
sider a faulty expiring FIFO-1 channel where the data fails
to be written into the buffer with some probability and the
data is going to be lost after certain time units once it has
entered the buffer. On the technical level, we can model the
time expiration using TCA, and the possibility to lose data by
PCA respectively, but there is still no variant of CA that com-
bines these two aspects effectively. In practice, another vital
characteristic of IoT systems is that they need to meet quanti-
tative requirements, because things are operating with limited
power, memory, computation budgets and other resources.
One might be interested in computing some expected val-
ues(e.g., the average ink usage costs per refill). A way to
handle such quantitative requirements is to use reward/cost
notation to specify interesting pricing informations.

This motivates us to propose a model, called Priced Prob-
abilistic Timed Constraint Automata (pPTCA), which com-
bines PCA and TCA and is equipped with prices to model
nondeterministic, probabilistic, real-time and reward/cost as-
pects of a system composed by channel-based component
(distributed) connectors. Price rates are attached to locations,
indicating the cost or reward to reside in a location per time
unit. Furthermore, instant prices are attached to transitions,
indicating the cost to take the transition or the reward pro-
duced, when changing from one location to another. In the
following definition, we explicitly use data assignments in-
stead of the symbolic representation data constraints on the
transitions in our model to be consistent with the definition
of PCA. We use E ⊆ (2N × DA × 2C × L) to denote the set of
probabilistic events, and Ct for the set of costs (or rewards).

Definition 2 (pPTCA). A priced probabilistic timed con-
straint automaton (pPTCA) is a tupleA = (L,C,N ,−→, L0,

ic, ρ) where L is a countable set of locations, L0 ⊆ L the set
of initial locations, C a finite set of clocks, and N is a finite
set of nodes disjointly partitioned into N src,N snk and Nmix.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

7

A

≤ t

1̇
1

B

p

4 4 l
0

l′(d)
x ≤ t

1
true

[p], {A}, dA = d
0

[1 − p]
{A}, x := 0, dA = d

4
x = t

0
{B}, x < t, dB = d

4

Fig. 8 Priced probabilistic timed Reo circuit and pPTCA for faulty expiring
FIFO-1 channel with energy consumption.

ic : L→ CC is a function that assigns to any location l an in-
variance condition, and −→⊆ L×CC×Distr(2N×DA×2C×L).
ρ : Ct → (L ∪ E → R) is a price function that, for each
cost ct ∈ Ct, assigns price rate to the locations and price to
its probabilistic branches. We require that for any transition
l

cc
−−→ πwe have: If π(N1, δ1,C1, l1) > 0 and π(N2, δ2,C2, l2) >

0 then N1 ∩ N
src = N2 ∩ N

src and δ1.A = δ2.A for all source
nodes A ∈ N1 ∩ N

src.

We claim that the probability distribution does not effect
the data items source nodes take in, which is formalized in the
last statement. A transition fires if the data items are observed
in the respective nodes of the component and the clock con-
straint is satisfied, and the data assignment is performed (ex-
cept for the empty node-set). We write l

cc
−−→ π(N, δ,C, l′) in-

stead of (l, cc, π(N, δ,C, l′)) ∈−→, where N denotes the nodes,
δ ∈ DA(N) the data assignment on N, cc the clock constraint,
C the set of clocks to be reset, l and l′ represent the source
and target locations respectively. Transitions with Dirac dis-
tribution (i.e.,D(N, δ,C, l′) = 1) are called Dirac transitions,
and we simply write l

cc
−−→ D.

Intuitively, a pPTCA behaves as follows: It starts in an
initial location l0 ∈ L0. Then, whenever a location l is oc-
cupied with a valid invariance condition ic and each cost ct
incurred until now, it is chosen nondeterministically whether
to delay or to take a transition which satisfies the above ob-
servation constraint and data/clock requirements. Delaying
will increase each clock by the delay units and each accu-
mulated cost by the product of delay units and corresponding
price rate ρ(ct)(l). A transition instance l

cc
−−→ π(e) (where

e = 〈N, δ,C, l′〉 ∈ E) is taken, resetting each clock x ∈ C to 0,
and increasing the cost by ρ(ct)(e). The configuration moves
to l′ with probability π(N, δ,C, l′). Note that it is reasonable
practice (rooted in the work of Segala [16]) that each transi-
tion has a single clock constraint, while the sub-probabilistic
branches can be equipped with different data assignments and
prices. In the sequel, clock constraint cc = true, data assign-
ment δ = ∅ and price or price rate 0 are often left out for
simplicity.

Example 5. Figure 8 presents a faulty expiring FIFO-1 chan-
nel equipped with prices to reflect the energy consumption
on channels and within the buffer, representing that the sys-
tem needs to consume energy for transmitting data as well
for keeping data in the buffer. The semantic pPTCA for this
Reo circuit is depicted on the right. This simplified paramet-
ric model combines the features from TCA and PCA. Be-
yond these, in this Reo circuit, the positive constant 4 above
the channels represents the instantaneous energy cost for data
transmission from node A to the buffer and from the buffer to
node B respectively. We use the form $̇ (so as to distinguish
it from price) in pictorial Reo circuits to denote the price rate
$ ∈ R. Thus, 1̇ above the buffer specifies the energy cost in-
creases by 1 each time unit. Accordingly in the pPTCA, the
price rate 0 on location l results from no energy being con-
sumed when the buffer is empty, and 1 on location l′(d) to
represent 1 energy unit cost per time unit. The energy con-
sumption for data transmission is encoded into the price 4
on the probabilistic branch from l to l′(d) and on the lowest
transition. The clock constraint ‘true’ is usually omitted in
pPTCA for simplicity.

3.1 Target run

Given a pPTCA A = (L,C,N ,−→, L0, ic, ρ), a target run r
for A represents a finite sequence of consecutive transition
instances that ends up at a target location without delaying of
the following form,

r = l0
cc0,t0,π0
−−−−−−→ l1

cc1,t1,π1
−−−−−−→ l2

cc2,t2,π2
−−−−−−→ . . .

ccn−1,tn−1,πn−1
−−−−−−−−−−→ ln

where li ∈ L, cci ∈ CC, (li, cci, πi) ∈−→, and there exist
Ni ⊆ N , δi ∈ DA(Ni), Ci ∈ C, ei = 〈Ni, δi,Ci, li+1〉, such
that πi(ei) > 0, and ti > 0 satisfying:

(i) νi + t′i |= ic(li) for all 0 < t′i ≤ ti,

(ii) (νi + ti)[Ci := 0] |= ic(li+1) and

(iii) νi + ti |= cci

where νi |= ic(li), 0 ≤ i ≤ n. We denote the target location
as Last(r) = ln. The total cost of r corresponding to ct ∈
Ct is TCct(r) =

∑n−1
i=0 (ρ(ct)(li) · ti + ρ(ct)(ei)), i.e., the sum

of accumulated prices on locations and instantaneous prices
on transitions. The subscript ct is ususally omitted if it is
clear from the context. The probability for reaching the target
location along r is defined as: P(r) =

∏
i πi(ei).

3.2 Priced probabilistic timed Reo circuits

Electric energy is the key resource needed for things to sense,
to calculate, to store and to interact under IoT, and thus each

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

8
Kangli HE et al.: Connection Models for the Internet-of-Things

step of those things consumes electric power. We detail the
pricing model from this very natural IoT perspective now.
Nevertheless we mention that we take energy resources as an
example, users are nevertheless free to build and work with
any pricing structure they wish.

We usually want things to accomplish a task or sustain a
series of interactions with a limited budget of energy. We
furthermore might want to test or verify whether the energy
consumption is acceptable (possibly under some fairness con-
ditions) for each thing or for the whole IoT system. For this
purpose, we extend several useful primitive channels in the
Reo framework by adding prices (and price rates) together
with timing constraints and probabilistic choices for enhance-
ment of their I/O-operations, resulting in priced probabilistic
timed Reo (pPTReo for short). We let b, b1, b2 ∈ R be instan-
taneous prices on channels (or on transitions in pPTCA), and
$̇ (represented by $ ∈ R on the locations in pPTCA) be price
rate on buffers or time counting nodes. For clarity, we explic-
itly present all price rates and prices including 0 valuation.

3.2.1 Basic channels

In Figure 9 we present conservative extensions of part of in-
teresting channels from the original Reo publication. We also
present a new communication channel named Zigbee, defined
for the purpose of modelling realistic connection means, and
a new timer named t≥-timer, introduced to support lower-
bound timers (i.e., the time for alerting time-out, represented
by TO, is greater than or equal to t). Naturally, a Zigbee
channel is equipped with data transmission time t through
the channel, failure probability p and energy consumption b.
These channels will reappear in the case study section that
follows.

3.2.2 Merger

For the merger structure to be equipped with prices, we de-
cide to equip it with a price rate of 0 on the location and
some energy cost b ∈ R on the transitions, as depicted in
Figure 10. This is necessary because the merger has a gen-
uine logic functionality, trying to control the nondeterminis-
tic choices between two sink or mixed nodes, as well as im-
plementing the join of two synchronous channels (with ends
A,C and B,C respectively).

3.3 Product of pPTCA

After using common mergers to reprocess the automata tak-
ing care of the join of non-source nodes, we build the product

A Bb A Bb A Bb A $̇
1

Bb1 b2

l

{A, B}
dA = dB

b

l

{A, B}
dA = dB

b

{A}
b

l

{A, B}
b

l

l′(d)
$

{A}
dA = d

b1

{B}
dB = d

b2

A $̇
≥ t

Bb1 b2 A t
Z

B

p

b

l

l′
$

{A}
x := 0

b1

{B}
x ≥ t

dB = TO
b2

l l′(d)
x ≤ t

true

[p], {A}, dA = d

[1 − p]
{A}, x := 0, dA = d

{B}, x = t, dB = d
b

À syn Á lossy syn Â syn drain Ã FIFO-1

Ä t≥-timer Å Zigbee

Fig. 9 Six basic Reo channels and their pPTCA.

A

B
Cmerger

b

l
0

{A,C}
dA = dC

b

{B,C}
dB = dC

b

Fig. 10 Merger structure.

of two pPTCA to semantically specify the join of one source
node with another node in Reo circuits. As mentioned above,
one transition is either matched by one or several transitions
in another pPTCA. In the latter case, we require all matched
transitions have the same clock guard for technical consider-
ation. Assuming independence of energy consumption, for
each involved cost, the synchronisation of two pPTCA in-
duces the sum of the price rates on each sub-location to be
used as the price rate for the combined location. Once two
matching transitions (or one transition matching several tran-
sitions) fire at the same time, the price on every probabilistic
branch of the combined transition is set to the sum of that on
each original branch.

Definition 3 (Product). Given two pPTCA Ai =

(Li,Ci,Ni,−→i, L0,i, ici, ρi), i = 1, 2, with C1 ∩ C2 = ∅, the
product ofA1 andA2 isA1 ./ A2 = (L1 × L2,C1 ∪C2,N1 ∪

N2,−→, L0,1 × L0,2, ic, ρ) where ic(〈l1, l2〉) = ic1(l1) ∧ ic2(l2),
ρ(ct)(〈l1, l2〉) = ρ1(ct)(l1) + ρ2(ct)(l2) for each ct ∈ Ct, −→ is
defined by the following rules:

l1
cc1
−−→1 π1,

∧ j=k
j=1(l2

cc2
−−→2 π2, j)

〈l1, l2〉
cc1∧cc2
−−−−−−→ π

(initialized by l1)

where k ∈ N+, and
∧ j=k

j=1(l2
cc2
−−→2 π2, j) stands for all the tran-

sitions in A2 with same current location l2 and clock con-

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

9

straint cc2, if for each pair of (M, σ) = (N1 ∩ N2, δ1) where
π1(N1, δ1,C1, l′1) > 0, either

(i) M , ∅, there exists a probability distribution π2, j such
that π2, j(N2, j, δ2, j,C2, j, l′2, j) > 0 implies N2 ∩ N1 = M
and δ2, j.A = σ.A for all A ∈ M, then

π(

e︷ ︸︸ ︷
N1 ∪ N2, j, δ1] δ2, j,C1 ∪C2, j, 〈l′1, l

′
2, j〉) =

π1(N1, δ1,C1, l′1︸ ︷︷ ︸
e1

) · π2, j(N2, j, δ2, j,C2, j, l′2, j︸ ︷︷ ︸
e2

)

where ρ(ct)(e) = ρ1(ct)(e1) + ρ2(ct)(e2), or
(ii) M = ∅, then

π(N1, δ1,C1, 〈l′1, l2〉︸ ︷︷ ︸
e

) = π1(N1, δ1,C1, l′1︸ ︷︷ ︸
e1

)

where ρ(ct)(e) = ρ1(ct)(e1).

Transitions out of 〈l1, l2〉 initialized by l2 are defined in the
symmetric way.

The above definition is a conservative extension of the one
for PCA to timed and priced features, with the handling of
prices being motivated by [17]. It reformulates the original
PCA definition and thereby enables to drop a restriction that
originally excludes composition of transitions that are neither
input-independent1) nor I/O-deterministic2). Support for this
case arises naturally from the reformulation.

Remark 1 (Nonassociativity). Similar to PCA, since the
product operator ./ treats A1 and A2 in a symmetric way,
./ on pPTCA is commutative up to isomorphism. However,
./ is not associative.

Remark 2 (Synchronous and asynchronous product). Let us
consider two transitions, for instance as in Figure 11, where
contradictory data constraints exist. The product (or so-called
parallel composition in ordinary probabilistic automata) on
these transitions in generative settings is not straightforward
as discussed by Segala [18]. The existing methods take into
account the synchronous (where the product transition dis-
tribution is generated by the disjoint union on probabilistic
branches of the two transitions) [19–21] and asynchronous
(where several parallel composition operators were defined
in the literature that use bias factors) [21, 22] styles respec-
tively. However in the domain of Reo circuits, such case will

1) l1 −→1 π1 inA1 is called input-independent onA2 if π1(N1, δ1, l′1) > 0
implies N1 ∩ N

src
1 ∩ (N snk

2 ∪ Nmix
2) = ∅.

2) l1 −→1 π1 inA1 is called I/O-deterministic forA2 if π1(N1, δ1, l′1) > 0
and π1(N2, δ2, l′2) > 0 implies N1 ∩ N2 = N2 ∩ N2 and δ1.A = δ2.A for all
A ∈ N1 ∩ N2.

l0 l1
{A}, dA = 0

l2 l3
{A}, dA = 1

. . .

. . .

. . .

. . .

Fig. 11 Differing from the synchronous and asynchronous methods.

be handled by introducing the merger structure in the prepro-
cessing stage. As a consequence in the semantic level, the
product for such transitions like in Figure 11 induces no tran-
sitions in the product automata. This gives a support for not
using those synchronous and asynchronous methods.

3.4 Hiding for pPTCA

The hiding structure for pPTCA is extended from that of
the PCA by augmenting it with a timed and a price struc-
ture. Given one pPTCA A = (L,C,N ,−→, L0, ic, ρ), a
new clock y < C and a non-empty node-set M ⊆ Nmix.
Then, the hide operation hide(A,M) on A results a pPTCA
∃M[A] = (L,C∪ {y},N \M,−→M , L0, ic, ρM) where −→M is
given by the rules:

l
cc
−−→ π, (N = ∅ ∨ N \ M , ∅)

l
cc
−−→M πM

or
l

cc
−−→ π, ∅ , N ⊆ M

l
cc∧(y>0)
−−−−−−→M πM

where πM(

eM︷ ︸︸ ︷
N \ M, δ|N\M ,C ∪ {y}, l′) = π(

e︷ ︸︸ ︷
N, δ,C, l′), and for

each ct ∈ Ct ρM(ct)(eM) = ρ(ct)(e), ρM(ct)(l) = ρ(ct)(l) for
all eM and l ∈ L. The second rule is used to specify the case
that when all the nodes and corresponding data constraints
are hidden (as the result of a hiding operation), we need to
ensure this transition can fire only after some positive delay.
This is achieved by adding an additional clock.

Example 6. Figure 12 illustrates the process of building a
connector out of a priced faulty expiring FIFO-1 channel and
a priced synchronous channel. On the level of the Reo cir-
cuit, these two channels join over B, then hiding it leads to
the absence of B and the sum of b2 and b3 as the new price as-
sociated to the buffer to C. The semantic operations for those
behaviours are denoted by the product of the two pPTCA and
hiding B and all data constraints involved with dB on transi-
tions.

Remark 3 (Time-locks problem in Reo circuits). Due to the
arbitrary combinations of timed channels, time-locks may
happen.

In order to present the interesting logic for properties on
the domain of pPTCA models, we first give the semantics of
pPTCA by means of Markov decision process (MDP).

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

10
Kangli HE et al.: Connection Models for the Internet-of-Things

A

≤ t

$̇
1

B B C

A

≤ t

$̇
1

B C

A

≤ t

$̇
1

C

b1

p

b2 b3

b1

p

b2 b3

b1

p

b2 + b3

join

hide({B})

l1
0

l′1(d)
x ≤ t

$
l2
0

l1 l2
0

l′1(d) l2
x ≤ t

$

l1 l2
0

l′1(d) l2
x ≤ t

$

true

true

true

[p], {A}, dA = d

[1 − p]
{A}, x := 0, dA = d

b1
x = t

{B}, x < t, dB = d
b2

{B,C}
dB = dC

b3

[p], {A}, dA = d

[1 − p]
{A}, x := 0, dA = d

b1
x = t

{B,C}, x < t, dB = dC = d
b2 + b3

[p], {A}, dA = d

[1 − p]
{A}, x := 0, dA = d

b1
x = t

{C}, x < t, dC = d
b2 + b3

A1 ./ A2

∃{B}[A]

Fig. 12 Example on join and hide, and their semantics.

4 Semantics of pPTCA

4.1 Probabilistic Timed Systems

The semantics for a pPTCA is given by a probabilistic timed
system (PTS for short) with reward structures extended from
[23]. Specifically a PTS is an infinite MDP where transitions
are decorated with time durations and a particular set of la-
bels. The latter is encoded inside the probability distributions
to inherit the information of I/O-operations from pPTCA.

Definition 4 (PTS). A probabilistic timed system (PTS) is
a Markov Decision Process M = (S , IO, S teps, S 0), where
S is a set of states, S 0 ⊆ S the set of initial states, and
IO ⊆ 2N × DA a countable set of I/O-operations. S teps :
S → 2R≥0×Distr(IO×S) is a transition function that assigns to
each state s ∈ S a set of pairs (t, π) where t ∈ R≥0 and
π ∈ Distr(IO × S).

A PTS starts at an initial state s0 ∈ S 0. When in state
s ∈ S , there is a nondeterministic choice between avail-
able duration-distribution pairs (t, π) ∈ S teps(s). After the
choice, a transition is taken and after t time units a succes-
sor state s′ together with an I/O-operation io ∈ IO is selected
by probability π(io, s′). Such transition steps are denoted by

s
t,π,io
−−−−→ s′. In order to make this understood more intuitively,

we would like to split the duration and distribution aspects

apart. For a transition step s
t,π,io
−−−−→ s′, there exists a time step

s
1:t
−−→ s′′, and respectively a discrete step s′′

p:io
−−−→ s′ where

p = π(io, s′). The number before the colon stands for the
probability taking that step. A state s is called terminal iff

S teps(s) = ∅. Given a transition step s
t,π,io
−−−−→ s′, s + t denotes

s′.

4.1.1 Paths

A path in PTS is gained by resolving nondeterministic and
probabilistic choices and defined as the following finite or
infinite transition steps:

ω = s0
t0,π0,io0
−−−−−−→ s1

t1,π1,io1
−−−−−−→ s2

t2,π2,io2
−−−−−−→ . . .

where si ∈ S , ti ∈ R≥0, ioi ∈ IO, (ti, πi) ∈ S teps(si), and
(ioi, si) ∈ support(πi) for all 0 ≤ i < |ω|, where |ω| denotes
the number of transition steps in ω. |ω| is defined as ∞ for
infinite paths, and Last(ω) stands for the state where a finite
path ω ends. ω is called maximal iff Last(ω) is terminal. ω
is called initial if it starts from one initial state. ω(i) denotes
the (i + 1)-th state of ω, i.e., ω(i) = si. ωi denotes the pre-

fix sequence of ω till si, i.e., ωi = s0
t0,π0,io0
−−−−−−→ s1

t1,π1,io1
−−−−−−→

. . .
ti−1,πi−1,ioi−1
−−−−−−−−−→ si. We use FiPath to denote the set of finite

paths in PTS and InPath the set of infinite paths. FiPath(s)
and InPath(s) are the sets of finite paths and infinite paths re-
spectively that start from s ∈ S . FuPath(s) refers to the set of
fulpaths (starting from s) that are either maximal finite paths
or infinite paths.

For a path ω in PTS, Dω(n) denotes the duration up to state
sn. Formally, Dω(n) =

∑n−1
0 ti. An infinite path ω ∈ InPath

is time divergent, if for any t ∈ R≥0, there exists j ∈ N such
that Dω(j) > t. An example of non-divergent path, specifi-

cally a zeno path, is: ω = s0
2,π0,io0
−−−−−→ s1

1,π1,io1
−−−−−→ s2

0.5,π2,io2
−−−−−−−→

s3
0.25,π3,io3
−−−−−−−→ . . .

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

11

Definition 5 (Reward structure). A reward structure for a
PTS M = (S , IO, S teps, S 0) is a pair rew = (rewst, rewdi)
where rewst : S → R is a state reward function and rewdi :
IO × S → R is a discrete reward function.

Given a reward structure rew = (rewst, rewdi), for a state s,
rewst(s) denotes the rate at which the reward is accumulated
when in s. Whilst given a probability distribution π, for an
I/O-operation io and a state s, rewdi(io, s) denotes the reward
required for choosing pair (io, s) ∈ support(π). Formally,

given an infinite path ω = s0
t0,π0,io0
−−−−−−→ s1

t1,π1,io1
−−−−−−→ s2

t2,π2,io2
−−−−−−→

. . . , the step reward accumulated from si to si+1 is defined as:
rew(ω, i) = rewst(si) · ti + rewdi(ioi, si+1).

4.1.2 Schedulers

A (history-dependent) scheduler resolves the nondeterminis-
tic choices by choosing a duration-distribution pair depend-
ing on the current state and on the current prefix of the path
up to that state.

Definition 6 (Scheduler of a PTS). Given a PTS M =

(S , IO, S teps, S 0), a scheduler of M is a function ζ :
FiPath → R≥0 × Distr(IO, S) such that ζ(ω) ∈

S teps(Last(ω)) for all ω ∈ FiPath.

Intuitively, if a PTS has progressed so far arriving at s
along a finite pathω under a scheduler ζ, then it will take time
duration t ∈ R≥0 and choose an I/O-operation io ∈ IO lead-
ing to state s′ in the next step with probability π(io, s′), where
(t, π) = ζ(ω) ∈ S teps(s). Scheduler ζ on PTS M induces a
discrete time Markov chain (DTMC)Mζ . Each state inMζ

is a finite path ω inM. The transition probability distribution
is determined by ζ. We denote the set of all schedulers onM
as SCHM.

Given a scheduler ζ, we define FiPathζ(s) (respectively
InPathζ(s) and FuPathζ(s)) as the set of finite paths (respec-

tively infinite paths and fulpaths) ω = s
t0,π0,io0
−−−−−−→ s1

t1,π1,io1
−−−−−−→

. . . (starting from s) such that for any i ∈ N, π(ioi−1, si) > 0
where πi = ζ(ωi−1). Then we define the probability for a

finite path induced by a scheduler ζ. For ω = s0
t0,π0,io0
−−−−−−→

s1
t1,π1,io1
−−−−−−→ . . .

tk−1,πk−1,iok−1
−−−−−−−−−−→ sk ∈ FiPathζ , if k = 0, Pζ(ω) = 1,

else if k ≥ 1, Pζ(ω) = Pζ(ωk−1) · ζ(ωk−1)(iok−1, sk).
Built on the basic notions of probability theory [24], for

each state s, we show that Pζ induces a probability space on
FuPathζ(s) as follows. We define σFieldζs as the smallest
σ-field on FuPathζ(s) containing the basic cylinders ω ↑3),

3) σ ↑= {ω ∈ FuPathζ (s) : σ ≤pre ω} where ≤pre is the usual prefix
relation on paths.

where ω ∈ FiPathζ(s), i.e., ω ranges over all finite paths
starting in s. The probability measure Probζs is the unique
measure on σFieldζ(s) such that Probζs(ω ↑) = Pζ(ω).

4.2 Semantics of pPTCA

The semantics of a pPTCA is a PTS where the states keep
track of the current location and the current values of all clock
variables, the labels on probabilistic branches keep track of
I/O-operations in pPTCA, and the attached reward structures
record prices. Given a pPTCAA = (L,C,N ,−→, L0, ic, ρ), a
state is a pair of 〈l, ν〉, where l ∈ L is a location ofA, ν ∈ CA
is a clock assignment over C and ν |= ic(l). The initial state
ofA is represented by 〈l0, 0〉 for all l0 ∈ L0.

Definition 7 (Semantics of pPTCA). The semantics of a
pPTCA A = (L,C,N ,−→, L0, ic, ρ) is a PTS MA =

(S , IO, S teps, S 0) with:

• S = {〈l, ν〉 | ν |= ic(l), ν ∈ CA(C), l ∈ L},
• S 0 = {〈l0, 0〉 | l0 ∈ L0},
• IO = {〈N, δ〉 | N ⊆ N , δ ∈ DA(N)},
• Given (t, π) ∈ S teps(〈l, ν〉), the transition −→ is defined

by the following rules:

– discrete transition: 〈l, ν〉
0,π,〈N,δ〉
−−−−−−→ 〈l′, ν′〉 if there

exists l
cc
−−→ π′ inA such that:

(i) π′(N, δ,C, l′) > 0,

(ii) ν |= cc,

(iii) ν′ = ν[C := 0] and ν′ |= ic(l′), and

(iv)

π(〈N, δ〉, 〈l′, ν′〉) =
∑

C⊆C,ν′=ν[C:=0]

π′(N, δ,C, l′)

We simply write this transition as 〈l, ν〉 −→ π.

– time transition: 〈l, ν〉
t′
−−→ D(∅, 〈l, ν + t′〉) for all

0 ≤ t′ ≤ t, if ν + t′ |= ic(l).
We simply write this transition as

〈l, ν〉
t′
−−→ 〈l, ν + t′〉.

For each reward structure rewct = (rewst
ct, rewdi

ct) corre-
sponding to a cost ct ∈ Ct, and any 〈l, ν〉 ∈ S , we define:

• rewst
ct(〈l, ν〉) = ρ(ct)(l) and

• rewdi
ct (〈N, δ〉, 〈l, ν〉) = ρ(ct)(〈N, δ,C, l〉) for all

(N, δ,C, l) ∈ E where ν[C := 0] |= ic(l).

Followed by the notion of reward structures, we can define
the transition reward as:

• for a discrete transition:

rewct(〈l, ν〉 −→ π) =
∑

e=(〈N,δ〉,〈l′,ν′〉)∈support(π)

π(e) · rewdi
ct (e),

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

12
Kangli HE et al.: Connection Models for the Internet-of-Things

and
• for a time transition:

rewct(〈l, ν〉
t
−−→ 〈l, ν + t〉) = t · rewst

ct(〈l, ν〉).

Given a pPTCA A and s = 〈l, ν〉 a state inMA, an s-path
(or simply path) inA denotes any path inMA from s.

Remark 4. In this paper, we restrict our attention to time
divergent behaviour, a common restriction imposed in real-
time systems. So unrealised behaviour, on which the cor-
responding time does not advance beyond a time bound, is
disregarded. The eligible behaviour is also called non-zeno.
In another word, all infinite paths inMA are time divergent.

5 Priced Probabilistic Timed Scheduled Data
Stream Logic

Since our IoT tailored extension of Reo and its underlying
pPTCA models are driven by data and pricing information,
it is worthwhile to consider formally the observable data-
flow together with particular pricing informations contained
in paths of a pPTCA. For this, we introduce a priced exten-
sion of timed scheduled data streams [9]. Each such stream
keeps track of cost ct ∈ Ct accumulating along a sequence of
triples (t̊, io, b) where t̊ stands for a time point, io = 〈N, δ〉 de-
notes I/O-operations where N ∈ N is a non-empty node-set
and δ ∈ DA(N) a data assignment, and b ∈ R being the cost
value accumulated up to t̊. Intuitively, (t̊, io, b) means that at
time t̊ the I/O-operation io specified by 〈N, δ〉 is performed,
incurring an accumulated cost value of b.

Notation 4 (pTsD stream). Given a node set N , a priced
timed scheduled data stream (pTsD) is defined as a finite or
infinite sequence Θ = (t̊0, io0, b0), (t̊1, io1, b1), . . . ∈ (R>0 ×

IO×R)∞ such that 0 < t̊0 ≤ t̊1 ≤ . . ., for all ioi = 〈Ni, δi〉, ∅ ,

Ni ∈ N , δi ∈ DA(Ni), and Θ is time divergent. The empty
pTsD stream is denoted by ε. The length |Θ| stands for the
number of tuples (t̊, io, b) in Θ. t(Θ) denotes the execution
time of Θ. t(Θ) is defined as∞ if Θ is infinite, t̊k if |Θ| = k+1,
and 0 if Θ = ε. b(Θ) stands for the accumulated cost value
of Θ after the execution time t(Θ), and defined as ∞ if Θ is
infinite, bk if |Θ| = k + 1, and 0 if Θ = ε. pTsD denotes the
set of all pTsD streams.

Definition 8 (pTsD-language of a pPTCA). Given a pathω =

s0
t0,π0,io0
−−−−−−→ s1

t1,π1,io1
−−−−−−→ . . . from the semantic PTS MA of a

pPTCA A. We define Θ(ω) induced from ω by (i) retrieving
ti and ioi from the step labels together with the step rewards

bi = rew(ω, i), (ii) replacing ti with the accumulated duration
t̊i = t0 + t1 + . . . + ti, bi with the total accumulated cost value
b′i = b0 + b1 + . . . + bi, and (iii) removing all (t̊i, ioi, b′i) with
ioi = ∅. The generated pTsD-language of a state s inMA is
L(A, s) = {Θ(ω) ∈ pTsD | ω ∈ FuPath(s)}. Language L(A)
represents all pTsD streams Θ(ω) where ω is a maximal and
initial path.

In order to verify pPTCA models against priced proba-
bilistic timed properties, one can use temporal logic to ex-
press these quantitative properties. The basis for this is
PCTL∗, a probabilistic variant of CTL [25]. Here we present
Priced Probabilistic Timed scheduled Data stream Logic
(pPTDL for short) that is a real-time variant of PCTL∗ to-
gether with operators as in [26] to specify prices (or costs
or rewards). pPTDL allows us to reason about the observ-
able pricing data flow of a Reo circuit by means of the pTsD
streams generated by its underlying pPTCA. The probabilis-
tic behaviour can also be quantified supported through prob-
abilistic operators. This puts us in the position to describe
interesting properties for IoT, such as ‘reliability’, ‘depend-
ability’, and ‘performability’ [27].

5.1 Syntax of pPTDL

In this paper, we take the way in [9] to describe the modality
© (next step), which is one standard operator in traditional
probabilistic CTL [28], as an operator 〈〈γ〉〉ψ consisting of a
pTsD expression γ and a formula ψ. pTsD expressions ex-
tend timed regular expressions [29] so as to specify sets of
finite pTsD streams. Intuitively, 〈〈γ〉〉ψ holds for a pPTCA A
iff each pTsD stream Θ ∈ L(A) has a (finite) prefix that gen-
erates a γ-word (i.e. a word expressed by γ) and ψ holds for
its remaining suffix. The 〈〈·〉〉 operator can be considered as a
‘universal-hold’ case for the non-deterministic structures. On
the other hand, we can use the dual operator ~·� for specify-
ing a ‘selective-hold’ case. ~γ�ψ = ¬(〈〈γ〉〉¬ψ) is satisfied for
A iff whenever a pTsD stream Θ ∈ L(A) possesses a (finite)
prefix generating a γ-word, ψ holds for its corresponding suf-
fix.

The pTsD expression is defined as:

γ ::= 〈N, δ〉 | γ1 ∨ γ2 | γ1 ∧ γ2 | γ1; γ2 | γ
∗ | γI | γb

where N is a non-empty set of nodes and δ ∈ DA(N), b is a
cost value, and I is a time interval of the form [0, a] or [0, a)
where a ∈ R≥0 ∪ {∞}. Usually we simply write < a, ≤ a or
∞ instead of I. As introduced in regular expressions, γ1 ∨ γ2

refers to union, γ1∧γ2 intersection, γ1; γ2 concatenation, and
γ∗ Kleene closure. γI and γb specify the same properties as γ

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

13

except for a constraint that the total execution time falls in the
time interval I and that the accumulated cost value is within
the bound of b respectively.

The syntax of pPTDL is given by:

φ ::= true | ¬φ | φ1 ∧ φ2 | P∼p[ψ] | Rrew
∼b [ι]

ψ ::= true | 〈〈γ〉〉ψ | ψ1Uψ2

ι ::= Ak | Fφ | Lψ

where p ∈ [0, 1], b ∈ R,∼∈ {=, <, >,≤,≥}, and rew is a re-
ward structure corresponding to some cost ct ∈ Ct. φ is called
state formula, which refers to the satisfied properties on states
of the semantic model. P and R stand for probabilistic and
reward operators respectively. P∼p[ψ] specifies that the prob-
ability of stream formula ψ being true is within the bound
∼p. 〈〈γ〉〉ψ indicates a time point such that the induced prefix
and suffix of the stream satisfy γ and ψ respectively. ψ1Uψ2

means that a suffix of the stream satisfying ψ2 exists, and ψ1

is met for all suffix starting from each time point prior to that.
Notably, the constituents of stream formulae in our definition
are also stream formulae, which differ from those of the path
formulae in PCTL∗ where the constituents are allows to be
state or path formulae. This is due to the pTsD-stream-based
semantics which is detailed in the next sub-section. The em-
braced LTL-flavour in pPTDL also forms the main reason
to not remould another CTL variant PCTL [30, 31]. Rrew

∼b [ι]
specifies the expected pricing value under condition ι with
the given reward structure rew (on its semantic PTS model)
is within the bound ∼b. Ak models the accumulated reward
until time k, Fφ the accumulated reward until reaching a state
satisfying φ, and Lψ the lowest cost for streams satisfying ψ.
Intuitively, those conditions for expected pricing value refer
to three aspects respectively: (i) cost under a period of time
constraint, (ii) cost to reach some state inducing the target set
of pTsD streams, and (iii) cost on some target set of pTsD
streams. Note that pTDL does not contain a time-bounded
operator on stream formula, which in practice can be mod-
elled with the help of γI .

In order to specify the properties in a more friendly and
easy-understanding way, we derive the common operators on
stream formulae as follows. Next: ©ψ = 〈〈

∨
i〈Ni, true〉〉〉ψ

where Ni ranges over all non-empty subsets ofN . Eventually:
^ψ = trueUψ. Always: �ψ = ¬^¬ψ.

Example 7. The CA for FIFO-1 channel in Figure 4 satisfies
the property

φ1 =
∧

d∈Data

P=1
(
�(~〈{A}, dA = d〉�〈〈〈{B}, dB = d〉〉〉true)

)

that states ‘for all incoming data d from node A, after d is
written into the buffer, node B always read the same d’.

For simplicity, we would like to omit the brackets for the
node sets and the true statements. The t≥-timer introduced in
Figure 9.Ä satisfies the following property

φ2 = P=0
(
�(~〈A〉∗�〈〈〈B, dB = TO〉<t

〉〉)
)

which describes ‘the probability that after node A inputs a
(arbitrary) data for several times, node B outputs the message
“Time Out" within (excluding) t time units is zero’.

In Figure 12, the compositional channel built from the
FIFO-1 and a synchronous channel satisfies the property

φ3 = Rrewenergy
≥(b1+b2+b3)[A

t]

that shows ‘under the reward structure rewenergy correspond-
ing to the cost energy, the accumulated energy cost until t
time units is at least (b1 + b2 + b3)’.

5.2 Semantics of pPTDL

Since we focus on the priced observable data-flow feature, the
semantics of pPTDL model is studied from the perspective of
satisfaction on streams. Before giving the formal definition
of the semantics, we first introduce the basic theorem of time
cuts and stream concatenation.

5.2.1 Time cuts

Given a pTsD stream Θ = (t̊0, io0, b0), (t̊1, io1, b1), . . . and a
time point t ∈ R>0, we use Θ↑t and Θ↓t to denote the pTsD
stream that specifies the data-flow in the time interval [t,∞)
and [0, t) respectively. Formally,

• Θ↑t = ε if |Θ| = k + 1 < ∞ and t̊k < t, and
• Θ↑t = (t̊k, iok, bk), (t̊k+1, iok+1, bk+1), . . . if |Θ| = ∞ and k

is the smallest index such that t̊k ≥ t.
• Θ↓t = ε if |Θ| = ε or t̊0 ≥ t, and
• Θ↓t = (t̊0, io0, b0), . . . , (t̊k, iok, bk) if |Θ| , ∞ and k is the

largest index such that t̊k < t.

5.2.2 Concatenation

Consider pTsD streams Θ1 = (t̊1
0, io

1
0, b

1
0), . . . , (t̊1

n, io
1
n, b

1
n), and

Θ2 = (t̊2
0, io

2
0, b

2
0), . . . , (t̊2

m, io
2
m, b

2
m), we define the concatena-

tion of Θ1 and Θ2 as

Θ1; Θ2 =(t̊1
0, io

1
0, b

1
0), . . . , (t̊1

n, io
1
n, b

1
n),

(t̊2
0 + t̊1

n, io
2
0, b

2
0 + b1

n), . . . , (t̊2
m + t̊1

n, io
2
m, b

2
m + b1

n).

Now we give the formal definition of the semantics of pTsD
expressions and pPTDL formulae.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

14
Kangli HE et al.: Connection Models for the Internet-of-Things

5.2.3 Semantics of pTsD expression

We define the concatenation of finite pTsD streams as fol-
lows. Θ; ε = ε; Θ = Θ. For L1 and L2 that are pTsD-
languages with the same node-set N and the same involved
cost ct ∈ Ct, we defineL1;L2 = {Θ1; Θ2 |Θ1 ∈ L1,Θ2 ∈ L2}.
L∗ = ∪n≥0L

n where L0 = {ε},Ln+1 = Ln;L.

The semantics of pTsD expression γ is defined by struc-
tural induction as L(γ) ⊆ pTsD. L(〈N, δ〉) is the set of all
pTsD streams of length one with the form of (t̊, 〈N, δ〉, b).
L(γ1 ∨ γ2) = L(γ1) ∪ L(γ2), L(γ1 ∧ γ2) = L(γ1) ∩ L(γ2),
L(γ1; γ2) = L(γ1);L(γ2), and L(γ∗) = L(γ)∗. L(γI) = {Θ ∈

L(γ) | t(Θ) ∈ I}. L(γb) = {Θ ∈ L(γ) | b(Θ) ≤ b}.

5.2.4 Semantics of pPTDL

Given a pPTCAA, the semantics of pPTDL (state) formulae
is given in terms of the satisfaction relation |= on the states
of semantics modelMA, which is presented by the structural
induction as follows.

s |= true

s |= ¬φ iff s 6|= φ

s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= P∼p[ψ] iff Probζs({ω ∈ FuPathζ(s) | Θ(ω) |= ψ}) ∼ p

for all ζ ∈ SCHMA

s |= Rrew
∼b [ι] iff Expvζs(rv(rew, ι)) ∼ b

for all ζ ∈ SCHMA

where the semantics of stream formula ψ is defined with re-
gard to the data-flow streams of pPTCAA as follows:

Θ |= true

Θ |= ¬ψ iff Θ 6|= ψ

Θ |= ψ1 ∧ ψ2 iff Θ |= ψ1 and Θ |= ψ2

Θ |= 〈〈γ〉〉ψ iff ∃t ∈ R≥0 such that Θ↓t ∈ L(γ) ∧ Θ↑t |= ψ

Θ |= ψ1Uψ2 iff ∃t ∈ R≥0 such that Θ↑t |= ψ2

and Θ↑t′ |= ψ1 for all t′ with 0 ≤ t′ ≤ t

and Expvζs(rv) refers to the expected value for random vari-
able rv based on the paths ω starting from s and induced by
ζ, which for reward structure rew = (rewst, rewdi) overMA

is defined as follows:

rv(rew,Ak) =

jk−1∑
i=0

rew(ω, i) + (k − Dω(jk)) · rewst(ω(jk))

rv(rew,Fφ) =


jφ−1∑
i=0

rew(ω, i) + tφ · rewst(ω(jφ))
if (jφ, tφ)

exists

∞ otherwise

rv(rew, Lψ) = min{b(Θ(ω)) | Θ(ω) |= ψ}

where jk = max{i | Dω(i) < k}4), jφ is the minimum position
such that ω(jφ) + tφ |= φ.

Is it easy to find the semantics for operator ~γ�ψ as fol-
lows:

Θ |= ~γ�ψ iff for all t ≥ 0, Θ↓t ∈ L(γ) implies Θ↑t |= ψ.

We say A |= φ iff for all initial states s ∈ S 0 of MA

such that s |= φ. We define the induced pTsD-language for a
pPTDL-formula φ as:

L(φ) = {Θ(ω) ∈ pTsD | ω ∈ FuPath(s) ∧ s |= φ}.

Then the equivalence ≡ of pPTDL-formulae is defined as
φ1 ≡ φ2 iff L(φ1) = L(φ2).

5.3 Verification of pPTCA against pPTDL

One can build the pPTReo circuit for the modelling of IoT
system, and the underlying semantic behaviour is represented
by the corresponding pPTCA model. The model reflects
how the real system behaves, and naturally it is interesting
to formally understand what properties the model satisfies.
In another word, we apply the pPTDL formulae to verify
the pPTCA models. The criteria for such process is pre-
sented as the relationships between the state/model-property
satisfaction and the pTsD-language inclusion. Intuitively,
we need to clarify when a state in a pPTCA model satisfies
a formula expressed by pPTDL, whether the corresponding
pTsD-language generated by the state itself is included in
that induced by the formula. Formally, we have the following
propositions.

Proposition 1. Given a pPTCA A, its semantic modelMA

and a pPTDL-formula φ, s |= φ iff L(A, s) ⊆ L(φ).

Proof. We consider two directions respectively.
(i) s |= φ implies L(A, s) ⊆ L(φ). According to Def-

inition 8, L(A, s)
de f
= {Θ(ω) ∈ pTsD | ω ∈ FuPath(s)},

4) Using < k instead of ≤ k guaranteens that the last discrete reward is
excluded when some transition step is about to happen at time k.

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

15

and according to the above, L(φ)
de f
= {Θ(ω) ∈ pTsD | ω ∈

FuPath(s) ∧ s |= φ}. Since s |= φ, it is straightforward that
L(A, s) = L(φ).

(ii) L(A, s) ⊆ L(φ) implies s |= φ. For each Θ(ω) where
ω ∈ FuPath(s), it is also an element of L(φ). According to
the definition of L(φ), we have s |= φ. �

Proposition 2. Given a pPTCA A, its semantic modelMA

and a pPTDL-formula φ,A |= φ iff L(A) ⊆ L(φ).

Proof. The proof can be done similar to Proposition 1. �

Remark 5. Let A1 and A2 be two pPTCA with the same
node-setN . Clearly ifL(A1) ⊆ L(A2) then, for any pPTDL-
formula φ,A2 |= φ impliesA1 |= φ. Thus if L(A1) = L(A2)
thenA1 andA2 satisfy the same pPTDL-formulae.

6 Case Study

In this section, we consider an Internet-of-Things scenario
where a remote and isolated factory unit answers to cus-
tomers’ requests. We assume in this IoT system that one sink
device SD is in charge of receiving orders and distributing
the tasks to robots. The robots are deployed in hostile envi-
ronments and their main duty is to sense, process and transmit
data. They need to be able to operate as long as possible. Due
to cost economics, they are small in size and provide limited
power (supported by batteries). At the beginning, only one
robot named R1 is deployed, and can handle one task at a
time. After completing the task, R1 sends data to one nearby
workstation W through Zigbee channels for further process-
ing. In this case, we consider one energy cost function ρ, and
therefore write ρ instead of ρ(ct) where ct stands for the only
energy cost.

6.1 Reo circuit for the system

We can easily construct the model of connecting every thing
in this IoT system as layed out in Figure 13. We use one
connector composed of one FIFO-1, one t≥-timer and one
synchronous drain channel to model task processing in R1,
where the data from the buffer can only be fetched after the
execution time (i.e. ≥5). The drain channel restricts time-out
and buffer-clear to coincide. Price rates equipping FIFO-1
and t≥-timer represent the energy consumption rate for data
storing and processing respectively. The energy consump-
tion for data transmission is encoded in Zigbee channels.
Due to the unreliable wireless network, these communica-
tion channels have a loss probabilities associated. SD writes

A
4̇¢
1
≥5
5̇¢

Z
1

10%
B31¢

R1

Fig. 13 Reo circuit for the exemplary IoT system.

{A,n1},dA=dn1=d
x1:=0

10%{n2,n3}
dn2=TO,dn3=d

90%{n2,n3}
dn2=TO,dn3=d
x2:=0

{B}
x2=1,dB=d

{A,n1},dA=dn1=d
x1:=0

x2≤1

{A,n1},dA=dn1=d

{n1}dn1=d
x1:=0
{n2}

x1≥5,dn2=TO

{n2,n3} {n1}dn1=d

{n3}dn3=d

{n1}dn1=d
x1:=0
{n2,n3}

x1≥5,dn2=TO,dn3=d

90%{n3}
dn3=d,x1:=0

{B}x2=1,dB=d

10%{n3}dn3=d

R1

5 4

9
x2≤1

9

9

31

31

31

{B}
x2=1,dB=d

Zigbee

l0 l1

l2l3

x1≥5

R1SD

Fig. 14 pPTCA for the exemplary IoT system.

data through A and W reads data from B. We use numbers
with ¢(i.e. Kilo Joule) to denote energy consumption, and
numbers with no units for time.

Based on the pPTCA A corresponding to this example in
Figure 14, one can identify the target run that transmits data
to W with lowest energy cost as follows:

r1 = l0
true,t1,π0
−−−−−−→ l1

l1=5,5,π1
−−−−−−→ l2

x2=1,1,π2
−−−−−−−→ l0

where e0 = 〈{A,n1}, dA = dn1= d, x1 := 0, l1〉, e1 = 〈{n2,n3}, dn2=

TO∧dn3=d, x1:=0, l2〉, e2=〈{B}, dB=d, ∅, l0〉, π0(e0)=1, π1(e1)=
0.9, π2(e2)=1. The energy cost of r1 is TC(r1) = (ρ(l0) · t1 +

ρ(e0)) + (ρ(l1) ·5 +ρ(e1)) + (ρ(l2) ·1 +ρ(e2)) = 76¢. The reach
probability is P1 = 1 · 0.9 · 1 = 0.9.

For this system, one interesting property is that ‘it is pos-
sible whenever the robot sends some data, less than 6 time
units within which time no new data is sent by the robot, the
workstation receives the same data’, which is specified by
pPTDL-formula

φ1 =
∧

d∈Data

P>0
(
�(~〈A, dA = d〉�〈〈

(
(¬〈A〉)∗〈B, dB = d〉

)<6
〉〉)

)
where ¬〈A, δA〉 refers to the disjunction of all pTsD expres-
sions 〈N, δN〉 that are not pairwise equal to 〈A, δA〉. However
φ1 is not satisfied by A of the system, i.e., s0 = 〈l0, 0〉6|=φ1

where s0 is the initial state inMA. Let us consider the data-

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

16
Kangli HE et al.: Connection Models for the Internet-of-Things

A

B C

b b
A
⊗⊗⊗b

B C

Fig. 15 Router connector and its instance.

A ⊗⊗⊗
5¢

4̇¢
1
≥5
5̇¢

4̇¢
1
≥2
4̇¢

Z
1

10%

Z
1

10%

B

31¢

31¢

SD

R1

R2

M
er

ge
r

Fig. 16 Reo circuit for the updated exemplary system.

flow stream with the possible shortest execution time. As-
sume initially at s0, one data d∈Data is written by the node
A at time 0, then a transition is taken moving to the state
s1 = 〈l1, x1=x2=0〉. After 5 time units for the data process-
ing, the probabilistic choice to successfully send the data by
Zigbee channel is determined immediately moving to state
s2 = 〈l2, x1=5∧x2=0〉. Then after 1 time unit, d is read from
node B without any delay, and state s3 = 〈l0, x1=6∧x2=1〉
is reached. This procedure coincides with the target run r1

where t1 = 0, and the induced pTsD stream is

Θ(r1) =(0, 〈{A, n1}, dA=dn1=d〉, 0)

(5, 〈{n2, n3}, dn2=TO∧dn3=d〉, 45)(6, 〈{B}, dB=d〉, 76).

It is easy to see φ1 does not hold for Θ(r1), since the shortest
execution time is 6 time units. Therefore we have A 6|= φ1.
Similarly, we can verify the system satisfies the following
property ‘once the robot sends a data, the workstation will
eventually receive the same data’ presented by

φ2 =
∧

d∈Data

P=1
(
�(~〈A, dA = d〉�〈〈〈B, dB = d〉∞〉〉)

)
.

Properties like φ2 are called liveness properties, which infor-
mally specify that ‘something good’ will happen in the fu-
ture. One can also construct so-called safety properties stat-
ing ‘something bad’ never happens, by the use of probabilis-
tic operators. For instance, the following pPTDL formula

φ3 =
∧

d∈Data

P=0
(
�(〈〈(¬〈A, dA = d〉)∗〈B, dB = d〉〉〉)

)
shows that ‘the workstation never receives a data that is not
sent by the robot’. Apparently A |= φ3, and therefore from
such point of view we say this system is ‘safe’. Particularly,
the stream formulae within the probabilistic operator refer to
the sets of pTsD streams induced from the bad prefix of this
safety property.

Regarding the energy cost for the system, we can develop
a property specifying ‘once a data is sent by the robot, the
accumulated cost of the system up to 5 time units, no matter
whether the workstation receives the data or not, is at least 45

Kilo Joule’ as

φ4 = Rrewρ

≥45 [A5].

With the help of energy price function ρ, it is not difficult to
verify that φ4 holds for the system.

6.2 Updating the system

Now let us consider an update to this system: Due to the in-
creased financial budget and technical development, a new
advanced robot R2 is deployed in this unit. R2 is faster and
more effective (modelled with lower execution time and en-
ergy consumption rate for processing).

We first construct a compositional connector called Router
in Figure 15 to model the task distribution where incoming
tasks are routed to one of the robots. A Router is built out of
four synchronous channels, two lossy synchronous channels,
and one synchronous drain channel. A inputs some data item
d, and either B or C outputs d simultaneously. The nondeter-
minism for the case that both B and C are ready is determined
by the middle mixed node taking the data from only one of
the two synchronous channels coinciding on it. On the right
a simple mark is used to refer to the instance for Router. b
represents the energy price for effectuating the distribution.

The Reo circuit for this updated system is shown in Figure
16. Notably, realizing such a flexible and adaptive communi-
cation and interaction pattern is readily possible by means of
priced probabilistic timed Reo. The updated connectors are
depicted in red. The corresponding pPTCA B in Figure 17
can be mechanically inspected to compute the lowest energy
consumption and the corresponding probability for transmit-
ting data to W either by R1 or R2.

6.2.1 Sequential process

If two tasks are assigned for R1 and R2 respectively and by
the order that one after another one finishes, we can find the
following target runs:

r2 = l0
true,t2,π0
−−−−−−→ l1

x1=5,5,π1
−−−−−−−→ l2

x3=1,1,π2
−−−−−−−→ l0

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

17

{A,n1,n2}
dA=dn1=dn2=d,x1:=0

10%{n3,n4},dn3=TO,dn4=d

90%{n3,n4}
dn3=TO,dn4=d,x3:=0

{n2}dn2=d
x1:=0
{n3,n4}

x1≥5,dn3=TO,dn4=d

90%{n4}
dn4=d,x3:=0

{n8}x3=1,dn8=d

10%{n4}dn4=dR1

9
x3≤1

9

31

{n5}dn5=d
x2:=0
{n6,n7}

x2≥2,dn6=TO,dn7=d
8

{A,n1,n2}dA=dn1=dn2

{A,n1,n5}dA=dn1=dn5

90%{n7}
dn7=d,x4:=0

{n9}x4=1,dn9=d

10%{n7}dn7=d

x4≤1

31

{B,n8}dB=dn8

{B,n9}dB=dn9

SD

R2 Zigbee2 Merger

Zigbee1

5

5

{A,n1,n2}
dA=dn1=dn2=d,x1:=0

{A,n1,n5}
dA=dn1=dn5=d
x2:=0

{A,n1,n5}
dA=dn1=dn5=d
x2:=0

{A,n1,n5}
dA=dn1=dn5=d
x2:=0

{A,n1,n5}
dA=dn1=dn5=d

x2:=0

{B,n8}x3
=1,dB=dn8

=d

10%
{n6,n7}
dn6=TO
dn7=d

90%{n6,n7}
dn6=TO,dn7=d
x4:=0

{A,n1,n2}
dA=dn1=dn2=d,x1:=0

10%{n3,n4}
dn3=TO,dn4=d

{A,n1,n2}
dA=dn1=dn2=d,x1:=0

{A,n1,n2}
dA=dn1=dn2=d,x1:=0

{A,n1,n2}
dA=dn1=dn2=d,x1:=0

{B,n8}x3=1,dB=dn8=d

{B,n8}x3=1,dB=dn8=d

{B,n8}x3=1,dB=dn8=d

{B,n9}
dB=dn9=d
x4=1

{A,n1,n5}
dA=dn1=dn5=d
x2:=0

{A,n1,n5}
dA=dn1=dn5=d
x2:=0

{B,n9}
dB=dn9=d
x4=1

{B,n9}
dB=dn9=d
x4=1

{B,n9}
dB=dn9=d
x4=1

{B,n8}x3
=1,dB=dn8

=d

{B,n8}x3
=1,dB=dn8

=d

{B,n8}
x3=1,

dB=dn8
=d

{A,n1,n2}
dA=dn1=dn2=d,x1:=0

{A,n1,n2}
dA=dn1=dn2=d,x1:=0

{A,n1,n5}
dA=dn1=dn5=d

x2:=0

{A,n1,n5}
dA=dn1=dn5=d

x2:=0
{B,n9}

dB=dn9=d
x4=1

{B,n9}
dB=dn9=d
x4=1

{B,n9}
dB=dn9=d
x4=1

x3≤1 x3≤1

x3≤1 x3≤1

x4≤1

x4≤1

x4≤1

x4≤1

x4≤1 x4≤1
x3≤1

x4≤1
x3≤1 x4≤1

x3≤1

9

9

9 9

8

8 8

17 17

17 17

36

36

36

36

36

36

36

36

36
36

36

36

36

36

36

36

{B,n9}
dB=dn9=d
x4=1

{B,n8}x3=1,dB=dn8=d

l0 l1 l2 l3

l4 l5 l6 l7

l8 l9 l10 l11

l12 l13 l14 l15

90%{n3,n4}
dn3=TO,dn4=d,x3:=0

90%{n3,n4}
dn3=TO,dn4=d,x3:=0

90%{n3,n4}
dn3=TO,dn4=d,x3:=0

x1≥5

x1≥5

x1≥5

10%{n3,n4}
dn3=TO,dn4=d

10%{n3,n4}
dn3=TO,dn4=d

x1≥5

x2≥2 x2≥2 x2≥2 x2≥2

10%
{n6,n7}
dn6=TO
dn7=d

10%
{n6,n7}
dn6=TO
dn7=d

10%
{n6,n7}
dn6=TO
dn7=d

90%{n6,n7}
dn6=TO,dn7=d
x4:=0

90%{n6,n7}
dn6=TO,dn7=d
x4:=0

90%{n6,n7}
dn6=TO,dn7=d
x4:=0

Fig. 17 pPTCA for the exemplary IoT system.

where e0=〈{A,n1,n2}, dA=dn1=dn2=d, x1:=0, l1〉, e1=〈{n3,n4}, dn3=

TO∧dn4=d, x3 :=0, l2〉, e2=〈{B,n8}, dB=dn8 =d, ∅, l0〉, π0(e0)=
1, π1(e1)=0.9, π2(e2)=1, and

r3 = l0
true,t3,π0
−−−−−−→ l4

x2=2,2,π1
−−−−−−−→ l8

x4=1,1,π2
−−−−−−−→ l0

where e0=〈{A,n1,n5}, dA=dn1=dn5=d, x2:=0, l4〉, e1=〈{n6,n7}, dn6=

TO∧dn7=d, x4 :=0, l8〉, e2=〈{B,n9}, dB=dn9=d, ∅, l0〉, π0(e0)=
1, π1(e1)=0.9, π2(e2)=1. Due to the task distribution, the av-
erage energy cost is TC(r2)+TC(r3)

2 = 66.5¢. And the probability
for successful sequential process is P2 = 0.9 · 0.9 = 0.81.

6.2.2 Concurrent process

Alternatively in another case that two tasks are processed
concurrently (which is the exclusive feature of the updated
system), we can find a target run as:

r4 = l0
true,t4,π0
−−−−−−→ l1

true,0,π1
−−−−−−→ l5

x2=2,2,π2
−−−−−−−→ l9

x4=1,1,π3
−−−−−−−→ l1

x1=5,2,π4
−−−−−−−→ l2

x3=1,1,π5
−−−−−−−→ l0

where e0 = 〈{A,n1,n2}, dA = dn1 = dn2 = d, x1 := 0, l1〉,e1 =

〈{A,n1,n5}, dA=dn1=dn5=d, x2:=0, l5〉,e2=〈{n6,n7}, dn6 =TO, dn7=

d, x4 := 0, l9〉,e3 = 〈{B,n9}, dB = dn9= d, ∅, l1〉,e4 = 〈{n3,n4}, dn3=

TO∧dn4=d, x3 :=0, l2〉,e5 =〈{B,n8}, dB =dn8 =d, ∅, l0〉, π0(e0)=
1, π1(e1) = 1, π2(e2) = 0.9, π3(e3) = 1, π4(e4) = 0.9, π5(e5) = 1.
The energy cost is TC(r4) = 133¢, and the probability is
P3 = 0.81.

Under both circumstances, the old system can only take
sequential process, and it is easy to calculate the lowest en-
ergy consumption is TC = 76 · 2 = 152¢, the successful
probability P4 = 0.9 · 0.9 = 0.81. Obviously, in the case
of consuming the lowest energy the updated system performs
better than the old one while maintaining the same probability
of success. This can be analysed in the perspective of pPTDL
formula as follows. We first denote three stream formulae as

ψ1 = 〈〈〈A, dA = d1〉〈B, dB = d1〉〈A, dA = d2〉〈B, dB = d2〉〉〉

ψ2 = 〈〈〈A, dA = d1〉〈A, dA = d2〉〈B, dB = d1〉〈B, dB = d2〉〉〉

ψ3 = 〈〈〈A, dA = d1〉〈A, dA = d2〉〈B, dB = d2〉〈B, dB = d1〉〉〉

which respectively specify three independent cases about the
order of data flows on robot and workstation. Then the prop-
erty stating that ‘the lowest energy cost for the workstation
receiving the data, which consists of three independent cases

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

18
Kangli HE et al.: Connection Models for the Internet-of-Things

that guarantee the data is first sent by the robot, is greater than
152 Kilo Joule’ is presented by

φ5 = Rrewρ

≥152
[
L(ψ1)

]
∨ Rrewρ

≥152
[
L(ψ2)

]
∨ Rrewρ

≥152
[
L(ψ3)

]
Now we need to verify this property ofA and B respectively.
With regards to B, for each scheduler ζ, assume the sets of
pTsD streams satisfying ψ1, ψ2, ψ3 are respectively pTsDi =

{Θ(ω) |= ψi}, where i = 1, 2, 3, ω ∈ FiPathζs0 ∪ InPathζs0 , and
s0 = 〈l0, 0〉 is the initial state ofMB. It is straightforward to
see the lowest energy costs for pTsDi are all 133¢. The value
of L(ψi) are all 133, and therefore B 6|= φ5. Similarly, we
can verify that A |= φ5. The violation of φ5 directly shows
a lower value than 152 is gained for B, which represents a
lower energy cost by the updated system.

Based on pPTCA and pPTDL, one can explore more eval-
uations and also apply exhaustive verification techniques. For
instance, we might be interested in the situation where R1
and R2 both have just completed a task and the resulting data
is in transmission while no new tasks come in (modelled by
location l10 in Figure 17). It is not difficult to calculate the
minimal expected time for reaching that situation. Moreover
the numbers of complete task execution (i.e., reaching l0 from
l2 or l8) under some bounded time can be computed, just as
many other quantities of interest.

7 Related Work

7.1 IoT modelling languages

In recent years, varied efforts have been devoted to develop
the formal modelling involving pricing information in the IoT
domain. Li and Jin et al. developed an approach to model
the reliability and cost of service composition in the IoT
on the basis of Markov Decision Processes with cost struc-
ture [32]. Then in [33], Li and Wei et al. extended this work
to model real-time constraints, where the IoT services and
their corresponding environment can be described in Proba-
bilistic Timed Automata. However, they focus on a level of
services in SOC-based IoT. Martinez et al. [34] proposed a
methodology for the power consumption of wireless network
devices at the system level. Through this approach, appli-
cation engineers can foretell how parameters impact power
consumption and make estimates without a complete im-
plementation of the application. This pricing model exclu-
sively aims at analysing the energy life-cycles in applications,
making its limitations on IoT systems with probabilistic and
timed aspects. Costa et al. [35] proposed an approach to

model IoT systems based on SysML profile, and further to
apply NuSMV tool for model checking against CTL and LTL
properties. This approach provides a similar idea for choos-
ing graphical interface as the high-level modelling language,
however it lacks the key feature of probabilistic aspect in IoT
systems.

7.2 CA variants

Specifically, Lee has claimed that Reo plays a significant role
on an emerging means to model Cyber Physical Systems
(CPS) at the component interaction level [36]. Palomar et
al. [37] developed a case study on the scalable smart city sys-
tems in CPS using Reo as the modelling language. A closely
related model considering non-function requirements is the
so-called resource-sensitive TCA (RSTCA) [5] where execu-
tion times for interactions are made dependent on resource
availability and timeout behaviours. Relative to our approach
RSTCA seems more restrictive, using implicit clocks on each
transition. Another model, called Quantitative Constraint Au-
tomata [6], considers quantitative aspects which can be spec-
ified by so-called Q-algebra as constraints on transition. The
motivation of this model is close in spirit to the one con-
sidered here, but it avoids to consider global time advance
explicitly. In [38], Baier and Wolf developed Continuous-
time CA (CCA) as extensions of CA with soft (memory-
less) time, instead of hard time bounds (i.e., exact upper and
lower bounds of time). Stochastic Reo is a variant of Reo
appended with data arrival rates and processing delay rates.
The approach targets soft real-time behaviours, too, and is
thus similar in capabilities to the CCA approach. Two differ-
ent underlying semantics have been studied [39, 40]. Unfor-
tunately CCA can not represent nondeterminism. Motivated
by the IoT context, we are interested in hard real-time be-
haviours mixed with probabilistic effects and nondeterminis-
tic behaviours.

7.3 IoT supported logics

The very basic logics for describing quantitative properties
with priced, probabilistic and timed aspects in IoT systems
are the reward extensions of PCTL. Like in [26], Norman et
al. decorated a reward operator on the state formulae of PCTL
to specify the reward value under three specific conditions.
However, PCTL reflects directly how the states and paths be-
have, and abstracts the performance of data flows. And it is
not able to express the LTL-flavour properties, which on the
contrary are supported in PCTL∗. Arbab et al. in [9] pro-
posed a logic based on LTL [41] and equipped with a stream

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

19

modal operator to present properties of data flows. This logic
naturally lacks the expression for probabilistic and priced as-
pects. We hence delicately combine parts of these logics in
such a way that the reward operator from [26] is appended
within the state formulae of PCTL∗, the so-called path for-
mulae of which are replaced by stream formulae as shown in
Section 5, and the stream operator from [9] is inserted as a
component of the stream formulae. By this means, the novel
logic pPTDL is expressive enough for the required properties
for IoT systems modelled by Reo and pPTCA.

8 Conclusion and Future Work

In this paper, we develop a priced, probabilistic and timed
extension of Reo and Constraint Automata (which forms
pPTCA) for the purpose of enabling a faithful modelling of
IoT systems. Therefore, from the level of Reo, the mod-
eller can easily construct (possible) large scalable IoT sys-
tems. Within the framework of pPTCA, where cost, time
and probabilities are taken into consideration, the modeller
can describe, on a single model, different aspects of an IoT
system, and analyze real-time properties, performance, QoS
and reliability properties. An expressive logic called pPTDL
is proposed for the supporting properties and to verify the
pPTCA models in terms of inclusion on pTsD-languages. A
small example has demonstrated the principal expressiveness
and modelling conveniences.

As future work, two problems are worth considering. One
is pPTDL model checking where the key lies in the devel-
opment of an automated verification algorithm. The other
aspect that we consider worthwhile to explore is a semantics
preserving translation to Modest [42, 43], which can then en-
able discrete event simulations of models developed for IoT
and thus support the feasibility of our modelling approach
from the experimental perspective.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China (Grant No.61370100, Grant No.61321064
and No.61773019), Shanghai Knowledge Service Platform
for Trustworthy Internet of Things (Grant No.ZF1213),
Shanghai Municipal Science and Technology Commission
Project (No.1451100400), and Defense Industrial Technol-
ogy Development Program JCKY 2016212B004-2, by the

ERC Advanced Grant 695614 (POWVER), and by the Sino-
German Center for Research Project CAP (GZ 1023).

References

1. Borgia E. The internet of things vision: key features, applications and

open issues. Computer Communications, 2014, 54:1-31

2. Lanese I, Bedogni L, Felice M D. Internet of things: a process calculus

approach. In: Proceedings of Annual ACM Symposium on Applied

Computing, 2013, 1339-1346

3. Lanotte R, Merro M. A semantic theory of the internet of things. Infor-

mation and Computation, 2018, 259(1):72-101

4. Arbab F. Reo: a channel-based coordination model for component

composition. Mathematical Structures in Computer Science, 2004,

14(3):329-366

5. Meng S, Arbab F. On resource-sensitive timed component connectors.

In: Proceedings of International Conference on Formal Methods for

Open Object-Based Distributed Systems, 2007, 301-316

6. Arbab F, Chothia T, Meng S, Moon Y J. Component connectors with

qos guarantees. In: Proceedings of International Conference on Coor-

dination Models and Languages, 2007, 286-304

7. Baier C, Sirjani M, Arbab F, Rutten J J M M. Modeling component

connectors in reo by constraint automata. Science of Computer Pro-

gramming, 2006, 61(2):75-113

8. Jongmans S S T Q, Arbab F. Overview of thirty semantic formalisms

for reo. Scientific Annals of Computer Science, 2012, 22(1):201-251

9. Arbab F, Baier C, Boer F S, Rutten J J M M. Models and temporal

logical specifications for timed component connectors. Software and

System Modeling, 2007, 6(1):59-82

10. Baier C. Probabilistic models for reo connector circuits. Journal of

Universal Computer Science, 2005, 11(10):1718-1748

11. Aziz A, Singhal V, Balarin F. It usually works: the temporal logic

of stochastic systems. In: Proceedings of International Conference on

Computer Aided Verification, 1995, 155-165

12. He K, Hermanns H, Chen Y. Models of connected things: on priced

probabilistic timed reo. In: Proceedings of IEEE Annual Computer

Software and Applications Conference, 2017, 234-243

13. Arbab F, Rutten J J M M. A coinductive calculus of component con-

nectors. In: Proceedings of International Workshop on Recent Trends

in Algebraic Development Techniques, 2002, 34-55

14. Alur R, Dill D L. A theory of timed automata. Theoretical Computer

Science, 1994, 126(2):183-235

15. Henzinger T A, Nicollin X, Sifakis J, Yovine S. Symbolic model

checking for real-time systems. Information and Computation, 1994,

111(2):193-244

16. Segala R, Lynch N A. Probabilistic simulations for probabilistic pro-

cesses. Nordic Journal of Computing, 1995, 2(2):250-273

17. Turrini A, Hermanns H. Cost preserving bisimulations for probabilistic

automata. Logical Methods in Computer Science, 2014, 10(4):1-58

18. Segala R. Modelling and verification of randomized distributed real

time systems. PhD thesis, Cambridge: Massachusetts Institute of Tech-

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

20
Kangli HE et al.: Connection Models for the Internet-of-Things

nology, 1995

19. Glabbeek R V, Smolka S A, Steffen B, Tofts C M N. Reactive, gener-

ative, and stratified models of probabilistic processes. In: Proceedings

of Annual Symposium on Logic in Computer Science, 1990, 130-141

20. Glabbeek R V, Smolka S A, Steffen B. Reactive, generative and strat-

ified models of probabilistic processes. Information and Computation,

1995, 121(1):59-80

21. D’ Argenio P R, Hermanns H, Katoen J P. On generative parallel

composition. Electronic Notes in Theoretical Computer Science, 1999,

22:30-54

22. Baeten J C M, Bergstra J A, Smolka S A. Axiomatizing probabilistic

processes: acp with generative probabilities. Information and Compu-

tation, 1995, 121(2):234-255

23. Kwiatkowska M Z, Norman G, Parker D, Sproston J. Performance

analysis of probabilistic timed automata using digital clocks. Formal

Methods in System Design, 2006, 29(1):33-78

24. Halmos P R. Measure theory. Berlin: Springer-Verlag, 1950

25. Clarke E M, Emerson E A. Design and synthesis of synchronization

skeletons using branching-time temporal logic. In: Proceedings of

Workshop on Logics of Programs 1981, 52-71

26. Norman G, Parker D, Sproston J. Model checking for probabilistic

timed automata. Formal Methods in System Design, 2013, 43(2):164-

190

27. Baier C, Haverkort B R, Hermanns H, Katoen J P. Performance eval-

uation and model checking join forces. Communications of the ACM,

2010, 53(9):76-85

28. Bianco A, Alfaro L D. Model checking of probabilistic and nonde-

terministic systems. In: Proceedings of International Conference on

Foundations of Software Technology and Theoretical Computer Sci-

ence, 1995, 499-513

29. Asarin E, Caspi P, Maler O. Timed regular expressions. Journal of the

ACM, 2002, 49(2):172-206

30. Hansson H, Jonsson B. A logic for reasoning about time and reliability.

Formal Aspects of Computing, 1994, 6(5):512-535

31. Bianco A, Alfaro L D. Model checking of probabalistic and nonde-

terministic systems. In: Proceedings of International Conference on

Foundations of Software Technology and Theoretical Computer Sci-

ence, 1995, 499-513

32. Li L, Jin Z, Li G, Zheng L, Wei Q. Modeling and analyzing the reliabil-

ity and cost of service composition in the iot: a probabilistic approach.

In: Proceedings of International Conference on Web Services, 2012,

584-591

33. Li G, Wei Q, Li X, Jin Z, Xu Y, Zheng L. Environment based modeling

approach for services in the internet of things. Scientia Sinica, 2013,

43(10):1198-1218

34. Martinez B, Montón M, Vilajosana I, Prades J D. The power of models:

modeling power consumption for iot devices. IEEE Sensors Journal,

2015, 15(10):5777-5789

35. Costa B, Pires P F, Delicato F C, Li W, Zomaya A Y. Design and

analysis of iot applications: a model-driven approach. In: Proceed-

ings of IEEE International Conference on Dependable, Autonomic and

Secure Computing, International Conference on Pervasive Intelligence

and Computing, International Conference on Big Data Intelligence and

Computing and Cyber Science and Technology Congress, 2016, 392-

399

36. Lee E A. Cyber physical systems: design challenges. In: Proceedings

of IEEE International Symposium on Object-Oriented Real-Time Dis-

tributed Computing, 2008, 363-369

37. Palomar E, Chen X, Liu Z, Maharjan S, Bowen J P. Component-

based modelling for scalable smart city systems interoperability: a case

study on integrating energy demand response systems. Sensors, 2016,

16(11):1810

38. Baier C, Wolf V. Stochastic reasoning about channel-based component

connectors. In: Proceedings of International Conference on Coordina-

tion Models and Languages, 2006, 1-15

39. Moon Y J, Silva A, Krause C, Arbab F. A compositional semantics for

stochastic reo connectors. In: Proceedings of International Workshop

on the Foundations of Coordination Languages and Software Architec-

tures, 2010, 93-107

40. Oliveira N, Silva A, Barbosa L A. Imcreo: interactive markov chains

for stochastic reo. Journal of Internet Services and Information Secu-

rity, 2015, 5(1):3-28

41. Pnueli A. The temporal logic of programs. In: Proceedings of Annual

Symposium on Foundations of Computer Science, 1977, 46-57

42. Bohnenkamp H C, D’ Argenio P R, Hermanns H, Katoen J P. Modest:

a compositional modeling formalism for hard and softly timed systems.

IEEE Transactions on Software Engineering, 2006, 32(10):812-830

43. Hahn E M, Hartmanns A, Hermanns H, Katoen J P. A compositional

modelling and analysis framework for stochastic hybrid systems. For-

mal Methods in System Design, 2013, 43(2):191-232

Kangli He is a PhD student in the

School of Computer Science and Soft-

ware Engineering in the East China

Normal University, Shanghai, China.

He received the B.S. degree from East

China Normal University in 2009. His

research interests include formal meth-

ods, Internet of Things and Bisimula-

tion. Now his research topic concerns the formal modelling and

verification of Internet of Things.

Holger Hermanns is a full professor at

Saarland University, Saarbrücken, Ger-

many, holding the chair of Depend-

able Systems and Software on Saar-

land Informatics Campus. He is an

ERC Advanced Grantee and member of

Academia Europaea. His research in-

terests include perspicuous computing,

modeling and verification of concurrent systems, resource-aware

P
O

W
V

E
R

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

20
20

-1
5

—
T

H
IS

R
E

P
O

R
T

IS
A

N
A

U
T

H
O

R
-G

E
N

E
R

A
T

E
D

V
E

R
S

IO
N

O
F

A
P

U
B

L
IC

A
T

IO
N

IN
F

R
O

N
T

IE
R

S
O

F
C

O
M

P
U

T
E

R
S

C
IE

N
C

E
14

.
P

L
E

A
S

E
C

IT
E

T
H

A
T

P
U

B
L

IC
A

T
IO

N
IN

S
T

E
A

D
O

F
T

H
IS

R
E

P
O

R
T.

21

embedded systems, compositional performance and dependability

evaluation, and their applications to energy informatics. Holger Her-

manns has co-authored more than 200 peer-reviewed scientific pa-

pers (ha-index 92, h-index 50). He co-chaired the program com-

mittees of major international conferences such as CAV, CONCUR,

TACAS and QEST, and delivered keynotes at about a dozen inter-

national conferences and symposia. He serves on the steering com-

mittees of ETAPS and TACAS. He is president of the association

“Friends of Dagstuhl”.

Hengyang Wu received the B.S. de-

gree from Xuzhou Normal University,

Xuzhou, China, in 1996, and the M.Sc.

and Ph.D. degrees from Shanghai Nor-

mal University, Shanghai, China, in

2004 and 2007, respectively, all in

mathematics. From 2008 to 2011,

he was a Postdoctoral Researcher with

East China Normal University, Shanghai, China, where he is cur-

rently an Associate Research Fellow. From 2011 to July 2016, he

was an Associate Professor of computer science with Hangzhou Di-

anzi University. His current research interests include formal meth-

ods and domain theory. He serves on the thechnical committees of

Fuzzy Systems and Mathemantics and CCF Theoretical Computer

Science.

Yixiang Chen is a full professor in the

School of Computer Science and Soft-

ware Engineering, East China Normal

University, Shanghai, China. Where he

is coordinating trustworthy software,

Internet of things and Human-Cyber-

Physical System related research activ-

ities. Professor Chen is the director of

the MoE Engineering Research Center for Software/Hardware Co-

design Technology and Application. He is a vice-chairman of tech-

nical committee for Embedded System China Computer Federation,

Fuzzy Systems and Mathemantics, Chnese Association for Artificial

Intelligence.

	Introduction
	Our contribution
	Organisation of the paper

	Preliminaries
	A primer of Reo
	Constraint Automata
	Timed Constraint Automata
	Probabilistic Constraint Automata

	Priced Probabilistic Timed Constraint Automata
	Target run
	Priced probabilistic timed Reo circuits
	Basic channels
	Merger

	Product of pPTCA
	Hiding for pPTCA

	Semantics of pPTCA
	Probabilistic Timed Systems
	Paths
	Schedulers

	Semantics of pPTCA

	Priced Probabilistic Timed Scheduled Data Stream Logic
	Syntax of pPTDL
	Semantics of pPTDL
	Time cuts
	Concatenation
	Semantics of pTsD expression
	Semantics of pPTDL

	Verification of pPTCA against pPTDL

	Case Study
	Reo circuit for the system
	Updating the system
	Sequential process
	Concurrent process

	Related Work
	IoT modelling languages
	CA variants
	IoT supported logics

	Conclusion and Future Work

