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1 CONICET, Córdoba, Argentina
Saarland University, Saarbrücken, Germany

Universidad Nacional de Córdoba, Córdoba, Argentina
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Abstract. We consider routing in delay-tolerant networks like satellite
constellations with known but intermittent contacts, random message
loss, and resource-constrained nodes. Using a Markov decision process
model, we seek a forwarding strategy that maximises the probability
of delivering a message given a bound on the network-wide number of
message copies. Standard probabilistic model checking would compute
strategies that use global information, which are not implementable since
nodes can only act on local data. In this paper, we propose notions
of distributed schedulers and good-for-distributed-scheduling models to
formally describe an implementable and practically desirable class of
strategies. The schedulers consist of one sub-scheduler per node whose
input is limited to local information; good models additionally render
the ordering of independent steps irrelevant. We adapt the lightweight
scheduler sampling technique in statistical model checking to work for
distributed schedulers and evaluate the approach, implemented in the
Modest Toolset, on a realistic satellite constellation and contact plan.

1 Introduction

There is an increasing commercial and scientific interest in deploying large-scale
satellite networks in low-Earth orbit (LEO) to collect and distribute informa-
tion [?]. Real-time access to data is, however, only feasible when many satellites
align to form a chain of links between a (remote) destination source or destina-
tion and a ground station. This vision favours mega-constellations; e.g. SpaceX’s
Starlink is composed of 12,000 satellites [?]. A different and more sustainable
approach is to relax the real-time constraint and leverage the store-carry-and-
forward principle where nodes store received messages for later forwarding to
other nodes in the network, once a communication window—a contact—appears.
This gives rise to a delay-tolerant network (DTN) [?]. Originally intended for
interplanetary networks [?], the DTN architecture has been identified as a dis-
ruptive approach for LEO constellations which allows for a better utilisation
of communication opportunities [?]. In DTN, there is no upper bound on the
propagation delay, and no expectation of continuous or bi-directional end-to-
end connectivity. While DTN satellite constellations do not work for e.g. voice
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services, they can network Earth observation and high-latency data service mis-
sions. In particular, they can utilise slower inter-satellite links by advance for-
warding [?], adapt transmission schedules to limited battery conditions [?], work
with constrained spacecraft antennas and subsystem architectures [?], and tailor
communication resources to fit mission traffic and routes [?,?]. Ultimately, the
DTN approach enables sparse topologies of fewer and and cheaper satellites [?].

N1:

N2:

N3:

N4:

T1 T2 T3 T4 T5Slot:

p1 = 0.9

p2 = 0.9

p3 = 0.5

p4 = 0.5

p5 = 0.1

Fig. 1. Abstract uncertain contact plan

A contact is the opportunity to estab-
lish a temporal communication link. As
a DTN node’s network state informa-
tion may be inaccurate or obsolete, tra-
ditional Internet routing schemes can-
not be used. Space DTN routing ap-
proaches (both near-Earth and deep-
space) thus seek to exploit the a priori
knowledge of contacts: inter-satellite
and satellite-to-ground contacts can be
precomputed based on the orbital ele-
ments and communication parameters.
The result is a contact plan [?]. We visualise a simple plan for four satellites—
nodes N1 through N4—in Fig. 1. A bent vertical arrow indicates a contact from
the arrow’s origin to its target node. We abstract real time into discrete time slots
T1 through T5; actual contact plans would show actual time intervals of varying
durations (and potentially overlapping) with up to sub-second precision. Contact
plans describe the expected network connectivity over time. They are the input
for centralised or distributed DTN routing procedures. Existing solutions turn
contact plans into e.g. time-expanded graphs [?] or contact graphs [?] on which
routing calculations can be performed efficiently. Contact graphs have notably
been validated by technological demonstrations in orbit [?,?].

In practice, the actual contacts may differ from the original plan due to fail-
ures or incomplete/inaccurate knowledge at the time the plan was computed.
Space DTN in particular face fault-prone nodes [?], interference-sensitive com-
munication links [?], and inaccurate orbit determination and station keeping
procedures [?]. We thus need uncertain contact plans where contacts may fail
for various reasons. Based on statistical data, we can annotate every contact
with its success probability. In Fig. 1, we use probabilities p1 through p5 for il-
lustration. Given an uncertain contact plan, we would then like to find a routing
strategy that maximises the probability that the message is delivered to its des-
tination. To increase that probability, we can allow copies of the message that
propagate along different paths. However, as typical DTN satellites have limited
resources, we also want to bound the number of copies. Existing routing schemes
only perform well under perfectly known or fully unknown contact plans [?,?],
leaving significant room for improvement for uncertain contact plan routing.

The routing problem in uncertain contact graphs with bounded copies matches
very well with the modelling capabilities of Markov decision processes (MDP) [?].
They combine discrete probabilistic choices as in discrete-time Markov chains,
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which can represent contact failures, with nondeterministic choices as in Kripke
structures [?], which can represent the routing options. Given an MDP model,
we can use probabilistic model checking (PMC) [?] to determine the routing
strategy (corresponding to the scheduler in PMC) with the highest probability
for eventual message delivery. Raverta et al. [?] recently used this approach with
optimisations that exploit the structure of the DTN routing models. However,
PMC computes global-information schedulers, which take the local states of all
nodes into account to make the optimal decision; they are thus unimplementable.

Example 1. In the contact plan of Fig. 1, assume we can send one message per
slot. The highest-probability route from N1 to N4 is N1-N2-N3-N4 (in slots T1,
T2, and T4, with probability 0.405). The second-best is N1-N3-N4 (in T3 and
T4, p = 0.25). Sending directly from N1 to N4 is least reliable. If N1 starts with
two copies of the message, then the first should be sent to N2 in T1. In slot T3,
N1 can then either try to send the remaining copy to N3, or keep it for slot T5.
We will show in Sect. 2 that the best choice for node N1 computed by PMC is
to send in T3 iff node N3 does not already have a copy of the message, i.e. if
communication in slot T1 or T2 failed. In a space DTN, N1 cannot know this!

PMC is thus not well suited for space DTN routing. The underlying problem of
applying PMC to distributed systems was recognised almost 20 years ago [?,?,?],
and led to the development of the notion of (strongly) distributed schedulers [?,?]
that only act on locally observable information. However, depending on the exact
formalism and definition used, PMC for these schedulers is undecidable [?] in
general, and NP-hard in the memoryless case [?,?].

In this paper, we propose to use statistical model checking (SMC) [?, ?] with
lightweight scheduler sampling (LSS) [?] in place of PMC to obtain routing
strategies with a high probability for message delivery. Our contributions are
(1) a modern and practical definition of distributed schedulers and models (in
Sect. 3) appropriate for the space DTN setting that matches the compositional
state-based modelling approach with undirected synchronisation common to to-
day’s probabilistic modelling languages [?, ?, ?, ?] and tools [?, ?, ?, ?]; (2) an
adaptation and implementation of SMC with LSS for distributed schedulers (in
Sect. 4), and (3) a modelling pattern and SMC-based analysis toolchain for
routing in space DTN with uncertain contact plans (in Sect. 5). We start (in
Sect. 2) with a simplified but complete definition of the compositional MDP
formalism that underpins our approach, introducing a detailed model for Fig. 1
along the way. We end (in Sect. 5) with an experimental evaluation of our new
technique on a realistic satellite constellation model and contact plan. A package
with the tools and models needed to replicate our experiments is available at
modestchecker.net/nfm2020/artifact.zip; accesses to this URL are not logged.

2 Scheduling in Markov Decision Processes

Preliminaries. Z is the set of integer numbers. We write [a, b] for the real in-
terval {x ∈ R | a ≤ x ≤ b }. Given a set S, its powerset is 2S . A proba-

http://www.modestchecker.net/nfm2020/artifact.zip
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bility distribution over S is a function µ : S → [0, 1] with countable support
spt(µ) def= { s ∈ S | µ(s) > 0 } and

∑
s∈spt(µ) µ(s) = 1. Dist(S) is the set of all

probability distributions over S. We write {x1 7→ y1, . . . } for the function that
maps each xi to yi, and if necessary implicitly maps to 0 all other x. Thus we
can e.g. write { s 7→ 1 } for the Dirac distribution that assigns probability 1 to s.
For a tuple t = 〈y1, . . . , yn〉, t[i] def= yi is its i-th component.

Definition 1. A Markov decision process (MDP) is a tuple M = 〈S, sI , A, T 〉
where S is a finite set of states with initial state sI ∈ S, A is a finite set of
actions, and T : S → 2A×Dist(S) is the transition function with T (s) 6= ∅ for all
s ∈ S. The set of all transitions is Tr(M) def= ∪s∈ST (s); it must be finite.

s0 s1

s2

a

1
3

2
3

b
b

a

We also write s a−→T µ for 〈a, µ〉 ∈ T (s), and may omit
the T subscript. An element of spt(µ) is a branch of
transition s a−→T µ. To leave a state, we first choose a
transition, then select the next state probabilistically
among its branches. An MDP with ∀ s : |T (s)| = 1 is
a discrete-time Markov chain (DTMC). We draw MDP
as shown above on the right: this MDP has three states
with sI = s0, four transitions, and five branches. For transitions with a single
branch, we omit the dot and probability 1. We have s0 a−→ { s1 7→ 1

3 , s2 7→
2
3 }.

Modelling with MDP directly is cumbersome; we instead use a higher-level
modelling language like Modest [?,?] that extends MDP with discrete variables
and parallel composition. Given a set of (integer-valued) variables X, let ValX

def=
X → Z be their valuations. Let BxpX and IxpX contain all Boolean and integer
expressions over the variables in X, respectively. We omit X subscripts if clear
from the context. For e ∈ Bxp (e ∈ Ixp), let v(e) ∈ { true, false } (v(e) ∈ Z) be
the value of e in v ∈ Val . Finally, let Upd def= X 7→ Ixp be the set of updates that
map each variable to an expression determining the value assigned to it.

Definition 2. An MDPwith variables (VMDP) is a tupleM = 〈Loc, `I , A,X, xI , E〉
where Loc is a set of locations with initial location `I ∈ Loc, A is a set of
actions, X is a set of variables with initial values given by xI ∈ Val , and
E : Loc → 2Bxp×A×Dist(Upd×Loc) is the edge function. All sets must be finite.

We write s g,a−−→E ν for 〈g, a, ν〉 ∈ E(`), and may omit the E subscript. An edge
in a VMDP has a guard g that determines whether the edge is enabled. A branch
of an edge carries an update u that changes the variables’ values. Formally:

Definition 3. Given a VMDP M = 〈Loc, `I , A,X, xI , E〉, its semantics is the
MDP JMK def= 〈Loc ×Val , 〈`I , xI〉, A, T 〉 with T the smallest function satisfying

` g,a−−→E ν ∧ v(g)
〈`, v〉 a−→T { 〈`′, v′〉 7→

∑
{u|u∈Upd∧v′={x 7→v(u(x))}} ν(〈u, `′〉) | `′ ∈ Loc, v′ ∈ Val }

We must restrict to VMDP whose semantics is finite and deadlock-free.

Example 2. Fig. 2 shows four VMDP N1 through N4 that model the nodes of
Fig. 1. Every node has a variable ci to track the number of message copies it
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1a

N1:

1b

2a

3a3b

4a

5a 5b

X

{c1 �2,
d�0}

c1≥ 1, snd1,
{c1 �c1−1, d�1}

nop1 rcv,
{d�0}

rcv
c1≥ 1, snd1,
{c1 �c1−1, d�1}

nop1rcv,
{d�0}

rcv
c1≥ 1, snd1,
{c1 �c1−1, d�1}

nop1 rcv,
{d�0}

rcv

1a

N2:

2a2b

X

rcv

{c2 �0,
d�0} 0.9, {c2 �c2+d}

0.1

c2≥ 1, snd2,
{c2 �c2−1, d�1}

nop2

rcv,
{d�0}
rcv

1a

N4:

2a 3a

4a

5a

X

rcv

rcv

{c4 �0,
d�0} rcv

rcv
rcv

0.5,
{c4 �c4+d}

0.5

0.1, {c4 �c4+d}

0.9

1a

N3:

2a

3a

4a 4b

X

rcv

rcv

{c3 �0,
d�0}

rcv 0.9, {c3 �c3+d}

0.1

0.5, {c3 �c3+d}

0.5

c3≥ 1, snd3,
{c3 �c3−1, d�1}

nop3

rcv,
{d�0}

rcv

Fig. 2. Four VMDP modelling the nodes of the example contact plan

owns. We write x�e for the mapping of variable x to value or expression e. In
every slot where a node Ni can send, it has a choice between two transitions
labelled nopi (do not send) and sndi (send one copy: decrement ci, set d to 1).
In a slot Tj where Ni can receive, it always tries to do so via action rcv; this
succeeds with probability pj as given in Fig. 1. If the sender decided not to
send, then a successful receive has no effect on ci because d is zero. The parallel
composition of these four VMDP models the entire contact plan, with the nodes
synchronising on shared action rcv and exchanging data via shared variable d.

Definition 4. Given two VMDP Mi = 〈Loci, `Ii , Ai, Xi, xIi , Ei〉, i ∈ { 1, 2 }, a
finite set A of actions, and a synchronisation relation

sync ⊆ (A1 ] {⊥})× (A2 ] {⊥})×A,
their parallel composition is

M1 ‖sync M2
def= 〈Loc1 × Loc2, 〈`I1 , `I2〉, A,X1 ∪X2, xI1 ∪ xI2 , E〉

where E is the smallest function that satisfies the inference rules
`1

g1,a1−−−→E1 ν1 〈a1,⊥, a〉 ∈ sync

〈`1, `2〉 g1,a−−→E { 〈〈`′1, `2〉, u1〉 7→ ν1(〈`′1, u1〉) | 〈`′1, u1〉 ∈ spt(ν1) }
(ind1),

`1
g1,a1−−−→E1

ν1 `2
g2,a2−−−→E2

ν2 〈a1, a2, a〉 ∈ sync

〈`1, `2〉 g1∧g2,a−−−−−→E { 〈〈`′1, `′2〉, u1 ∪ u2〉 7→ ν1(〈`′1, u1〉) · ν2(〈`′2, u2〉) | . . . }
(syn),

plus a rule ind2 for M2 that is symmetric to ind1, with . . . in syn replaced by
〈`′1, u1〉 ∈ spt(ν1) ∧ 〈`′2, u2〉 ∈ spt(ν2) ∧ u1 ∪ u2 is a function.

Inference rules ind1 and ind2 allow the individual VMDP to proceed indepen-
dently if allowed by sync; rule syn covers the case where they synchronise on a
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‖SV (N1, N2, N3, N4):

rcv

rcv

rcv

{c1 �2, c2 �0,
c3 �0, c4 �0,

d�0}
c1≥ 1, snd1,
{c1 �c1−1, d�1}

nop1
0.9, {c2 �c2+d, d�0} 0.1,

{d�0}c2≥ 1, snd2,
{c2 �c2−1, d�1}

nop2

0.9, {c3 �c3+d, d�0}0.1,
{d�0} c1≥ 1, snd1,

{c1 �c1−1, d�1}

nop1

1a.0.2000

J‖SV (N1, N2, N3, N4)K:

1b.0.20001b.1.1000

2a.0.1000

2b.0.1000

3a.0.1000

3b.0.10003b.1.0000

2a.0.1100

2b.1.1000 2b.0.1100

3a.0.1010

3b.1.0010 3b.0.1010

rcv

rcv

snd1 nop2

0.1
0.9

nop2 snd2 nop2

rcv

0.1 0.9

snd1 nop1 snd1 nop1

Fig. 3. Excerpt of the network of the node VMDP (left) and its semantics (right)

pair of actions. An element of sync is called a synchronisation vector ; we also
write 〈a1, a2〉 7→ a for vector 〈a1, a2, a〉. This flexible form of parallel composition
can be generalised to more than two VMDP with longer synchronisation vectors.
We refer to such a general parallel composition as a network of VMDP and
write e.g. ‖SV (M1,M2,M3) for the network of M1, M2, and M3, with the set of
synchronisation vectors SV . The case in syn where ν1(〈`′1, u1〉) · ν2(〈`′2, u2〉) 6= 0
but u1 and u2 assign different expressions to a shared variable (s.t. u1∪u2 is not
a function) is a modelling error, and we do not consider networks of VMDP with
such inconsistent assignments, or with inconsistent initial valuations xI1 and xI2 .

Example 3. Fig. 3 shows an initial fragment of the network of the node VMDP
N1 through N4 on the left. We omit location labels. Synchronisation vectors are

SV = { 〈rcv, rcv, rcv, rcv〉 7→ rcv, 〈snd1,⊥,⊥,⊥〉 7→ snd1, . . . }:
In every slot, the nodes first independently make their choices of whether to
send or not (sndi vs. nopi); then they synchronise on rcv to perform their
receive actions simultaneously. Updates are atomic, i.e. all right-hand sides are
evaluated first, thus there is no order dependency in e.g. {c3�c3+d, d�0}. On
the right of Fig. 3, we show a fragment of the network’s MDP semantics. We
write `.vd.vc1vc2vc3vc4 for state 〈〈. . . , `, . . .〉, { d 7→ vd, c1 7→ vc1 , . . . }〉.

A path defines the behaviour of an MDP by resolving all nondeterminism and
probabilistic choices. A scheduler resolves the nondeterminism only.

Definition 5. Let M be an MDP as in Def. 1. A path π of M is an infinite
sequence π = s0 tr0 s1 . . . ∈ (S × Tr(M))ω such that, for all i ∈ { 0, . . . }, we
have tr i = 〈a, µ〉 ∈ T (si) and µ(si+1) > 0. Π(M) is the set of all paths of M .
We write Πfin(M) for the set of all path prefixes πfin ending in a state. The last
state of πfin is denoted last(πfin).
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Definition 6. Let M be an MDP as above. A (randomised, history-dependent)
scheduler is a function σ : Πfin(M) → Dist(Tr(M)) such that ∀s ∈ S : σ(s) =
tr ⇒ tr ∈ T (s). We write S(M) for the set of all schedulers of M . A determinis-
tic scheduler is in Πfin(M)→ Tr(M); a (deterministic) memoryless scheduler is
in S → Tr(M). A memoryless scheduler σml defines a corresponding determin-
istic scheduler σdet by σdet(πfin) = σml(last(πfin)) and a deterministic scheduler
σdet defines a scheduler σ by σ(πfin) = {σdet(πfin) 7→ 1 }.

If we “apply” a scheduler σ to an MDPM , it removes all nondeterminism and we
obtain a DTMC M |σ, whose paths can be measured and assigned probabilities
according to the transitions’ distributions. Formally, these probability measures
over sets of paths are built via cylinder sets; we refer the interested reader to
e.g. [?] for details. Given a set of goal states G ⊆ S and a scheduler σ, we are in-
terested in the probability of the measurable subset of paths ofΠ(M |σ) including
a state in G. We call the supremum (infimum) when ranging over all schedulers
σ ∈ S(M) the maximum (minimum) reachability probability. There is always a
memoryless scheduler that achieves the supremum respectively infimum [?].

Example 4. For our example contact plan, we are interested in the maximum
probability to reach a state whereN4 has at least one copy, and the corresponding
scheduler. Expanding the MDP of Example 3, we can calculate that probability
to be 0.493. The optimal choices are to send in slots T1 and T2; then in slot T3,
– if we are in state 3a.0.1000 (i.e. if the first copy was lost on the way from N1

via N2 to N3): send from N1 to N3, and send from N3 to N4 in T4;
– if we are in state 3a.0.1010 (i.e. the first copy made it to N3), do not send

from N1 to N3 (since N3 already has a copy and can only send to N4 once),
then send in both T4 and T5.

Thus the optimal choice of node N1 in slot T3 depends on whether node N3 has
a copy of the message or not. In a real distributed setting, N1 cannot know this.

3 Distributed Scheduling

Example 4 showed that a scheduler that maximises the probability for eventual
message delivery may need complete global information. In a distributed system
like a satellite constellation, such a scheduler cannot be implemented; the satel-
lites must decide whether to send based on their local state (here: their number
of message copies ci) only. This problem was initially studied with a focus on
aspects of compositionality [?], ignoring algorithms except for a simple partial-
information setting [?]. Giro et al. [?] defined distributed schedulers, for which
computing and approximating optimal probabilities is in general impossible [?].
The formalisms of [?] and [?] do not provide for scheduling the interleaving of
parallel components, i.e. deciding which component acts first in case both of
them have an enabled edge in the same state. This gap was filled in [?] along
with the introduction of strongly distributed schedulers. Though model checking
remains undecidable in general, [?] proved that for memoryless schedulers it is
“only” NP-hard. Consequently, no model checker as of today supports (strongly)
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distributed schedulers. The only prototype [?] was restricted to time-bounded
reachability and suffered from exponential explosion in intermediate model sizes.
Other prototype tools only provide overapproximations [?,?]. Our formalism of
Sect. 2 is more expressive than those previously considered by allowing interleav-
ing and information exchange via both synchronisation and (shared) variables.

In this paper, we restrict to a memoryless deterministic variant of distributed
schedulers adapted to our formalism (Sect. 3.1), and we define a desirable char-
acteristic of models that makes scheduling decisions about interleavings irrele-
vant (Sect. 3.2). We prefer memoryless distributed schedulers because history-
dependent ones need infinite memory (which is again unimplementable), and
using randomised schedulers would add additional unpredictability to the be-
haviour of the system, which is undesirable from the practitioner’s point of view.

3.1 Simple Distributed Schedulers

Definition 7. Given a network of VMDP M = ‖SV (M1, . . . ,Mn) and i ∈
{ 1, . . . , n }, let read(Mi) be the set of all variables that occur in the guards of
edges of Mi or on the right-hand sides of assignments in the updates in Mi. A
state in JMK = 〈S, sI , A, T 〉 has the form s = 〈〈`i, . . . , `n〉, v〉 where `i is the
current location of Mi and v ∈ Val∪iXi

. Then the Mi-projection of s is s↓Mi

def=
〈`i, v↓read(Mi)〉 with v↓read(Mi)

def= {x 7→ v(x) | x ∈ read(Mi) } ∈ Valread(Mi).
Let S↓Mi

def= { s↓Mi
| s ∈ S } be the set of all projected states. Every transition

tr = s a−→ s′ in JMK can be traced back to a unique (generalised) synchronisation
vector sv ∈ SV through the rules of defs. 3 and 4. We say that Mi is involved in
tr if sv [i] 6= ⊥. We write It(Mi) for the set of all transitions Mi is involved in.
For a transition tr , Ic(tr)

def= {Mi | tr ∈ It(Mi) } is the set of all components
involved in tr , and for a set of transitions TR, Ic(TR) def=

⋃
tr∈TR Ic(tr).

Simple distributed schedulers now consist of an interleaving scheduler (to se-
lect the component to perform the next transition) plus a local scheduler per
component that only sees the component’s projection of the current state:

Definition 8. A simple distributed scheduler for M as above is a tuple σsd =
〈σI , σ1, . . . , σn〉 of an interleaving scheduler σI : S → N and n local schedulers
σi : S → It(Mi) ∪ {⊥} for i ∈ { 1, . . . , n } s.t. σI(s) ∈ { i | T (s) ∩ It(Mi) 6= ∅ },
σσI(s)(s) ∈ T (s) ∩ It(Mi), and s↓Mi

= s′↓Mi
⇒ σi(s) = σi(s

′) for all s, s′ ∈ S,
i ∈ { 1, . . . n }. It defines a memoryless scheduler σ for JMK by σ(s) = σσI(s)(s).

Simple distributed schedulers differ from the partial-information setting of [?]
by combining multiple projections in one scheduler. They also differ from the
(strongly) distributed schedulers of [?,?] by hiding information from states but
not admitting information disclosure via synchronisation at all (by virtue of
being memoryless). As such, they match the nowadays standard state-based
approach to probabilistic verification where transition labels are only used to
determine synchronisations, as embedded in e.g. the Jani [?], Modest [?, ?],
and Prism modelling languages [?], and implemented in probabilistic model
checkers like Epmc [?], the Modest Toolset [?], Prism [?], and Storm [?].
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9

Unlike [?,?], our formalism does not partition actions into inputs and outputs;
thus every component involved in one of our (undirected) transitions can be
chosen by the interleaving scheduler. Interleaving schedulers are problematic:
They may disclose global information by scheduling transitions in certain orders
(see [?]), the nondeterminism they deal with is in fact uncontrollable, and they
would again be unimplementable in fully distributed systems.

3.2 Good-for-Distribution Models

In [?], the problem of information disclosure by the interleaving scheduler was
solved by restricting to strongly distributed schedulers which do not reveal in-
formation in this way by definition. Since this is not a constructive approach,
and since we cannot implement an interleaving scheduler anyway, we only create
models where the interleaving scheduler is by construction irrelevant.

Definition 9. A network of VMDP M = ‖SV (M1, . . . ,Mn) is good for dis-
tributed scheduling w.r.t. reachability of goal set G if in all states s ∈ S of
JMK = 〈S, sI , A, T 〉 where |T (s)| > 1 ∧ |{ i | T (s) ∩ I(Mi) 6= 0 }| > 1 we have

∀ s a−→ s′ : s ∈ G⇔ s′ ∈ G ∨ ∀ s a−→ s′ : s ∈ G⇔ s′ /∈ G, (1)
∀ i ∈ { 1, . . . , n } : |It(Mi) ∩ T (s)| > 1 ⇒ Ic(It(Mi) ∩ T (s)) = {Mi }, (2)

and s a−→ s′ ⇒ ∀Mc ∈ {M1, . . . ,Mn } \ Ic(s a−→ s′) : s′↓Mc
= s′↓Mc

. (3)

In words, a network is good if in all states where the interleaving scheduler has
a nontrivial choice among multiple components, (1) it cannot influence whether
we directly move to a goal state, (2) no component has a local choice involving
at least one synchronising transition, and (3) no transition can change variables
that are visible to a component not involved in the transition.

Lemma 1. For a good-for-distributed-scheduling network of VMDP M , fair in-
terleaving schedulers σI1 and σI2 , and a set G of goal states, the maximum
(minimum) probability to reach a state in G under σI1 is the same as under σI2 .

An interleaving scheduler is fair if, on every cycle in JMK, it chooses every
available component at least once. This is a reasonable assumption in practice.

Proof idea. In good-for-distributed-schedulers models, the interleaving scheduler
cannot cause an unrelated transition to become disabled. The restriction of JMK
induced by an interleaving scheduler together with condition 1 and the fairness
requirement is thus a (stronger) variant of a partial order reduction using ample
sets as in [?] (with condition A5’). A more detailed argument is in the appendix.

The fairness requirement is trivially satisfied for acyclic models (modulo self-
loops in leaf states) like our running example, or if we replace σI by σuni , the
randomised scheduler that picks a component uniformly at random every time.

Example 5. Our running example from examples 2 and 3 is good for distributed
scheduling: in every state, either a single node internally decides between sndi
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and nopi or all nodes synchronise on rcv. In the former states, the interleaving
scheduler has no choice, thus no conditions apply. In the latter states, conditions
2 and 3 are directly satisfied. The only way to move into a goal state is from a
state of the latter kind, thus condition 1 also holds.

While simple distributed schedulers restrict local schedulers from reading certain
variables, a good-for-distributed-scheduling model restricts component edges
from writing to certain variables. A model checker can easily determine whether
a model is good, but a precise syntactic check on the network-of-VMDP level is
not possible. We can still use syntactic overapproximations, e.g. by requiring that
locations with multiple outgoing edges have only internal edges not writing to
shared variables, and that a shared variable may only be updated by synchronis-
ing edges involving all components that read the variable. Our running example
does not satisfy this syntactic restriction due to the writes to d on sndi-labelled
edges. We solve this (in Sect. 5.1) by using a feature of Modest and Jani that
allows to specify sequences of atomic updates, moving the d-write assignments
onto the rcv transitions and executing them before the d-read assignments.

4 Lightweight Distributed Scheduler Sampling

Since PMC for distributed schedulers is undecidable or computationally infeasi-
ble, we propose a different approach to find useful high-probability strategies: we
combine statistical model checking (SMC) [?,?] with a new variant of lightweight
scheduler sampling (LSS) [?] that samples only simple distributed schedulers. As
our models are good for distributed scheduling by construction (see Sect. 5.1),
only the satellites’ local choices are relevant and we can replace the interleaving
scheduler by uniformly random choices.

SMC with LSS. SMC is Monte Carlo simulation with formal models: perform
several simulation runs using a pseudo-random number generator (PRNG) to
resolve probabilistic choices according to the model’s distributions, then return
a statistical estimate and confidence for the probability of interest. As-is, SMC
does not consider the optimisation problem over nondeterminism posed by MDP.
LSS is to date the only extension of SMC that takes scheduling into account
(in contrast to e.g. Prism or Uppaal smc [?], which always use the uniformly
random scheduler) and also preserves SMC’s constant memory usage (in contrast
to learning-based approaches like [?]). The basic idea of LSS is as follows:
1. Randomly select m 32-bit integers. Each of them is a scheduler identifier σ.
2. For each σ, perform standard SMC under the scheduler identified by σ.
3. Return the maximum (or minimum) result and the corresponding σ.
Due to the multiple tests, we need to adjust SMC’s statistical evaluation [?,?].
Within step 2, when there is a choice between n transitions from state s, LSS
concatenates the bit-vector representations of s and σ into s.σ, hashes the result
into a 32-bit number h = H(s.σ), and picks the h mod n-th transition. H is
deterministic so that σ defines a fixed memoryless scheduler. If H is also uniform
(w.r.t. all bits of s.σ), then LSS uniformly samples memoryless schedulers.
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Input: Network of VMDP M = ‖SV (M1, . . . ,Mn) with JMK = 〈S, sI , A, T 〉,
goal set G ⊆ S, σ ∈ Z32, H uniform deterministic, PRNG Upr.

1 s := sI
2 while s /∈ G do // break on goal state
3 if ∀ s a−→ µ ∃ s′ ∈ S : µ = { s′ 7→ 1 } then break // break on self-loops
4 C := { j | T (s) ∩ It(Mj) 6= ∅ } // get active components
5 i := Upr({ j 7→ 1

|C| | j ∈ C }) // select component uniformly
6 Ti := T (s) ∩ It(Mi) // get component’s transitions
7 〈a, µ〉 := (H(σ.s↓Mi

) mod |Ti|)-th element of Ti // schedule local transition
8 s := Upr(µ) // select next state according to µ

9 return s ∈ G

Algorithm 1. Lightweight simple distributed scheduler sampling

The result of SMC with LSS is an underapproximation (overapprox.) of the
maximum (min.) probability. It can thus e.g. disprove safety, or show schedulability—
which is what we are interested in. Its efficiency—how large an m we need to
get a good approximation—is determined by the probability of sampling a near-
optimal scheduler, and thus strongly depends on the model at hand.

LSS for distributed schedulers. In contrast to PMC, LSS is easy to adapt to
different classes of schedulers by changing the input to H. In Alg. 1, we show
pseudocode for our adaptation to simple deterministic schedulers for MDP. We
write U(µ) for the pseudo-random selection by PRNG U of a value from spt(µ)
according to the probabilities of µ. Line 5 implements the interleaving scheduler;
we assume good-for-distributed-scheduling models and thus use uniform random
resolution here, but could equally replace the line by i := H(σ.s)mod |Ti|. Line 7
implements the local scheduler, whose input is restricted to the chosen compo-
nent’s projection of the current state. In line 8, we use Upr to pseudo-randomly
select the successor state according to the distribution determined by the sched-
uled transition. Line 3 terminates the simulation negatively if we find a state
that only has deterministic self-loop transitions; this suffices for our space DTN
models, but could be replaced by smarter loop detection or methods like [?,?].

We have implemented Alg. 1 in modes [?], the statistical model checker of the
Modest Toolset [?]. modes is implemented in C#, freely available at mod-
estchecker.net, runs on 64-bit Linux, macOS, and Windows, and is faster than
other current general-purpose SMC tools [?, Section 7.1]. Its input languages
are Modest [?, ?] and the tool-independent Jani model exchange format [?].
It provides both variants of line 5 discussed above, and implements corrected
statistical tests as well as two-phase and smart sampling.

5 Scheduling Satellite Communication

To apply our new LSS method of Sect. 4 to space DTN, we created the toolchain
shown in Fig. 4. We use the STK tool by AGI [?] and the Contact Plan Designer

http://www.modestchecker.net/
http://www.modestchecker.net/
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scheduler
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Contact
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and user
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parameters

ION
contact

plan
format

cp2modest
converter

Fig. 4. Satellite DTN routing scheduling toolchain

plugin [?] to model the scenario and export the contact plan to a file in In-
terplanetary Overlay Network format (ION) [?]. This plan contains the precise
real-time communication windows; we developed the Python cp2modest tool
that, given such a plan, message source and destinations, and a bound on the
number of copies, (1) abstracts the plan into the form of Fig. 1 with discrete
non-overlapping slots3, and (2) creates a Modest model representing a network
of VMDP of the same structure as Example 2. We then run modes with LSS
for simple distributed schedulers to obtain a good scheduler and its probability.
Compared to the previous PMC-based work [?], we not only generate guaranteed
implementable schedules, but also support multiple message copies.

5.1 Modelling Satellite DTN

The model of Fig. 1 given in Example 2 uses unidirectional unreliable communi-
cation: for every contact, one node is predetermined as sender; if communication
fails, the copy is lost. We also assumed that there is at most one contact and
we transmit at most one copy per slot. The models generated by cp2modest
keep the same structure, but assume bidirectional half-duplex communication,
support multiple contacts per slot (including one node having a contact with
multiple others; it then needs to choose with whom to communicate), allow
sending multiple copies (to one node in one slot), and use either unreliable or
acknowledgment-based communication. The latter allows the sender to deter-
mine whether a message was successfully received, thus in such models it will
keep the sent copies in case of failure. Unreliable communication is a natural
choice in deep-space networks, the original application of DTN, while acknowl-
edgment mechanisms are possible and typical in LEO constellations.

The models created by cp2modest consist of one process definition per node.
Listing 1 shows an excerpt of node N1 in the plan of Fig. 1, but with acknowl-
edgments and all mechanisms to support multiple contacts per slot in place. Like
in the VMDP of Example 2, in every slot in which a node has a contact, we have
a choice of action followed by a global synchronisation on action rcv. Here, in
T1, the choices are to (a) do nothing (line 3), (b) try to send one (line 4) or two
copies (line 8) to N2, or (c) listen to N2 (line 12). We use distinct actions for
every choice to make it easier to trace the best scheduler’s decisions later on.
Global variable data1 takes the role of d of Example 2, but only for messages
3 The abstraction underapproximates contacts (it may only remove or shorten commu-

nication opportunities), so a strategy for the abstract plan is always implementable.
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1 process Node1(int(0..COPIES) copies) {
2 alt { // slot 1: contact with node 2
3 :: nop1; rcv // do nothing in this slot
4 :: when(copies >= 1) snd1to2_1; // send one copy to node 2
5 rcv palt {
6 :0.9: {= data1 = 1, dest1 = 2, 2: copies -= ack2==1 ? 1 : 0 =}
7 :0.1: {= /∗ lost ∗/ =} }
8 :: when(copies >= 2) snd1to2_2; // send two copies to node 2
9 rcv palt {

10 :0.9: {= data1 = 2, dest1 = 2, 2: copies -= ack2==1 ? 2 : 0 =}
11 :0.1: {= /∗ lost ∗/ =} }
12 :: rcv2to1; // listen for communication from node 2
13 rcv {= 1: copies += dest2==1 ? data2 : 0, 1: ack1 = 2 =}
14 };
15 rcv; // slot 2: no contact
16 ... } // three more slots of the same pattern

Listing 1. Excerpt of the Modest code for node N1 with a bound of 2 copies

sent by N1, and dest1 indicates the intended receiver—both of this is to support
multiple contacts per slot. As mentioned at the end of Sect. 3.2, we moved these
assignments onto the rcv edge to make the model syntactically good for dis-
tributed scheduling; assignments prefixed 2: are executed after prefix 1: which
follow those with no prefix. The acknowledgment mechanism uses global vari-
ables like ack2 indicating from whom node N2 successfully received a message.
The sending node then reduces its copies count by that number. In slots without
a contact, like slot T2 for N1, we just move to the next slot by a rcv together
with the other nodes (line 15). Note that nodes cannot create copies; thus is
because they cannot know how many copies there are at other nodes and must
not violate the global bound; we can let the initial node create as many copies
as allowed w.l.o.g. since any number of copies can be transmitted in a slot.

5.2 The Walker Constellation

As a realistic case study, we propose a LEO satellite constellation in a Walker
formation of three orbital planes each with four equally separated satellites.
The constellation is thought to provide high-latency data service to ten isolated
ground nodes randomly distributed around the globe. A ground station located
in Córdoba, Argentina, provides an Internet gateway that the nodes access using
DTN protocols. We provide the detailed locations and parameters of all the nodes
in the appendix. The ranges from ground station to satellites are set to 2000 km
at a minimal elevation angle of 20◦ (mimicking a constrained antenna at the
satellite). In turn, satellites can reach ground terminals at a distance of 1500 km
at the same elevation angle. Fig. 5 shows the ground track and a 3D visualisation
of the constellation. Ground nodes (user terminals) are shown in red, the ground
station in green, and satellites in cyan. The domes and cones over the ground
nodes and under the satellites illustrate the communication ranges. The contact
plan runs for 24 hours from 01 Jul 2020 00:00:00.
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Fig. 5. Visualisation of the Walker constellation (larger version in appendix)

5.3 Experiments

We applied our toolchain to the example contact plan of Fig. 1 and the Walker
constellation described above, both with at most 2 message copies in the network.
For the example contact plan with unreliable communication, we can easily
determine the best simple distributed scheduler and its transmission probability
by again expanding the MDP semantics of Fig. 3; the probability is 0.4645.
Recall from Example 4 that global-information schedulers achieve probability
0.493. We can thus compare the probabilities computed by LSS with the actual
values for distributed schedulers on this example. The state space of our model
of the Walker constellation is still small enough for PMC, so we can compare
the values obtained via PMC and LSS for global-information schedulers at least,
but not for distributed schedulers due to to the infeasibility of PMC in this case.
Since the effectiveness of LSS depends on the rarity of near-optimal schedulers,
we expect to see a tradeoff between LSS for global-information and LSS for
distributed schedulers: There are many more global-information schedulers than
distributed ones. So even though the former may realise higher probabilities,
LSS might only rarely find any good global-information scheduler, whereas it
may often find a good distributed scheduler due to their more limited choices.

Our experiments ran on an Intel Core i7-4790 workstation (3.6-4.0GHz, 4
cores) with 64-bit Ubuntu Linux 18.04. We used smart sampling [?] with a
fixed number of initial schedulers m0 equal to the per-iteration budget n0. In
iteration i, smart sampling performs d ni

mi
e simulation runs for each of the mi

schedulers, discards the “worst” half of the schedulers according to their current
probability estimate, and moves to iteration i + 1 with mi+1 = bmi

2 c. We can
thus cover a large number of schedulers with only ≈ log2(m0) · n0 simulation
runs in total. We show the results in Table 1. We used the Modest Toolset’s
mcsta model checker for PMC and modes as described in Sect. 4 for the SMC-
LSS-m0 runs. Due to the randomised nature of the experiments, we repeated
each three times and report the average and highest maximum probability over
the repetitions. Runtimes were at most 5 minutes, for the m0 = 100000 setting,
with distributed scheduler runs taking around 10% longer that those for global-
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Table 1. Experimental results: average (highest) max. probabilities over 3 repetitions

PMC SMC-LSS-1000 SMC-LSS-10000 SMC-LSS-100000

model global global distrib. global distrib. global distrib.

example/unrel. 0.493 0.48 (0.49) 0.46 (0.47) 0.49 (0.49) 0.46 (0.47) 0.49 (0.49) 0.46 (0.46)
example/acks 0.505 0.49 (0.50) 0.46 (0.48) 0.50 (0.50) 0.50 (0.50) 0.50 (0.50) 0.50 (0.51)

walker/unrel. 0.438 0.03 (0.06) 0.21 (0.30) 0.10 (0.16) 0.30 (0.37) 0.26 (0.33) 0.37 (0.38)
walker/acks 0.734 0.36 (0.38) 0.47 (0.48) 0.38 (0.40) 0.54 (0.60) 0.45 (0.47) 0.54 (0.56)

information schedulers. We use the adaptive method of [?, Section III] for the
statistical evaluation and request the probability for absolute error < 0.0025 on
the example and < 0.005 on the Walker case to be 95%.

We see that, on the example, both variants of LSS find respective optimal
schedulers easily. With acknowledgment-based communication (“acks”), the op-
timal distributed scheduler curiously realises the same probability as the global
one. We asked modes to print traces under this scheduler identifier, and found
that nodes N1 and N3 can collaborate to implement a strategy similar to the one
of Example 4: In slot T3, N1 always tries to send to N3. However, if N3 already
has a copy, it chooses nop3 in this slot; then N1 does not receive an acknowledg-
ment and gets to keep its copy for sending in T5. While “sneaky”, such behaviour
could clearly be implemented in satellites, and it being found validates the cor-
rectness and applicability of our distributed LSS approach. On the Walker case
study, the tradeoff described earlier comes into play: distributed-scheduler LSS
consistently finds better schedulers, and more reliably finds them even for lower
values of m0, despite global-information schedulers being able to realise higher
probabilities in principle. In particular, our new version of LSS consistently finds
schedulers not too far from the maximum achievable with global information ac-
cording to PMC—but its schedulers are guaranteed implementable.

6 Conclusion

We have developed new theory and tools to tackle the challenge of computing
good and implementable routing strategies for satellite DTNs under uncertain
contact plans, using formal methods technology. We have proposed a new, mod-
ern notion of distributed schedulers appropriate for the application, extended the
LSS technique to work with this new notion, created a toolchain incorporating
the new theory and technology, and applied it to a realistic case study. While
LSS may be limited (e.g. by not being able to prove safety) in a general setting,
we showed that it works very well for this application—which particularly bene-
fits from the flexibility of LSS w.r.t. handling different scheduler classes. Once we
found a good scheduler, it can be implemented in a satellite by a program that
feeds its identifier, the current slot offset, and the number of local copies into
a reimplementation of modes’ hash function. We plan to adapt other methods
(e.g. [?]) to extract compact human-readable descriptions of the scheduler, too.
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Appendix

Walker Case Study Parameters

The tables below provide the detailed parameters of the operation segments of
the mission considered in Sect. 5.2: the space segment (composed of the satellites
in the constellation), the ground segment (composed of the ground station and
control center) and the user segment (composed of all user terminals).

Ground Segment

ID Name Latitude
[deg]

Longitude
[deg]

Altitude
[km]

1 GS_Cordoba -31.4135 -64.18105 0.423091597

User Segment

ID Name Latitude
[deg]

Longitude
[deg]

Altitude
[km]

2 GN_N00 -7.998 -64.739 0.101650767
3 GN_N01 40.128 62.480 0.148069703
4 GN_N02 -18.756 12.770 0.610797243
5 GN_N03 79.129 -79.583 0.558084830
6 GN_N04 72.684 -44.711 2.836686069
7 GN_N05 60.573 -45.205 0.045041046
8 GN_N06 -18.585 122.109 0.103431089
9 GN_N07 32.888 35.117 0.025320638

10 GN_N08 73.372 -98.790 0.138821220
11 GN_N09 55.670 102.459 0.466638732

Space Segment

ID Name
True

Anomaly
[deg]

Apogee
Altitude

[km]

Perigee
Altitude

[km]

Perigee
Argument

[deg]

Inclination
[deg]

RAAN
[deg]

12 LEO00 0 600 600 0 98 0
13 LEO01 90 600 600 0 98 0
14 LEO02 180 600 600 0 98 0
15 LEO03 270 600 600 0 98 0
16 LEO10 30 600 600 0 98 240
17 LEO11 120 600 600 0 98 240
18 LEO12 210 600 600 0 98 240
19 LEO13 300 600 600 0 98 240
20 LEO20 60 600 600 0 98 120
21 LEO21 150 600 600 0 98 120
22 LEO22 240 600 600 0 98 120
23 LEO23 330 600 600 0 98 120
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Proof Sketch for Lemma 1

The conditions of Def. 9 only apply to states where the interleaving scheduler
actually has a choice; in all others, σI1 and σI2 must coincide. So let s be a state
where σI1(s) 6= σI2(s) and let TRi = T (s)∩It(MσIi

(s)) with tr i = s ai−→ s′i ∈ TRi

for i ∈ { 1, 2 }. Then T (s′1) ⊇ T (s) \ TRi and T (s′2) ⊇ T (s) \ TRi , i.e. the
choice of the interleaving scheduler cannot disable a non-local transition. This
is because (a) condition 3 prevents the tr i from changing the values of guards
in non-involved components, and (b) condition 2 requires that, if more than
one component is involved in tr i, then TRi = { tr i }. The latter ensures that
taking a synchronising transition cannot disable another synchronising transition
by taking away a needed “synchronisation partner” (a transition with the same
label as needed by the synchronisation vectors). Thus the restriction of JMK
induced by an interleaving scheduler together with condition 1 and the fairness
requirement is a (stronger) variant of a partial order reduction using ample sets
as in [?] (with condition A5’).

Larger Version of the Graphics of Sect. 5.2
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